Dr. Ambedkar Institute of technology, Bengaluru-56 Department of Computer Science & Engineering

The enclosed documents are verified & approved.

Prof & Head

Dr. Siddaraju

Department of Computer Science & Engineering

Professor & Head
Department of Computer Science & Engineering
Dr. Ambedkar Institute of Technology
Bangalore-560 066,

Dr. Ambedkar Institute of Technology, Bangalore Department of Computer Science & Engineering

COURSE OUTCOMES

Course	Course Title: PROGRAMMING FOR PROBLEM SOLVING
Outcomes	Course Code: 18CS13/23
CO1	Obtain knowledge about UNIX platform, understand basics of C
	Programming. Develops the ability to analyze a problem, develop an
	algorithm & flowchart to solve it.
CO2	Define, analyze and interpret the concept of datatypes, operators, decision
	making, looping its declaration, initialization, and their usage.
CO3	Design programs using pointers, arrays, strings, functions, structures and
	union, storage class specifiers, files in C.

Course	COURSE TITLE: DIGITAL LOGIC AND COMPUTER DESIGN
Outcomes	Course Code:18CS31
CO1	Demonstrate the various techniques like K-map, Quine-McCluskey method for minimization of combinational functions.
CO2	Develop and Analyze different combinational and sequential circuits using Logic gates, Multiplexers Decoders, PLA, Flip flops.
CO3	Describe the structure of CPU, memory and I/O unit
CO4	Discuss the design of logic circuits for arithmetic operation in computer system
CO5	Illustrate the use of timing and control signal in the execution of machine instructions of computer system

Course Outcomes	Course Title: DATA STRUCTURES AND ALGORITHMS Course Code:18CS32
CO1	Interpret advance C programming techniques such as pointers, dynamic memory allocation, structures & unions to develop solutions for problems such as polynomials, sparse matrix etc.
CO2	Analyse problem and propose solution by selecting appropriate data structures like stacks, Queues, Linked List, Trees, Graphs, Hash Tables.
CO3	Implement linked list data structure and handle operations like searching, insertion, deletion, traversing mechanism.
CO4	Interpret trees and graphs representations, tree traversal, Searching using BFS and DFS.

Course	Course Title: Operating System
Outcomes	Course Code:18CS33
CO1	Illustrate the role of resource management, interfaces and system calls as handled by the operating system.
CO2	Apply the process scheduling algorithms to select the processes for execution and compare their performances.
CO3	Interpret the requirements for process synchronization and coordination handled by operating system.
CO4	Describe and analyze the memory management and its allocation methods.
CO5	Identify the storage management methods with respect to different storage management techniques.

Course Outcomes	Course Title: PYTHON PROGRAMMING Course Code: 18CS34
CO1	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow statements.
CO2	Express proficiency in the handling of strings and functions.
CO3	Determine the methods to create and manipulate Python programs by utilizing the data structures like lists, dictionaries, tuples and sets.
CO4	Identify the commonly used operations involving file systems and regular expressions.
CO5	Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and polymorphism as used in Python.

Course	Course Title: WEB TECHNOLOGIES
Outcomes	Course Code: 18CS35
CO1	Understand terminologies, tools and protocols used in web.
CO2	Design, understand and analyze static web pages.
CO3	Design, understand and analyze interactive, Dynamic web pages.
CO4	Design, understand and analyze data Representation, management and display.

Course	Course Title: ALGORITHM DESIGN TECHNIQUES
Outcomes	Course Code: 18CS41
CO1	Ability to analyze the performance of algorithms using different asymptotic
COI	notations.
CO2	Identify the design techniques for engineering problems based on Divide &
	conquer and Greedy methods.
CO3	Apply the ideas of dynamic programming and backtracking to solve the
	engineering problems and analyze their performance.
CO4	Determine how space and time trade off technique is used to improve the
	performance of algorithm.
CO5	Estimate the approximation algorithm and analyze the benefit of using them.

Course Outcomes	COURSE TITLE: OOP Principles and Practices using C++ COURSE CODE: 18CS42
CO1	Identify the classes, objects, members of a class and the relationships among
	them to solve a specific problem.
CO2	Illustrate the concept of constructors and describe the mechanism of overloading the operators.
CO3	Examine the concept of data encapsulation, inheritance and function templates as used in C++ programming language.
CO4	Discover the commonly used operations involving the file operations and manipulators.
CO5	Interpret the concepts of exception handling and the built-in standard template library.

Course Outcomes	COURSE TITLE: MICROCONTROLLER AND EMBEDDED SYSTEM COURSE CODE: 18CS43
CO1	Describe the architecture of ARM microcontroller.
CO2	Write the assembly language program using ARM microcontroller instructions
CO3	Illustrate the memory concepts and data representation in ARM microcontroller
CO4	Identify and Analyze the applications of embedded systems
CO5	Select the best components for the design of embedded systems.

Course Outcomes	COURSE TITLE: Theoretical Foundation of Computer Science COURSE CODE: 18CS44
CO1	Design different finite state machines for regular languages, make conversion
	between them, construct the regular expression and study its applications.
CO2	Obtain a minimized DFA, convert the given automata to regular expressions
	and vice-versa and prove languages not to be regular using pumping lemma.
CO3	Know basic definitions in Grammar, Write CFGs, Construct parse trees, find
	and remove ambiguity in grammars.
CO4	Study Pushdown Automata, Design NPDA and DPDA after the CFG
	conversion and convert PDAs to grammar.
CO5	Convert grammar to Various Normal Forms, and simplify the Grammar,
	Prove that languages are not context free using pumping lemma. Design
	Turing machines and understand the working of various types of Turing
	machines.

	COURSE TITLE: Computer Organization and Architecture COURSE CODE: 18CS45
CO1	Describe the architecture and functionality of central processing unit.
CO2	Exemplify in a better way the I/O and memory organization

CO3	Use different number systems, binary addition, subtraction, 2's complement representation, floating point representation and its operations.
CO4	Demonstrate the execution of instruction and compare the architecture of RISC and CISC
CO5	Outline the concepts of parallel processing, pipelining and interprocessor communication

Course Outcomes	COURSE TITLE: Software Engineering COURSE CODE: 18CS51
CO1	Decompose the given project in various phases of a lifecycle.
CO2	Choose appropriate process model depending on the user requirements.
CO3	Perform various life cycle activities like Analysis, Design, Implementation,
	Testing and Maintenance.
CO4	Analyze various processes used in all the phases of the product.
CO5	Apply the knowledge, techniques, and skills in the development of a software product.

Course Outcomes	COURSE TITLE: JAVA PROGRAMMING COURSE CODE: 18CS52
CO1	Design Classes and establish relationship among Classes for various
	applications from problem definition.
CO2	Analyze and implement reliable object-oriented applications using Java
	features such as Inheritance and Exception Handling.
CO3	Write Java programs to implement Event Handling mechanisms,
	Multithreaded Programming, Networking concepts, and GUI Programming.
CO4	Demonstrate the advanced Java concepts such as Servlets, JDBC and Java
	Server Pages.

Course Outcomes	COURSE TITLE: DATABASE MANAGEMENT SYSTEM COURSE CODE: 18CS53
CO1	Understand the basic concepts and architecture associated with DBMS so as to employ the conceptual and relational models to design large database systems.
CO2	Create, maintain and manipulate a relational database using SQL.
CO3	Analyze the database design & normalize it so that the data conforms to design principles.
CO4	Apply the characteristics of database transactions and assess how they affect database integrity and consistency.

Course	COURSE TITLE: Computer networks and internet protocols
Outcomes	COURSE CODE: 18CS54
CO1	Understand the concepts of communication networks, OSI, and TCP/IP model and Identify the different types of network topologies and protocol models
CO2	Differentiate between different access control methods to the shared transmission media
CO3	Examine routing and congestion control protocols and analyze the concepts of packet switching networks
CO4	Investigate the functionalities and services provided by layer 3 and above and analyze application layer protocols, internet routing protocols, transport layer protocols and different protocols used to implement internetworking

Course Outcomes	COURSE TITLE: ADVANCED WEB TECHNOLOGIES COURSE CODE: 18CS551
CO1	Build the Web Applications using JQuery, PHP for the given problem
CO2	Design the Web Pages using AJAX for the given problem
CO3	Analyze the advances in Web2.0 and demonstrate its usage for the problem considered
CO4	Demonstrate applications of Angular JS and JQuery for the given problem
CO5	Design responsive web applications using Bootstrap for the given problem.

Course	COURSE TITLE: Advanced Algorithm
Outcomes	COURSE CODE: 18CS552
CO1	Understand the significance and concepts of time and space complexity
	analysis for designing optimal algorithms
CO2	Analyze and solve the time complexity of iterative, recursive and graph
	based algorithms
CO3	Apply mathematical models to implement secured and optimal algorithms
CO4	Familiarize with operations, suitability and optimality of data structures in a
	given application

Course Outcomes	COURSE TITLE: ARTIFICIAL INTELLIGENCE COURSE CODE: 18CS553
CO1	Describe and implement different types of agents for real time applications with proper understanding of agent programming
CO2	Analyze and apply search methods of problem solving techniques in real time applications.
CO3	Understand and derive agent's behavior and environment by applying predicate logic and propositional logic.
CO4	Design and apply different planning methods and learning algorithms for improving agents performance

Course Outcomes	COURSE TITLE: Internet Of Things COURSE CODE: 18CS61
CO1	Apply the knowledge of the internet and computer network on to IoT paradigm.
CO2	Adequately learn and demonstrate the IoT communication.
CO3	Apply the knowledge of embedded C in Tiva C series Launchpad and Energia Software.
CO4	Analyze different configuration setups for connecting different types of sensors and upload the code on the board and communicate to the cloud.
CO5	Analyse the Data Analytics applied to the IoT development.

Course	COURSE TITLE: Machine Learning
Outcomes	COURSE CODE: 18CS62
CO1	Acquire knowledge about basic concepts of Machine Learning.
CO2	Identify and apply machine learning techniques suitable for a given problem
CO3	Design and implement machine learning solutions to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.
CO4	Evaluate and interpret the results of the machine learning algorithms.

Course Outcomes	COURSE TITLE: Unix Programming COURSE CODE: 18CS63
CO1	Apply UNIX commands to create Shell Scripts
CO2	Analyze and apply the knowledge of different UNIX system calls to manipulate system resources like files and processes to create new applications
CO3	Create Networking, Client-Server or Distributed Applications using any IPC techniques.

Course Outcomes	COURSE TITLE: Distributed Operating System COURSE CODE: 18CS641
CO1	Identify the issues involved in designing distributed systems, and their internal communication mechanism.
CO2	Demonstrate message passing mechanism of distributed methods
CO3	Compare various process migration approaches and distributed deadlock management approaches.
CO4	Apply features distributed shared memory and file system.
CO5	Examine the various resource management techniques for distributed systems.

Course	COURSE TITLE: Digital Image Processing
Outcomes	COURSE CODE: 18CS642
CO1	Acquire fundamental concepts and applications of digital image processing.
CO2	Interpret and Apply the two categories of image enhancement techniques.
CO3	Explain image restoration by applying filters and analyze the use of color
COS	images.
CO4	Apply suitable morphological operations for the given image and understand
	different techniques of Image compression.
CO5	Develop algorithms for segmenting the given image and explain different
	methods of object recognition.

Course Outcomes	COURSE TITLE: COMPILER DESIGN COURSE CODE: 18CS643
CO1	Understand the various phases of compiler and design the lexical analyzer. Demonstrate the phases of the compilation process and be able to describe the purpose and operation of each phase.
CO2	Acquire the working principles of parser with its types and extend the knowledge by parsing LL parser and Operator Precedence parser.
CO3	Design and describe the various LR parsers for a given CFG.
CO4	Describe the storage organization of compiler's run time environment and demonstrate the algorithms to perform code optimization and code generation.

Course	COURSE TITLE: PRINCIPLES OF ECONOMICS
Outcomes	COURSE CODE: 18CS644
	Identify the determinants of supply and demand; demonstrate the impact of
CO1	shifts in both market supply and demand curves on equilibrium price and
	output.
CO2	Determine the roles that prices and markets play in organizing and directing
CO2	economic activity.
CO3	Calculate and graph the short-run and long-run costs of production, supply
COS	and demand elasticities.
COA	Describe governmental efforts to address market failure such as monopoly
CO4	power, externalities, and public goods.
	Examine and interpret a nation's economic performance indicators such as
CO5	economic growth, unemployment and inflation from a macroeconomic
	perspective.
CO6	Articulate the mechanics and institutions of international trade and their
	impact on the macro economy.

Course Title: Android Programming Course Code: 18CS71	
CO1	Understand the basic history, structure, software components of Android OS
CO2	Apply the knowledge of Android application, Activity classes, UI elements, Intents and Adapters to create robust Android applications.
CO3	Apply the knowledge of Native Android libraries to Store , Retrieve , and Share the data within the application that created them and between applications.
CO4	Analyze and apply the knowledge of Thread s and Services to implement an Android application that runs in the background.

CO5	Create location based, Multimedia and other Applications that provide low-level
	access to the hardware available on mobile devices using appropriate Application
	Frameworks.

Course Outcomes	COURSE TITLE: Cloud Computing COURSE CODE: 18CS72
CO1	Articulate the main concepts, key technologies, strengths, and limitations of cloud computing.
CO2	Discuss virtualization and outline its role in enabling the cloud computing system model.
CO3	Identify the architecture and infrastructure of cloud computing and explain the core issues of cloud computing such as security and privacy.
CO4	Determine the appropriate cloud computing solutions and provide recommendations according to the applications used.
CO5	Compute the performance of cloud systems under different scenarios.

Course Outcomes	COURSE TITLE: Introduction to Big Data Analytics COURSE CODE: 18CS73
CO1	Explore the fundamentals and process of adopting Big Data analytics
CO2	Explore Hadoop framework and NOSQL Data Management for Big Data
CO3	Use Spark to process structured data to perform data engineering tasks
CO4	Build distributed Machine Learning models with Spark's MLlib
CO5	Create complex analytics on large datasets using Machine learning tools by
	building and evaluating models

Course Outcomes	COURSE TITLE: Business Intelligence COURSE CODE: 18CS741
CO1	Establish Business Intelligence in the enterprise by defining the requirements for businesses that demand information.
CO2	Employ a well architected foundation that provides information that helps in aligning the company's data with its business strategies.
CO3	Articulate how the data and dimensional models are considered the cornerstone to building Business Intelligence applications.
CO4	Illustrate the Data Integration workflow of source data as it is transformed to become actionable information.
CO5	Develop Business Intelligence applications with user interfaces and standards that resonate with the intended audience and employ analytics for forecasting.

Course Outcomes	COURSE TITLE: Cyber Forensics COURSE CODE: 18CS742
CO1	Discuss the various types of cyber crimes and Cyber Laws applicable to them
CO2	Apply Forensic examination process
CO3	Analyze and validate forensics data
CO4	Use forensics tools
CO5	Identify the best practices followed in the organization with respect to cyber security

Course Outcomes	COURSE TITLE: Software Project Management COURSE CODE: 18CS743
CO1	Understand Project Management principles while developing software.
CO2	Gain extensive knowledge about the basic project management concepts, framework and the process models.
CO3	Obtain adequate knowledge about software process models and software effort estimation techniques.
CO4	Estimate the risks involved in various project activities.
CO5	Learn staff selection process and the issues related to people management

Course Outcomes	COURSE TITLE: Computer Vision COURSE CODE: 18CS751
CO1	Acquire fundamental concepts and applications of computer vision and image processing.
CO2	Interpret and Apply the various detectors and matching applications.
CO3	Explain the importance motion and usage of its techniques.
CO4	Apply the analysis on scene and recognizing all of its constituent objects.
CO5	Develop motion estimation algorithms that can be used for wide variety of applications.

Course Outcomes	COURSE TITLE: INTRODUCTION TO ROBOTICS COURSE CODE: 18CS752
CO1	Understand basic operations of robots and their sub-components involved in designing.
CO2	To interpret the biological behaviours of human or animal and mapping them to different robot behaviours
CO3	To Analyze and design the robot behaviours using different robot architectures that work in real-time environments.
CO4	To use appropriate programming approaches to design and build the robot behaviours

Course	COURSE TITLE: SOFT COMPUTING
Outcomes	COURSE CODE: 18CS753
CO1	Understand the basics of soft computing, ANN and Terminologies to relate
	and understand the real time problems
CO2	Solve the real-time problems using ANN representations
CO3	Analyze and adopt fuzzy logic in designing and implementing soft computing applications.
CO4	Analyze and apply genetic algorithms to solve the optimization problems

