Dr. Ambedkar Institute of Technology Department of Industrial Engineering and Management

The Enclosed Document is Verified and Approved.

HOD

Professor & HOD

Dept. of Industrial Engineering & Management

Dr. Ambedkar Institute of Technology Near Jnanabharathi Campus BDA Outer Ring Road Mallathahalli, Bangalore-560 056

Dr. AMBEDKAR INSTITUTE OF TECHNOLOGY BANGALORE - 56 AIDED BY GOVERNMENT OF KARNATAKA & AUTONOMUS INSTITUTION AFFILIATED TO VTU, BELGAUM,

PROPOSED SYLLABUS

For

III & IV Semester (FOR THE ACADEMIC YEAR 2021-2022) (Batch 2020)

Department of Industrial Engineering & Management

Website: www.drait.edu.in e-mail id: principal@drait.edu.in

Dr. AMBEDKAR INSTITUTE OF TECHNOLOGY
BANGALORE - 56
AIDED BY GOVERNMENT OF KARNATAKA
&

AUTONOMUS INSTITUTION AFFILIATED TO VTU, BELGAUM,

Vision

♣ To create Dynamic, Resourceful, Adept and Innovative Technical professionals to meet global challenges.

Mission

- ♣ To offer state-of-the-art undergraduate, postgraduate and doctoral programs in the fields of Engineering, Technology And Management
- ♣ To generate new knowledge by engaging faculty and students in research, development and innovation.
- ♣ To provide strong theoretical foundation to the students, supported by extensive practical training to meet the industry requirements.
- ♣ To install moral and ethical values with social and professional commitment.

Department of Industrial Engineering & Management

Objective

- ➤ To maintain a Comprehensive curriculum that enables students to become leading engineers and creative researchers in the global marketplace.
- ➤ To collaborate with private and public sectors in the search of methodologies and creative solutions to problems that contributes to the advancement of education, technology and professional development.
- > To contribute to the profitable growth of industrial economic sectors by using IE analytical tools, effective computational approaches, and systems thinking methodologies.
- To maintain high standards of professional and ethical responsibility.
- ➤ To provide a broad education necessary to determine the impact of engineering solutions in a global economic, environmental, a societal context.

Vision:

♣ To be globally recognized as a leader in industrial engineering education, research and enhance the application of technical knowledge to benefit the society.

Mission:

- ♣ To offer globally recognized programs that equip graduates with strong problem solving ability in the design, analysis and implementation of integrated systems in manufacturing and service sectors.
- ♣ Create state-of-the-art infrastructure for research and training in Industrial Engineering
- ♣ Promoting collaboration with academia, industries and Research organizations at national and international levels for socioeconomic development

Program Outcomes (POs)

- 1. Ability to apply knowledge of mathematics, science and engineering.
- 2. Ability to design and conduct experiments related to deterministic or stochastic systems, as well as to analyze and interpret data.
- 3. Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- 4. Ability to identify, formulate and solve Industrial and Management Systems Engineering problems.
- 5. Student will be able to use modern industrial Engineering and management tools necessary for engineering practice.
- 6. Ability to determine the impact of engineering solutions in a global, economic, environmental, and societal context.
- 7. Determine the major environmental, social and economic drivers pertaining to the necessity of developing sustainable operations.
- 8. Student will exhibit professionalism and ethical responsibility.
- 9. Effectively collaborate and function on multidisciplinary teams.
- 10. Student will be able to communicate orally and verbally with different sections of society.
- 11. Manage Project and Finance to satisfy customer expectations.
- 12. Engage in life-long learning and appreciate the need for continual self-development.

Program Educational Objectives

- **PEO 1**: Have a strong foundation in Mathematics, Science and Engineering fundamentals that prepare them for a successful career in Industrial Engineering, Management and allied fields.
- **PEO 2**: Function at a technically competent level in designing a system within realistic constraints such as economic, environmental, social, political, ethical, manufacturability, health and safety and sustainability.
- **PEO 3**: To effectively and economically utilize the resources of the Enterprise using various optimization techniques.
- **PEO 4**: Exhibit professionalism, good oral & written communication skills, team work and develop an attitude for lifelong learning.

Department of Industrial Engineering & Management

Faculty List:

1	Dr.N.Mohan	Professor and Head
2	Dr. S. K. Rajendra	Associate Professor
3	Dr. Rajeshwari P	Associate Professor
4	Dr. C R Mahesha	Assistant Professor
5	Mrs. Suprabha R	Assistant Professor
6	Mr. Chetan N	Assistant Professor
7	Mr. Rajesh K	Assistant Professor
8	Mrs. Sarvamangala S P	Assistant Professor

III SEMESTER												
			4		Teaching Hours /Week			Examination				
Sl. No	_	ourse and urse Code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	T	P	Ι)	3 2	L	
1	ВС	18MA31	Transforms and Boundary Value Problems	Mathematics	2	2		03	50	50	100	3
2	PC	18IM31	Mechanical Measurements and Metrology		3	0		03	50	50	100	3
3	PC	18IM32	Material Science and Metallurgy		3	0		03	50	50	100	3
4	PC	18IM33	Thermal and Fluids Engineering		3	2		03	50	50	100	4
5	PC	18IM34	Manufacturing Technology		3	0		03	50	50	100	3
6	PC	18IM35	Mechanics of Materials		2	2		03	50	50	100	3
7	PC	18IM36	PYTHON Programming		2	0		03	50	50	100	2
8	PC	18IML37	PYTHON Programming Laboratory				2	03	50	50	100	1
9	PC	18IML38	Manufacturing Technology Laboratory				2	03	50	50	100	1
10	HS	18HS31/32	Constitution of India Professional Ethics and Human Rights//Env. Studies	HS/ CV	1			02	50	50	100	1
11	MC	18HS33	Soft skills (MC)	Humanities	02	-		02	50	-	50	0
	TOTAL				21	06	04	31	550	500	1100	24
					<u>I</u>	<u>I</u>	<u>I</u>		<u> </u>	<u>I</u>	<u> </u>	

(Course prescribed to lateral entry Diploma holders admitted to III semester of Engineering										
				program	S						
12	MC	18MAD31	Basic Engg. Mathematics - I	Mathematics	02	01	1	03	50	50	0
N	Note: BC: Science Course, PC: Professional Core. HS: Humanities, MC: Mandatory Course.										

IV S	SEME	STER										
					Tea	ching /Wee	Hours ek		Exar	ninatio	n	
Sl. No		ourse and ourse code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	P	ıα				
1	ВС	18MA41	Numerical Methods & Applied Statistics	Mathematics	2	2		03	50	50	100	3
2	PC	18IM41	Work-study and Ergonomics		4	0		03	50	50	100	4
3	PC	18IM42	Theory of Machines		2	2		03	50	50	100	3
4	PC	18IM43	Engineering Economy		2	2		03	50	50	100	3
5	PC	18IM44	Statistics for Engineers		4	0		03	50	50	100	4
6	PC	18IML45	Computer Aided Machine Drawing		2	0	2	03	50	50	100	3
7	PC	18IML46	Work-study and Ergonomics Laboratory				2	03	50	50	100	1
8	PC	18IML47	Mechanical Measurements and Metrology Laboratory				2	03	50	50	100	1
9	PC	18IML48	Material Testing Laboratory				2	03	50	50	100	1
10	HS	18HS41/42	Constitution of India Professional Ethics and Human Rights/ Env. Studies	HS/ CV	1		1	02	50	50	100	1
11	МС	18HS43	Employability skills (MC)	Humanities	02	-		03	50	-	50	0
			<u> </u>	TOTAL	19	06	08	32	550	500	1050	24
	Cou	rse prescrik	oed to lateral entry Dip	loma holders programs	adm	itted	to III s	seme	ster of	Engi	neering	5
12	MC	18MAD41	Basic Engg. Mathematics - II	Mathematics	02	01		03	50		50	0

Note: BC: Science Course, PC: Professional Core. HS: Humanities, NCMC: Non-Credit Mandatory Course.

ENV: Environmental Studies, CIP: Constitution of India Professional Ethics and Human Rights

SUBJECT TITLE: TRANSFORMS & BOUNDARY VALUE PROBLEMS						
Subject Code :18MA31	Number of Credits: 3 = 2:	No of lecture hours per week: 04				
	1: 0 (L-T-P)	(L=2+T=2)				
Exam Duration: 3	CIE + SEE = 50 + 50 = 100	Total No. of Lecture hours: 52				
Hrs						

Course objective: This course is proposed to impart to the students the skills to identify and solve problems in their field of study involving the application of transforms and boundary value conditions.

Unit			f hours
No.		Theory	Tutorial
1	Laplace Transforms: Definition. Transforms of some standard		
	functions. Basic properties, transforms of derivatives and integrals		
	(no proofs). Periodic function and unit impulse functions-	06	05
	problems. Inverse Laplace Transforms-Properties (no proofs).		
	Inverse transforms by using partial fractions, convolution theorem		
	(no proof) and unit step functions-problems.		
2	Fourier Transforms: Infinite Fourier transforms. Fourier sine		
	and cosine transforms. Inverse Fourier transforms (no		
	properties)simple functions.		
	Initial & Boundary value problems: Solving ODEs by using	06	05
	Laplace transforms. Solving one dimensional heat, one		
	dimensional wave and vibrations of beam using Laplace		
	transforms. Application of Fourier transform to boundary value		
	problems.		
3	Statistical Techniques: Curve fitting by method of least squares:	05	05
	$y=ax+b$, $y=ax^2+bx+c$ and $y=ab^x$. Correlation–Karl Pearson's		
	coefficient of correlation, Regression analysis –lines of regression		
	(without proof)- problems.		
4	Fourier Series Solution: Classification of second order		
	PDE'sproblems. One dimensional heat equation-ends of the bar		
	are kept		
	at zero temperature and insulated. Insulated at one end-problems.	05	05
	Special functions: Series solution of Bessel's and Legendre's		
	differential equation of first kind.		
5	Bessel's and Legendre's Solution: Solution of two-dimensional	05	05
	Laplace equation. The Laplacian in plane polar, cylindrical and		
	spherical coordinates, solutions with Bessel functions and		
	Legendre functions. D' Alembert's solution of the wave equation.		
	Duhamel's principle for wave equation.		

III Semester IEM

Course Outcomes:

After the successful completion of the course, the students are expected to:

CO1 analyze the basic concepts of integral transforms, statistical techniques and boundary value problems. **CO2:** apply appropriate statistical technique to solve problems connected to mechanical and industrial engineering.

CO3: apply the least squares method of curve fitting to a set of experimental data points connected to solid and fluid mechanical problems.

CO4: use Bessel's and Legendre's functions in partial differential equations and obtain series solution of ordinary differential equations.

CO5: solve boundary value problems involving heat conduction and diffusion using Laplace equations.

Course Outcomes (CO) Mapping with Programme Outcomes (PO)

CO1: PO1, PO2		
CO2: PO1, PO2		
CO3: PO1, PO2		
CO4: PO1, PO4		
CO5: PO1, PO2		

TEXTBOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition), Khanna Publishers, New Delhi.
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill publications, New Delhi, 11th Reprint, 2010.
- 3. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics (10th Edition, 2016), Wiley Publishers, New Delhi.
- 2. Dennis G, Zill Michael R, Gullen, Advanced Engineering Mathematics (2ⁿEdition), CBS Publishers & Distributors, New Delhi-110 002 (India)
- 3. R. Haberman, Elementary Applied Partial Differential equations with Fourier Series and Boundary Value Problem, 4th Ed., Prentice Hall, 1998.
- 4. Manish Goyal and N.P. Bali, Transforms and Partial Differential Equations, University Science Press, Second Edition, 2010.

QUESTION PAPER PATTERN:

The Semester End Examination (SEE) is for 100 marks.

- 1. There shall be five full questions (one question for each unit) carrying 20 marks each and all are Compulsory.
- 2. There shall be internal choice in all the Units.

Subject Title	: MECHA	NICAL MESUREMENTS A	ND METROLOGY
Sub Code	: 18IM31	No of Credits : 3	No of lecture hours/week: 3
Exam Duration	n: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Course Objectives:

- 1. To understand the Measurement standards and systems.
- 2. To understand and apply the calibration procedure of different instruments.
- 3. To classify various types and use of gauges, projectors, comparators and transducers

Unit	Syllabus	No of
No		Hours
1	Measurements and measurement systems: Definition, significance of	05
	measurement, generalized measurement system, definitions and concept of	
	accuracy, precision, calibration, threshold, sensitivity, hysteresis,	
	repeatability, linearity, loading effect, system response-times delay. Errors in	
	measurement, classification of errors. Transducers, transfer efficiency,	
	primary and secondary transducers, Mechanical Transducers: Spiral springs,	
	Torsion Bars, Diaphragms & Bellows, Electrical Transducer: Resistive	
	Transducer, Electronic Transducer, advantages of each transduce	
2	Measurement of force, torque and pressure: Principle, analytical balance, platform balance, proving ring. Torque measurement, Prony brake, hydraulic dynamometer. Pressure measurements, principle, use of elastic members, , McLeod gauge, Temperature and strain measurement: Resistance thermometers, thermocouple, law of thermo couple, materials used for construction, Total radiation pyrometer, Optical Pyrometer, Strain measurement, Mechanical strain gauge, preparation and mounting of strain gauges, gauge factor, Basic Wheatstone resistance bridge and methods of strain measurement (Deflection method and null method).	06
3	Standards of measurement: Definition and Objectives of metrology, Standards of length-International prototype meter, Imperial standard yard, Wave length standard, subdivision of standards, line and end standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena, Indian Standards (M-81, M-112), Numerical problems on building of slip gauges.	06

4	System of Limits, Fits, Tolerance and Gauging: Definition of tolerance,	11
	Specification in assembly, Principle of interchangeability and selective	
	assembly limits of size,	
	Indian standards, concept of limits of size and tolerances,	
	compound tolerances, accumulation of tolerances, definition of fits, types of	
	fits and their designation (IS919-1963), geometrical tolerance,	
	positionaltolerances, hole basis system, shaft basis system, classification of	
	gauges, brief concept of design of gauges (Taylor's principles), Types of	
	gaugesplain plug gauge, ring gauge, snap gauge, limit gauge and gauge	
	material, simple problems on limits & fits	
5	Comparators and Angular measurement: Introduction to comparators,	11
	characteristics, classification of comparators, mechanical comparatorsJohnson	
	Microkator, dial indicator, optical comparator-principle, Zeiss ultraoptimeter,	
	electric comparator-principles, LVDT,. Angular measurements, bevel	
	protractor, sine principle and use of sine bars, sine centre, use of angle gauges	
	(numerical on building of angles).	
	Interferometer and screw thread, gear measurement: Interferometer,	
	interferometry, autocollimator. Optical flats. Terminology of screw threads,	
	massymment of major diameter minor diameter mitch, and affective	
	measurement of major diameter, minor diameter, pitch, angle and effective	
	diameter of screw threads by 2-wire and 3-wire methods, best size wire.	

Note 1:

• SEE question paper shall contain 10 questions having internal choice in each unit. Students shall answer one question from each unit.

Note 2:

■ Assignments are evaluated for 5 marks.
☐ CIE shall be evaluated for 20 marks

Course Outcome:

After the completion of the above course students will be able to

- 1. Define and classify Measurements and measurement systems
- 2. Distinguish and sketch different measurement of force, torque, pressure and temperature, strain measuring instruments.
- 3. Define standards of measurement and solve problems on building of slip gauges.
- 4. Illustrate and define Indian Standards, principles of limits of size and tolerances and solve problems on limits and fits.
- 5. Classify comparators and determine gear parameters and solve problems on building of angles.

Cos	Mapping with POs
CO1	PO2,PO3,PO5,PO12
CO2	PO1,PO2,PO7,PO12
CO3	PO1,PO2,PO7,PO12
CO4	PO1,PO2,PO7,PO12
CO5	PO1,PO2,PO7,PO12

TEXT BOOKS:

- 1. **Mechanical Measurements,** Beckwith Marangoni and Lienhard, Pearson Education, 6th Ed., 2006.
- 2. Engineering Metrology, R.K. Jain, Khanna Publishers, 1994.
- 3. Mechanical Measurements, R.K. Jain

REFERENCE BOOKS:

- 1. Engineering Metrology, I.C. Gupta, Dhanpat Rai Publications, Delhi.
- 2. **Industrial Instrumentation,** Alsutko, Jerry. D. Faulk, Thompson Asia Pvt. Ltd.2002.
- 3. **Measurement Systems Applications and Design,** Ernest O. Doblin, McGraw Hill Book Co.

_

Subject Title : MATERIAL SCIENCE AND METALLURGY						
Sub Code : 18IM32	No of Credits : 3:0:0	No of lecture hours/week: 3				
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:				
		39				

Course Objective:

- 1. To classify different materials and state their properties
- 2. To identify the structure of materials and imperfections with different mechanisms
- 3. To study different types of material testing methods and heat treatment process
- 4. To understand the characteristics and applications of composite and Nano materials process

Unit	Syllabus	No of
No		Hours
1	Introduction to Materials: Ferrous and Non-Ferrous Materials and Alloys, Metals, Production, General Properties, and Applications. Crystal Structure: BCC, FCC and HCP Structures, coordination number and atomic packing factors, crystal imperfections -point line and surface imperfections. (Problems) Atomic Diffusion: Phenomenon, Flick's I & II laws of diffusion, and Factors affecting diffusion. (Problems). Mechanical Behavior of Materials: Stress-strain diagram showing ductile and brittle behavior of materials, linear and non-linear elastic behavior and properties. Mechanical Properties of Materials: Yield Strength, Offset Yield Strength, Ductility, Malleability, Stiffness, Resilience, Rigidity, Ultimate tensile strength and Toughness.	10
2.	Testing of Materials- Tensile and Compression testing, Impact testing- Izod and Charpy Impact testing. Fatigue testing- Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, fatigue testing and SN diagram Torsion Testing: Types of Torsion failure. Creep: Description of the phenomenon with examples. Three stages of creep, creep properties, stress relaxation, other related testing methods. Hardness Testing: Brinell hardness, Rockwell hardness and Vickers hardness testing of materials, Micro hardness and Nano indentation. Fracture of Materials: Fundamentals of fracture, Brittle, Ductile and shear type of fracture (Type I, Type II and Type III). (Problems)	10
3	Phase Diagram I: Solid solutions and its types and intermediate phases - Hume Rothery's rule - solidification of metals and alloys, cooling curves, concepts of phase diagrams. Gibbs Phase rule. Coring and segregation as applied to various binary systems, ternary systems. Phase Diagram II: Construction of equilibrium diagrams involving complete and partial solubility, Lever rule. Iron-carbon equilibrium diagram description of phases. (Problems)	07

4	Heat-treatment of steels: TTT curves, Continuous Cooling Transformation	06
	Curves (CCT) diagrams, bainitic transformation, martensitic transformation.	
	Annealing and its types. Normalizing, Hardening, Tempering, Mar tempering,	
	Austempering, Harden ability.	
	Surface hardening: Carburizing, Cyaniding, Nitriding, Flame hardening and	
	Induction hardening.	
5	Advanced Material Processing Technology: Introduction to Composite	06
	material,	
	FRP composites – Fiber types-, properties, Strength and Elastic Modulus of	
	Reinforced Plastics ,Rule of Mixtures and Problems	
	Matrices: Matrices type and properties, lamina, laminate.	
	Introduction, properties and applications- Metal matrix composites,	
	Ceramic matrix composites, Nano Material, shape memory alloys, High	
	strength alloys, Super alloys. (Problems).	

Note 1:

- SEE question paper shall contain 10 questions having internal choice in each unit. □
 Students shall answer one question from each unit. Note 2:
- Assignments are evaluated for 5 marks.

 CIE shall be evaluated for 20 marks

Outcome:

After the completion of the above course students will be able to

- 1. Distinguish between different materials and their properties
- 2. Test materials for impact, fatigue, torsion, creep, hardness and fracture
- 3. Construct phase diagrams
- 4. Explain different types of heat treatment processes
- 5. Discuss advanced material processing technology, characterization techniques.

Cos	Mapping with POs
CO1	PO3,PO6,PO8,PO10
CO2	PO3,PO4,PO7,PO10,PO11
CO3	PO3,PO4,PO7,PO10,PO11
CO4	PO6,PO10,PO11
CO5	PO6,PO8,PO10

Text books:

- 1. Raghavan V., "Physical Metallurgy Principles and Practice", 2nd Edition, Prentice Hall of India, 2007.
- 2. Avner S.H., "Introduction to Physical Metallurgy", 2nd edition, Tata McGraw Hill, 2008
- 3. Derek Hull, "Introduction to Dislocations", Pergamon, 2nd Edition, 1981

<u>Reference books:</u> 1. Dieter G. E., "Mechanical Metallurgy", 1st Edition, McGraw Hill Co- Koga, 2002

- 2. Suryanarayana AVK, "Testing of Metallic Materials", 2nd Edition, BS Publications, 2007. 3. Mein Schwartz., "Composite Materials Handbook", McGraw Hill, 1992
- 4. Autar K.Kaw, "Mechanics of Composite Materials", CRC Press, 2005.
- 5. "ASM Hand book on Composites", Volume 21, 2001
- 6. Vanviack L.H, "Physical Ceramics for Engineers", Addison Wesley Publication, 1964.
- 7. Schwartz. M. M., "Composite Materials", Prentice Hall, 1977
- 8. Broutman K. J., Krock R.H., "Modern Composite Materials", Addison Wesly Publishing, 1967
- 9. Billmeyer F., "Textbook of Polymer Science", Wiley Interscience, 1994
- 10. Manufacturing Engineering and Technology, Serope Kalpakjian & Steven R. Schmid.

Subject Title : Therm	al and Fluids Engineering	
Sub Code : 18IM3	No of Credits: 3:2:0 (L:T:P)	No of lecture hours/week: 5
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours :65

Course Objective:

- **1.** To Understand the nature and role of various thermodynamic properties and heat transfer in Engineering Systems
- **2.** Recognize the different forms of energy and restrictions imposed by the first law of thermodynamics on conversion from one form to another;
- **3.** To study the implications of the second law of thermodynamics and limitations placed by the second law on the performance of thermodynamic systems;
- **4.** To understand the working of Internal combustion engines, their performance analysis, and the importance of air standard cycles.
- **5.** Illustrate the basic concepts of fluid mechanics and determine the velocity and flow rate measurement techniques

Unit No.	Syllabus	No of Hours
1	Fundamental Concepts and Definitions: Microscopic and Macroscopic approaches. Engineering thermodynamics; definition, some practical applications of engineering thermodynamic. System (Closed system) and Control Volume (open system); Characteristics of system boundary and control surface, examples. Thermodynamic properties; intensive and extensive properties. Thermodynamic process; Thermodynamic equilibrium; diathermic wall, Zeroth law of thermodynamics, Temperature: concepts, scales, measurement. Related numerical problems Work and Heat: Thermodynamic definition of work; examples, sign	9+5(T)
	convention. Displacement work, expressions for displacement work in various processes through p-v diagrams (Excluding other types of work). Heat: definition, units and sign convention, misconceptions about heat. Related numerical problems.	
2	First Law of Thermodynamics: Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, two-property rule, Specific heat at constant volume, enthalpy, specific heat at constant pressure. Related numerical problems Extension of the First law to control volume: Steady State-Energy equation, important applications. Related numerical problems. (Unsteady processes not included).	8+5(T)
3	Second Law of Thermodynamics: Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a theromodynamic cycle; reversed heat engine, schematic representation, coefficients of performace. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics; Equivalence of the two statements; Reversible and irrevesible processes; factors that make a process irreversible, reversible heat engines,	7+5(T)

	Carnot cycle, Corollories of Carnot cycle (only statement), Related numerical problems	
4	Properties of Fluids: Introduction, Properties of fluids, viscosity, thermodynamic properties, surface tension, capillarity, Related numerical problems Fluid Dynamics: Euler's equation of motion, Bernoulli's equation from first Euler's equation. Fluid Flow Measurements: Venturimeter, orificemeter, pitot-tube. Related numerical problems (No Derivations in Fluid Flow Measurements)	8+5(T)
5	Gas power cycle: Air Standard cycles: Carnot, Otto, Diesel, and Dual cycles, P-V and T-S diagrams, description, efficiencies and mean effective pressures (No derivation for MEP), Comparison of Otto and Diesel cycles, Related numerical problems I.C.Engine: Testing of two stroke and four stroke SI and CI engines for performance, heat balance, Morse test, Related numerical problems	8+5(T)

Course Outcome (CO):

After the completion of the above course students will be able to

- **1.** Estimate the various fluid properties, thermodynamic properties, work transfer and heat transfer.
- **2.** Analyze the different forms of energy and restrictions imposed by the first law of thermodynamics on conversion from one form to another.
- **3.** Analyze the performance of refrigeration and heat pump systems.
- **4.** Assess the working of internal combustion engines and their performance analysis.
- **5.** Determine the velocity and flow rate measurement techniques for flow through pipes.

Cos	Mapping with POs
CO1	PO1,PO3
CO2	PO1,PO2
CO3	PO3,PO4
CO4	PO2,PO3, PO4
CO5	PO3,PO4,PO6

Text books:

- 1. **Applications of Thermodynamics,** V. Kadambi, T. R. Seetharam and K. B. Subramanya Kumar, Wiley, 1st Edition, 2019.
- 2. **Basic and Applied Thermodynamics**, P. K. Nag, Tata McGraw-Hill Education Pvt. Ltd, 2nd Edition, 2010
- 3. **A Textbook of Fluid Mechanics and Hydraulic Machines**, Dr. R.K Bansal, Lakshmi Publications, 9th Edition, 2010 (Reprint 2015)

Reference books:

- 1. **Thermodynamics: An Engineering Approach**, Yunus A. Cengel, Michael A. Boles, McGraw Hill Education, 8th Edition, 2015
- 2. Fluid Mechanics, Frank M. White, McGraw Hill Publications (SIE), 7th Edition, 2011.

Note 1: SEE Question paper contains total ten Questions and student should answer any one question from each Unit and answer five full questions.

Note 2: Two assignments are evaluated for 5 marks: Assignment – 1 from units 1 and 2. Assignment – 2 from units 3, 4 and 5.

Sub Title: MANUFACTURING TECHNOLOGY		
Sub Code: 18IM34	No. of Credits:3 =3:0:0	No. of lecture hours/week: 3
Exam Duration: 3 hours	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Course objectives:

- 1. Outline the importance of manufacturing processes and their industrial applications Understand and apply the concept of metal casting.
- 2. Study the principles of welding technology.
- 3. Understand the basic concepts of Metal cutting and cutting tool parameters.
- 4. Study the importance of conventional and semiautomatic machining processes.

Unit	Syllabus Content	No of
No		Hours
1	Introduction: Concept of Manufacturing process and its importance.	8 Hrs
	Classification of Manufacturing processes. Introduction to Casting process &	
	steps involved. Varieties of components produced by casting process. Advantages	
	Limitations and application of casting process. Patterns: Materials and	
	classification of patterns, various pattern allowances and their importance and	
	colour coding of pattern. Sand Moulding: Types of base sand, Method used for	
	sand moulding, such as Green sand, dry sand and skin dried moulds. Binder:	
	Definition and Types of binder Additives : Need, Types of additives used. Cores:	
	Definition, Need, Types. Method of making cores, Binders used, core sand	
	moulding. Concept of Gating & Rising. Principle and types. Moulding	
	Machines and its types	
2	Welding process: Definition, Principles, Classification, Application, Advantages	8 Hrs
	& limitations of welding. Arc Welding: Principle, Metal Arc welding (MAW),	
	Flux Shielded Metal Arc Welding (FSMAW), Tungsten Inert Gas Welding (TIG &	
	MIG) Submerged Arc Welding (SAW) and Atomic Hydrogen Welding processes.	
	(AHW) Principles of soldering & brazing: Parameters involved & Mechanism.	
	Different Types of Soldering & Brazing Methods.	
3	Theory of metal cutting: Single point tool nomenclature, geometry, orthogonal & oblique cutting, mechanism of chip formation, types of chips, Merchants analysis, shear angle relationship. Tool wear & tool failure effects of cutting parameters, Tool life criteria, Taylor's tool life equation, problems on Merchants analysis &	8 Hrs
	tool life evaluation	
	Cutting tool materials: Desired properties, types of cutting tool materials- HSS carbides, coated carbides, ceramics. Cutting fluids- properties, types & selection. Machinability, factors affecting machinability.	
4	Production lathes : Engine lathe, Capstan & turret lathes-constructional features.	7 Hrs
	Drilling machines: Classification, constructional features. Types of drill, drill bit	
	nomenclature, geometry of twist drill. Drilling & related operations. Problems on	
	calculating the machining time.	
5	Milling machines: Classification, constructional features. Milling cutters &	8 Hrs

nomenclatures.

Milling operations - up milling & down milling concepts. Indexing: Purpose of indexing, indexing methods. Problems on indexing.

Grinding machines: Types of Abrasives, Bonding process, classification, constructional features of surface, cylindrical & centre less grinding machines & operations.

Note 1:

■ SEE question paper shall contain 10 questions having internal choice in each unit.

Students shall answer one question from each unit. Note 2:

■ Assignments are evaluated for 5 marks.
□ CIE shall be evaluated for 20 marks

Outcome:

After the completion of the above course students will be able to

- 1. Describe the primary and secondary manufacturing processes and industrial applications in different sectors.
- 2. Explain the concepts of sand moulding methods and metal melting process and also testing of casting and to produce defect free products.
- 3. Classify different metal joining methods through welding technologies.
- 4. Illustrate the characteristics of cutting tool materials.
- 5. Learns the principles and concepts of conventional and semiautomatic machines

Cos	Mapping with POs
CO1	PO1,PO2,PO3,PO7,P11
CO2	PO2,PO4,PO6,PO7,PO8,P11
CO3	PO2,PO4,PO6,PO7,PO8,P11
CO4	PO2,PO4,PO6,PO7,PO8,P11
CO5	PO1, PO2, PO2, PO7, PO8, P11.

Text books:

Hajra Choudhury, "Elements of Workshop Technology, Vol. I and II", Media Promotors Pvt Ltd., Mumbai, 2001.

S.Gowri, P.Hariharan, and A.Suresh Babu, "Manufacturing Technology 1&2", Pearson Education, 2008. 3. Nadkarni S.V. "Modern Arc Welding Technology", 1st Edition, IBH Publishing, 2005

- 4. **Workshop Technology,** Hajra Choudhry, Vol-II, Media Promoters & Publishers Pvt. Ltd. 2004
- 5. **Production Technology**, R.K.Jain, Khanna Publications, 2003.
- 6. **Production Technology, HMT**, Tata McGraw Hill, 2001.
- 7. A text book of Manufacturing Technology, Rajput R.K, Lakshmi Publications, 20074.

Reference Books:

- 1. Roy A Lindberg, Process and Materials of Manufacturing, 4th Ed. Pearson Edu. 2006.
- 2. Serope Kalpakjian, Steuen. R. Sechmid "Manufacturing Technology", Pearson Education Asia, 5th Ed. 2006.
- 3. P N Rao, Manufacturing Technology "Foundry, Forming, and Welding", 4th edition, McGraw Hill Education (India) Private Limited, 2013, ISBN-13: 978-1-25-9606257-5 and ISBN-10: 1-25-906257-0
- 4. Mikell P. Groover, "Fundamentals of modern manufacturing: materials, processes and systems", JOHN WILEY & SONS, INC., 4th Edition, 2010, ISBN: 978-0470-467002 5. G.S Sawhney, "Manufacturing Science I, Forming, Casting and Welding", 2015, I.K. International Publishing House Pvt. Ltd. ISBN: 978-93-82332-53
- 6. Amitabha Ghosh and Mallik, Manufacturing Science, affiliated East West Press, 2003.
- 7. G. Boothroyd, Fundamental Machining and Machine Tools, McGraw Hill, 2000
- 8. P.N. Rao "Manufacturing Technology", Metal Cutting and Machine Tools, Tata McGraw Hill, New Delhi, 2003.
- 9. P.C. Sharma, "A Text Book of Production Engineering", S.Chand and Company Ltd, Fourth Edition, 1993.
- 10. Milton C.Shaw, "Metal Cutting Principles", Oxford University Press, 2nd Edition, 2005.
- 11. Philip F.Ostwald and Jairo Munoz, "Manufacturing Processes and systems", John Wiley and Sons, 9th Edition, 2002

Subject Title : MECHANICS OF MATERIALS		
Sub Code: 18IM35	No of Credits : 4	No of lecture hours/week: 4
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

Course Objectives:

- 1. To apply the fundamentals of strength of materials as related to concepts of stress, strain, bending, torsion, stability, and deflection of deformable bodies to applications concerning bars, shafts, beams, columns, and pressure vessels.
- 2. To discuss the fundamentals of applying equilibrium, compatibility of deformations, and force-deformation relationships in solving problems.
- 3. To equip with the proficiency in calculating stresses and strains in bars and beams subjected to axial forces and torsional, bending moments,
- 4. To analyze external and internal forces and moments; calculating deflections of beams; calculating angles of twist of shafts etc.

Unit	Syllabus	No of
No		Hours
1	Simple Stress and Strain: Introduction, Stress, strain, mechanical properties	8+6(T)
	of materials, Linear elasticity, Hooke's Law and Poisson's ratio, Stress-Strain	
	relation - behavior in tension for Mild steel, cast iron and non ferrous metals.	
	Extension/ Shortening of a bar, bars with cross sections varying in steps, bars	
	with continuously varying cross sections (circular and rectangular), Elongation	
	due to self weight, Principle of super position. Stress in Composite	
	Section: Volumetric strain, expression for volumetric strain, elastic constants,	
	simple shear stress, shear strain, temperature stresses (including compound	
	bars).	
2	Thick and Thin Cylinder Stresses in thin cylinders, changes in dimensions of	4+4(T)
	cylinder (diameter, length and volume). Thick cylinders Lame's equation	
	(compound cylinders not included).	
3	Bending Moment and Shear Force in Beams: Introduction, Types of beams,	8+3(T)
	loads and reactions, shear forces and bending moments, rate of loading, sign	
	conventions, relationship between shear force and bending moments. Shear	
	force and bending moment diagrams for different beams subjected to	
	concentrated loads, uniformly distributed load, (UDL) uniformly varying load	
	(UVL) and couple for different types of beams.	
4	Bending and Shear Stresses in Beams: Introduction, Theory of simple	6+6(T)
	bending, assumptions in simple bending. Bending stress equation, relationship	
	between bending stress, radius of curvature, relationship between bending	
	moment and radius of curvature. Moment carrying capacity of a section.	
	Shearing stresses in beams, shear stress across rectangular, circular,	
	symmetrical I and T sections. (Composite beams not included).	
5	Torsion of Circular Shafts : Introduction. Pure torsion, assumptions, derivation	4+4(T)
	of torsional equations, polar modulus, torsional rigidity / stiffness of shafts.	
	Power transmitted by solid and hollow circular shafts.	

Note 1:

- **■** SEE question paper shall contain 10 questions having internal choice in each unit.

 Students shall answer one question from each unit. Note 2:
 - Assignments are evaluated for 5 marks.
 - CIE shall be evaluated for 20 marks

Outcome:

After the completion of the above course students will be able to

- 1. Analyze two dimensional basic stress, strain, and effect of temperature on the axially loaded members
- 2. Interpret the effect of pressure on thin and thick cylinders
- 3. Evaluate the basic design of mechanical part under shear and bending and torsional load of different cross section of beams and column.

Cos	Mapping with POs
CO1	PO1,PO3,PO4,PO12
CO2	PO1,PO3,PO4,PO12
CO3	PO1,PO3,PO4,PO12

Text books:

- 1. ."Strength of Materials", S.S.Bhavikatti, Vikas publications House -1 Pvt. Ltd., 2nd Ed., 2006
- 2. "Strength of Materials", S.S. Rattan, Tata McGraw Hill, 2009
- 3. "Strength of Materials", Surya Patnayak Elsevier publication Ist Edition 2003
- 4. "Mechanics of materials", B C Punmiaand & Ashok kumar Jain Laxmi Publication 2001

Reference books:

- 1. "Engineering Mechanics of Solids", Egor.P. Popov, Pearson Edu. India, 2nd, Edison, 1998
- 2. "Mechanics of materials", in S.I. Units, Ferdinand Beer & ussell Johnson, TATA Mc GrawHill- 2003
- 3. "Mechanics of Materials", James M. Gero and Barry J. Goodno Cengage learning 8th edition 2014.
- 4. "Mechanics of Materials" William F R ley and Loven W zachery wiley india publication 2018

Subject Title : PYTHON Programming		
Sub Code: 18IM36 No of Credits: 2:0:0 (LT-		No of lecture hours/week :2
	P)	
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 28

Objective:

- 1. To learn Syntax and Semantics and to create functions in Python.
- 2. To handle strings and files in Python.
- 3. To understand Lists, Dictionaries and Regular expressions in Python.
- 4. To implement Object oriented programming concepts in Python.
- 5. To implement data structure and to organize the data using Python

Unit	Syllabus	No of
No		Hours
1	Introduction to Python: The basic elements of Python - Data types, variables,	8
	expressions, operators, Sequence, control-flow statements, Algorithms,	
	building blocks of algorithms. Functions, Scoping and Abstraction – Functions	
	and scoping, Decomposition and Abstraction, Keyword Arguments,	
	Specifications, Recursion, Modules, Inductive Reasoning, Global Variables,	
	System Functions and Parameters. Programming examples.	
2	Tuples and Lists: Tuples, Lists, List Operations, Mutation, Aliasing, Cloning –	7
	Dictionaries: Functions as Objects, Dictionaries.	
	Debugging: Programming Challenges, Classes of Tests, Bugs, Debugging and Debugging Examples.	
	Assertions and Exceptions, Assertions, Exceptions, Exception Examples	
3	Classes and Inheritance: Why Object Oriented Programming, Classes &	7
	Objects, Classes & Methods, Abstract Data Types and Classes, Encapsulation	
	and Information Hiding, Class Instances, Overloading, Composition,	
	Inheritance, Programming examples.	
4	Files and exception: text files, reading and writing files, format operator;	6
	command line arguments, errors and exceptions, handling exceptions, modules,	
	packages; Illustrative programs: word count, copy file, programming examples.	
5	Files and exception: text files, reading and writing files, format operator;	6
	command line arguments, errors and exceptions, handling exceptions, modules,	
	packages; Illustrative programs: word count, copy file, programming examples.	

Note 1:

- SEE question paper shall contain 10 questions having internal choice in each unit.

 ☐ Students shall answer one question from each unit.

 Note 2:
 - Assignments are evaluated for 5 marks.
 - CIE shall be evaluated for 20 marks

Course Outcome:

After learning the course, the student will be able:

- 1. Develop and execute algorithmic solutions to simple computational problems with python programs.
- 2. Decompose a Python program into functions.
- 3. To be able to understand the various data structures available in Python programming language and apply them in solving computational problems.
- 4. To be able to do testing and debugging of code written in Python.
- 5. Ability to Text Processing scripts.

Text Books / Reference Books:

- 1. Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher, Revised and Expanded version.
- 2. Python Programming using problem solving Approach by Reema Thareja, Oxford University, Higher Education Oxford University Press; First edition.
- 3. Fundamentals of Python first Programs by Kenneth A Lambert, Copyrighted material Course Technology Inc. 1st edition.

Subject Title: PYTHON PROGRAMMING LAB		
Sub Code : 18IML37	No of Credits : 0:0:1	No. of Hrs / Week: 2
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 13

Course Objectives:

- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples and dictionaries. Read and write data from/to files in Python.

'	• Re	ead and write data from/to files in Python.	
		Programs List	No. of
			Hours
1	a	Write a program that declares 3 integers, determines and prints the largest and sa	mallest
		in the group.	
	b	Write a program that accepts 'n' numbers from the user and print their sum.	
2	a	Write a program to find factorial of a given number.	
	b	Write a program to print Fibonacci Series.	
3	a	Write a program to implement linear search and binary search.	
	b	Write a program to	
		• Determine whether the given string is a palindrome or not using slicing and	without
		using slicing	
		Find the number of Vowels and Consonants in a given string	
4	a	Write a program to find that given number is Armstrong or not.	
	b	Write a program to convert decimal number into binary numbers.	
5	a	Write a program for generation of pyramid.	
		Pyramid 1 Pyramid 2	
		* 1	
		* * 12	
		* ** 123	
		* * * * 1 2 3 4	
6	a	Write a Python program to get the largest and smallest number from a list.	
	b	Write a function ball collide that takes two balls as parameters and computes if t	•
		colliding. Your function should return a Boolean representing whether or not the are colliding.	e balls

7 a		Write A Program that Reads a Text File and Counts the Number of Times a Certain
		Letter Appears in the Text File.
	b	Write A Program to Read a Text File and Print all the Numbers Present in the Text File
8	a	Write a Python script to sort (ascending and descending) a dictionary by value
	b	Create a dictionary for words and their meanings. Write functions to add a new entry
		(word : meaning), search for a particular word and retrieve meaning, given meaning find
		words with same meaning, remove an entry, display all words sorted alphabetically.
9	a	Write A Program to Find the Area of a Rectangle Using Classes
	b	Write A Program to Create a Class and Compute the Area and the Perimeter of the
		Circle
10		Write A Program to Append, Delete and Display Elements of a List Using Classes
11		Write a Python program to simulate ATM transactions by including the following
		operations:
		a) Check for correctness of the ATM pin.
		b) Perform Balance, Withdraw and Deposit Operations.
		The above operations should be menu-driven and display appropriate messages after
		performing each of these operations.

Subject Title : MANUFACTURING TECHNOLOGY LAB			
Sub Code : 18IML38	No of Credits : 0: 0:1= 1	No. of Hrs / Week : 2	
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:	
		12	

Objective:

- 1.To demonstrate the importance of sand properties in preparing moulds
- 2.To give hands on practice in preparing moulds using 2 box, split pattern and cores
- 3.To give hands on practice in preparing forging models using open hearth furnace

Machi	ne Shop Practice	
1	Preparation of three models on lathe involving Plain turning, Taper turning, Step turning,	
	Thread cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric	
	turning.	
2	Cutting of V Groove/ dovetail / Rectangular groove using a shaper.	
3	Cutting of Gear Teeth using Milling Machine.	
Testin	g of Molding sand and Core sand	
Prepar	ation of sand specimens and conduction of the following tests:	
1	Compression, Shear and Tensile tests on Universal Sand Testing Machine.	
2	Permeability test	
3	Core hardness & Mould hardness tests.	
4	Sieve Analysis to find Grain Finest number of Base Sand	
5	Clay content determination in Base Sand	
Found	ry Practice	
1	Use of foundry tools and other equipments.	
2	Preparation of moulds using two molding boxes using patterns or without patterns. (Split	
	pattern, Match plate pattern and Core boxes).	
3	Preparation of one casting (Aluminum or cast iron-Demonstration only)	
Forgir	Forging Operations	
1	Calculation of length of the raw material requited to do the model.	
2	Preparing minimum three forged models involving upsetting, drawing and bending	
	operations.	
3	Out of these three models, at least one model is to be prepared by using Power Hammer	

Outcome:

After the completion of the above course students will be able to

- 1. The students will be able to utilize foundry and forging tools for various applications
- 2. Will be able to develop different foundry & forging models
- 3. Will be able to determine different properties of sand

COs	Mapping with POs
CO1	PO3,PO5
CO2	PO2,PO9,PO12
CO3	PO2,PO3

Scheme of Examination:

One question is to be set from Testing of Molding sand and Core sand : 10 marks

One question is to be set from either Foundry or Forging : 30 marks

Viva-Voce : 10 marks.

Total : 50 marks.

Subject Title: CONSTITUTION OF INDIA & PROFESSIONAL ETHICS			
Subject Code: 18HS31	No. of Credits: 1	No of lecture hours per week: 2 Hrs	
Exam Duration: 2 Hrs	Exam Marks: 50	Total No. of lecture hours: 16 hrs per week	

Total Text Objectives:

Constitution of India and professional Ethics taught to the students to enable them an insight into the constitution and enlighten them about the fundamental rights, Protection of rights through enforcement of writs. Functions of judiciary, knowledge and importance of election in democratic country procedure of elections to the post of president, members of parliament and state legislative assembly and the function of Parliament, legislative Assembly and their powers. Professional ethics- The duties and basic responsibilities of engineers towards society and their employer, apply of new ideas and protection of those ideas.

Course Objective

- 1. The objective of part-I of the syllabus is to know how the Constitution of India was framed and the basic structure of Indian Constitution and the rights given by the Constitution to their Citizens.
- 2. The objective of part-II. To inculcate knowledge on election commission in the democratic system. The functions of judiciary in upholding of the Indian Constitution
- 3. The objective of part-III. Is enlightening them about the system of government adopted in both Central and State and Method of election of representative of Parliament and State

Assembly their powers and function and also enlighten them about the term democracy

- 4. The Objective of part IV. To create awareness on Professional ethics and Human Values
- 5. The objective of part-V. To inculcate knowledge and exposure on Safety and Risk, Risk Benefit Analysis and have an idea about the Collective Bargaining, Confidentiality, Professional, Employee, Intellectual Property Rights

UNIT	SYLLABUS CONTENTS	No. of
NO		hours
1	INTRODUCTION: Framing of India Constitution, Salient Features of the	8
	Constitution, Basic Structure, Preamble of the Constitution,	
	Fundamental Rights- Article (12-35), Art 32 &226, Restrictions under	
	Constitution Fundamental Duties Art (51A).	
2	Directive Principles Of State Policy	3
	Election commission	
	Judiciary system-Role of Supreme Court of India and High Court of State	
3	UNION GOVERNMENT	5
	Executive - President, Prime Minister, council of ministers	
	Legislature- Parliament, Lok-Sabha, Rajya-Sabha	
	STATE GOVERNMENT	
	Executive – Governor, Chief Minister, Council of Ministers.	
	Legislative- Legislative Assembly , Legislative Council	

	HUMAN VALUES& PROFESSIONAL ETHICS: Morals, values and	5
4	Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect	
	for others – Living peacefully – Caring – Sharing – Honesty – Courage –	
	Valuing time – Cooperation – Commitment – Empathy – Self-confidence.	
	SAFETY, RESPONSIBILITIES AND RIGHTS: Safety and Risk –	4
5	Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk	
	– Respect for Authority – Collective Bargaining – Confidentiality –	
	Conflicts of Interest – Occupational Crime – Professional Rights –	
	Employee Rights – Intellectual Property Rights (IPR) Piracy and plagiarism.	

Course Outcomes

- 1. Students come to know that who are all take part in the framing of Indian Constitution and how it was framed, what it contained. The Rights they can enjoy as a citizen of India. Case law gives detailed knowledge to the students about their fundamental rights. Procedure of enforcement of fundamental rights.
- 2. Student gets the knowledge about procedure of conducting of election by the election commission, its duties and powers along with powers and functions of judiciary.
- 3. Student comes to know regarding system of parliamentary form of government and how the representative of Central and State Government are elected their powers and functions
- 4. Student comes to know the correct meaning of ethics and their ethical duties and responsibilities and using of honesty in their profession, and the decision making ability.
- 5. Student gets the knowledge of using the intellectual property rights and its protection and its application in their profession.

TEXT BOOKS:

- 1. INTRODUCTION TO THE CONSTITUTION OF INDIA by DURGA DAS BASU. (Students Edition) Prentice Hall EEE, $19^{th}/20^{th}$ Edn. 2001.
- 2. ENGINEERING ETHICS by CHARLES E. HARIES, MICHAEL.S.PRITCHARD AND MICHAEL J. ROBINS THOMPSON ASIA, 2003-08-05

Reference Books:

1 An Introduction to Constitution of India by M.V.Pylee, Vikas Publishing, 2002.

- 2. Constitution of India by B S Raman
 - 2 Engineering Ethics by M.Govindarajan, S. Natarajan, V.S.Sendilkumar, Prentice Hall of India Private Ltd, New Delhi, 2004.
 - 3 Constitution of India and Professional Ethics—K R Phaneesh
 - 4 Introduction to the Constitution of India—Brij Kishore Sharma

Subject Title : Environmental Studies				
Sub Code : 18HS32	No of Credits: 1	No. of Hrs / Week : 2		
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:		
		16		

Objectives:

- 1. To create awareness among the students about impacts of developmental and human activities on natural resources, remedial measures and life support systems viz. land, water, air etc.
- 2. It makes how to conserve natural resources for sustainable development.
- 3. To understand the importance of environmental protection and sustainable development.

Unit.	Syllabus	No of Teaching
No		Hours
1	Introduction: Concept of environmental studies. Definition of environment, components of the environment and structure of the atmosphere. Study of different ecosystems. Human Activities And Its Effect On Environment: Agriculture, Industry, Mining, Transportation, & Urbanization.	04 hours
2	Natural Resources: Forest Resources, Water Resources, Mineral Resources, Food Resources and Land Resources ENERGY: Definition of energy and energy resources, different types of energy-conventional and non-conventional energies (Classification only).	03 hours
3	Environmental Pollution And Effects: Air pollution, Water pollution "water born and water induced disease", Soil pollution and Noise pollution. Current Environmental Issues Of Importance: Population Growth, Climate	03hours
4	ENVIRONMENTAL Episodes: Episodes (Los Angeles smog, Minamata disease in Japan 1945, Bhopal (India) gas tragedy 1984)- Brief Description Legislation to control and protect the environment, about environmental awareness. Environmental Impact Assessment And Sustainable Development.	03 hours

Text Books

1. Ranjit Daniels R.J. and Jagdish Kirshnaswamy, (2009), "Environmental Studies", Wiley India

Private Ltd., New Delhi

- 2. Benny Joseph (2005), "Environmental Studies", Tata McGraw Hill Publishing Company Limited
- 3. Rajagopalan R. (2005), "Environmental Studies From Crisis to Cure", Oxford Univesity Press

References

1. Raman Sivakumar, (2005), "Principles of Environmental Science and Engineering", Second Edition, Thomson Learning, Singapore

- 2. Meenakshi P. (2006), "Elements of Environmental Science and Engineering", Prentice Hall of India Private Limited, New Delhi
- 3. Prakash S.M. (2007), "Environmental Studies", Elite Publishers, Mangalore
- 4. Erach Bharucha (2005), "Text Book of Environmental Studies", for UGC, Universities Press
- 5. Tyler Miller Jr. G. (2004), "Environmental Science Working with the Earth", Tenth Edition, Thomson Brooks/Cole
- 6. Tyler Miller Jr. G. (2006), "Environmental Science Working with the Earth", Eleventh Edition, Thomson Brooks/Cole
 - 7. www.iitg.ernet.in>rkbc>presentation
 - 8. www.nptel.org.in
 - 9. http://books.google.co.in

Course Outcomes:

- CO1. The students will be introduced and refreshed about the ecology and ecosystem in general and understand the effect of human activities on environment.
- CO2. The students will be able to analyze the importance of natural resources and its protection.
- CO3. The students will understand the value of environment protection by studying past episode. CO4. The students will acquire the skill to adopt the suitable method for sustainable development through environmental impact assessment and rainwater harvesting.

SOFT SKILLS -III semester					
Subject Code: 18HS33	Mandatory Course	No of lecture hours per week: 2 Hrs			
Exam Duration:	Exam marks: NIL	Total No. of lecture hours: 26 hrs per			
		semester			

COURSE OBJECTIVES:

- 1. The lessons under unit 1 is to help students to recognize oneself as an individual being aware of one's knowledge, personality, environment and lifestyle, through different base and measures like SWOC analysis, personal developments.
- 2. The lessons under this unit make students to understand the importance of soft skills and hard skills and how to think critically and also learn the importance of creative thinking.
- 3. The lessons under this unit make students to understand the importance of attitude, time, and also learn to manage them.
- 4. The objective of this unit is to help a student to learn the art of goal setting and being motivated in achieving his goal in spite of all the hardships with different problems along with teamwork, and leadership qualities.
- 5. The unit 5 aims at teaching the students about importance of handwriting, punctuation marks, spellings, which helps them, improve in writing skills.

UNIT	SYLLABUS CONTENT		
NO		/COS	
1	a. SWOC ANALYSIS	5	
	b. SELF – AWARENESS AND PERSONAL DEVELOPMENT	CO1	
	c. ETTIQUTTE AND MANNERS		
2	d. INTRODUCTION TO SOFT SKILLS AND HARD SKILLS	5	
	e. CREATIVITY	CO2	
	f. CRITICAL THINKING		
3	g. ATTITUDE	5	
	h. ADAPTABILITY	CO3	
	i. TIME MANAGEMENT/ PRIORITY		
	j. STRESS MANAGEMENT		
4	k. GOAL SETTING	5	
	1. MOTIVATION	CO4	
	m. TEAM WORK		
	n. PROBLEM SOLVING		
	o. LEADERSHIP		
5	p. GUIDELINES FOR HANDWRITING	6	
	q. PUNCTUATION MARKS	CO5	
	r. SPELLING		
	s. VISUAL NARRATIVES(Ramayana, Mahabharata, Short Stories, films		
	and advertisements)		

COURSE OUTCOME:

- 1. After the completion of this unit students will know about their self assessments and personality that how to handle various situations in a positive way.
- 2. At the end of this unit student will be able to see how important it is to consider things carefully and from different angles, something one sees, hears, experiences or reads in

- order to understand it fully. The student will also have understood the importance of soft skills and thinking creatively.
- 3. After the completion of this unit students will have learnt about attitude and adaptability and also how to deal with problems and stress in the present world.
- 4. At the end of this unit students will have learnt some simple ways of planning to achieve his dream and also feel enthusiastic about doing something individually and as well in team.
- 5. After the completion of this unit students writing skills will have improved.

REFERENCE:

- 1. English for Job Seekers (Language and Soft Skills for the Aspiring) by Geetha Rajeevan, C.L.N. Prakash et al.) Cambridge University Press Pvt. Ltd.
- 2. New International Business English by Leo Jones and Richard Alexander. Cambridge University Press Pvt. Ltd.
- 3. Business Benchmark by Norman Whitby. Cambridge University Press pvt,Ltd
- 4. Grammar practice Activities (practical guide for teachers) Cambridge University Press Pvt. Ltd.

Subject Title: BASIC ENGINEERING MATHEMATICS-I		
Subject Code: 18MAD31	No. of Credits: 00	No of lecture hours per week: 04
Subject Code: 16MAD31	No. of Credits: 00	Total No. of lecture hours: 50

Course objective: To develop a basic Mathematical knowledge required for higher semesters with few examples of its engineering applications.

Unit	Syllabus content	No. of
No.		hours
1	Differential Calculus: Polar curves, angle between polar curves and condition	10
	for orthogonality. Pedal equation for polar curves, Radius of curvature—in	
	Cartesian, parametric, polar and pedal forms (with proof)-problems. Taylor's	
	and Maclaurin's expansions.	
2	Partial Differentiation: Partial derivatives, Homogeneous functions, Euler's	10
	theorem (with proof and no extended theorem). Total differential and	
	differentiability, Derivatives of composite and implicit functions, change of	
	variables.	
3	Integral Calculus: Reduction formulae for $\Box \sin^n x dx$,	10
	$\Box \cos^n x dx$,	
	\Box sin $^m x \cos^n x dx$. Evaluation of the integrals using reduction formula with	
	standard limits-Problems. Tracing of curves in Cartesian and Polar forms	
	(Cissoid, Astroid, Cardioid and Lemniscate).	
4	Multiple Integrals: Double integrals in Cartesian and polar coordinates,	10
	Change of order of integration, Area enclosed by plane curves, Change of	
	variables in double integrals, Area of a curved surface. Triple integralsVolume	
	of solids.	
5	Differential Equations: Solution of homogeneous, Linear and Exact	10
	differential equations and its reductions. Solutions of Linear differential	
	equations of higher order with constant coefficients-inverse differential	
	operator.	

Course Outcomes:

After the successful completion of the course, the students are able to

CO1: analyze the basic concepts of calculus like differentiation and integration

CO2: apply the concepts of partial differentiation and differential equations arising in a variety of engineering applications

CO3: assess the practical importance of polar curves, Jacobians and radius of curvature **CO4:** apply the concepts in problem solving and relate the solutions to the various engineering streams

CO5: use the skills in understanding Mathematical knowledge

Course Outcomes (CO) Mapping with Programme Outcomes (PO)

CO1: PO1, PO2 CO2: PO1, PO2 CO3: PO1, PO2 CO4: PO1

TEXTBOOKS:

CO5: PO1

- 1.B.S. Grewal, Higher Engineering Mathematics (44th Edition), Khanna Publishers, New Delhi.
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill publications, New Delhi, 11th Reprint, 2010

REFERENCE BOOKS.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics (Latest Edition), Wiley Publishers, New Delhi.
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 4. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East– West press, Reprint 2005.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

IV Semester IEM

Subject Title: NUMERICAL METHODS & APPLIED STATISTICS		
Subject Code: 18MA41	Number of Credits: 3 = 2 : 1 : 0 (L–T– P)	No of lecture hours per week: 04 (L=2+T=2)
Exam Duration: 3 Hrs	Exam Marks: CIE + SEE = 50 + 50 = 100	Total No. of Lecture hours: 52

Course objective: This course is proposed to impart to the students the skills to identify and solve problems in their field of study involving the application of numerical methods and principles of variational calculus.

Unit	Syllabus content	No. of hours	
No.		Theory	Tutorial
1	Solutions of Algebraic and Transcendental Equations: Regula- Falsi method and Newton-Raphson method. Interpolation: Interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals- Newton's divided difference and Lagrange's formulae.	05	05
2	Numerical Differentiation, Integration and Solutions of ODE'S: Numerical differentiation using Newton's forward and backward difference formulae. Numerical Integration-Simpson's 1/3 rd , 3/8 th rules and Weddle's rule. Solutions of first order ODE's-Euler's modified method, Runge- Kutta fourth order method.	06	05
3	Numerical Solutions of Partial Differential Equations: Solutions of Laplace and Poisson equations-Jacobi's method, Gauss-Seidel method and Relaxation method. One dimensional heat equation-Bender-Schmitt method and Crank-Nicholson method. Wave equation-Finite difference method.	06	05
4	Tests of Hypothesis: Review of random variables. Introduction to sampling distributions, standard error, Type-I and Type-II errors. Large sample test based on normal distribution for single mean and difference of means. Small samples tests based on t, F and χ^2 -distributions.	05	05
5	Calculus of Variations: Variation of a function and a functional, Euler's equation-standard variational problems and the Brachistochrone problem. Isoperimetric problems. Rayleigh Ritz method -problems.	05	05

Course Outcomes:

After the successful completion of the course, the students are expected to:

CO1: analyze the basic concepts of calculus of variations, numerical and statistical methods.

CO2: construct finite element models using calculus of variations for problems connected to solid and fluid mechanics.

CO3: apply numerical methods to identify and solve problems related to fluid mechanics, gas dynamics, heat and mass transfer, thermodynamics, vibrations, automatic control systems, kinematics, design etc.

CO4: understand the basics of hypothesis testing.

CO5: implement a variety of statistical techniques to solve problems of engineering connected to industrial production, quality management and design of experiment.

Course Outcomes (CO) Mapping with Programme Outcomes (PO)

CO1: PO1, PO2

CO2: PO1, PO2

CO3: PO1, PO2

CO4: PO1, PO4

CO5: PO1, PO2

TEXTBOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition), Khanna Publishers, New Delhi.
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill publications, New Delhi.

REFERENCE BOOKS:

- 1. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.
- 2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint,

2010.

- 3. Erwin Kreyszig, Advanced Engineering Mathematics (10th Edition, 2016), Wiley Publishers, New Delhi.
- 4. M. K. Venkataraman, Higher Engineering Mathematics for Engineering & Science, -National publishing co., Chennai.
- 5. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

QUESTION PAPER PATTERN:

The Semester End Examination (SEE) is for 100 marks.

- 1. There shall be five full questions (one question for each unit) carrying 20 marks each and all are Compulsory.
- 2. There shall be internal choice in all the Units.

Sub Title: WORKSTUDY AND ERGONOMICS		
Sub Code: 18IM41	No of Credits : 4:0:0	No of Lecture hours/week: 04
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

Objectives:

- 1. To understand the definition of productivity and the factors affecting productivity.
- 2. To apply the concept of work study and its related issues.
- 3. To study the Method study through various charts.
- 4. To identify work measurement and Time study techniques for better production.
- 5. To describe the importance and application of ergonomics, man-machine system.

Unit	Syllabus Content	No of Hours
No. 1	PRODUCTIVITY: Definition, reasons for low productivity, methods to improve productivity, work-study and productivity	07
	HUMAN FACTOR IN WORK-STUDY : Relationship of work-study man with management, supervisor & workers, qualities of a work-study man.	
2	METHOD-STUDY: Definition, objectives, step-by-step procedure, questioning techniques, charts and diagrams for recording data. Like outline	10
	process charts, flow process charts, multiple activity charts, two handed process chart, string diagram, travel chart, cycle graph, Chrono-cycle graph,	
3	MICRO AND MEMO MOTION STUDY: Charts to record movements at work place – principles of motion economy, Therbligs, and classification of movements, SIMO chart, and micro motion study. Development, definition and installation of the improved method, brief concept about synthetic motion studies	07
4	INTRODUCTION TO WORK MEASUREMENT: Definition, objective and benefit of work measurement. Work measurement techniques: WORK SAMPLING, need, confidence levels, sample size determinations, random observation, and conducting study with the simple problems. STOP WATCH TIME STUDY: Time Study, Definition, time study equipment, selection of job, steps in time study. Breaking jobs into elements, recording information. Rating & standard Rating, standard performance, scale of rating, factors affecting rate of working, allowances and standard time determination. Predetermined Motion Time Study (PMTS) .Method Time Measurement (MTM)	14
5	ERGONOMICS: Introduction, Areas of study under Ergonomics, System approach to Ergonomics model, Man-Machine System. Components of Man-Machine System and Their functions – Work capabilities of Industrial Worker, Study and Development of Stress in Human body and their consequences. Computer based ergonomics. DESIGN OF MAN-MACHINE SYSTEM: Fatigue in industrial workers. Quantitative, qualitative representation and alphanumeric displays. Controls and their design criteria, control types, relation between controls and displays, layouts of panels and machines. Design of work places, influence of climate on human efficiency. Influence of noise, vibration and light.	14

Note 1:

- SEE question paper shall contain 10 questions having internal choice in each unit.
- Students shall answer one question from each unit.

Note 2:

- Assignments are evaluated for 5 marks.
- CIE shall be evaluated for 20 marks

Outcome:

After the completion of the above course, students will be able to

- 1. Describe the concept of productivity and the importance of productivity.
- 2. Analyze the existing methods of working for a particular job and develop an improved method through questioning technique.
- 3. Construct the various charts use recording techniques for improving productivity.
- 4. Provide appropriate allowances for the jobs under analysis.
- 5. Analyze and calculate the level of risk of the job causing stress, fatigue and musculoskeletal disorders among the employees of an organization.

Cos	Mapping with POs
CO1	PO3,PO6,PO8PO10
CO2	PO3,PO4,PO7,PO10,PO11
CO3	PO3,PO4,PO7,PO10,PO11
CO4	PO6,PO10,PO11
CO5	PO6,PO8,PO10

TEXT BOOKS:

- 1. ILO, Introduction to work study III Revised Edition, 1981
- 2. Motion and Time study Ralph M Barnes; John Wiley, 8th Edition, 1985.
- 3. Engineered work Measurement Wledon, ELBS, 1991

REFERENCES BOOKS:

- 1. Human Factors in Engineering Design S Sanders and E J McCormick, 6th Edition, Mc Graw Hill
- 2. Work Study and Ergonomics S Dalela and Sourabh, Chand Publishers, 3rd edition.
- 3. Industrial Engineering Hand book Maynard

Subject Title : THEORY OF MACHINES		
Sub Code : 18IM42	No of Credits: 2:2:0	No of lecture hours/week: 4
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:
		52

Objective:

- 1. To define the layout of linkages in the assembly of a system/machine
- 2. To identify various principles involved in assessing the displacement, velocity and acceleration at any point in a link of a mechanism
- 3. To analyze the motion resulting from a specified set of linkages in a mechanism.
- 4. To illustrate the design and application of gears
- 5. To evaluate the design and application of cams

Unit No	Syllabus	No of Hours
1	Introduction: Definitions Link or element, kinematic pairs, Degrees of freedom, Grubler's criterion (without derivation), Kinematic chain, Mechanism, Structure, Mobility of Mechanism, Inversion, Machine. Kinematic Chains and Inversions: Inversions of Four bar chain; Single slider crank chain and Double slider crank chain.	8+2(T)
2	Mechanisms: Quick return motion mechanisms-Drag link mechanism, Whitworth mechanism and Crank and slotted lever Mechanism. Straight-line motion mechanisms Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms -Geneva wheel mechanism and Ratchet and Pawl mechanism. Toggle mechanism, Pantograph.	8+3(T)
3	Spur Gears: Gear terminology, law of gearing, Characteristics of involute action, Path of contact. Arc of contact, Contact ratio of spur, helical, bevel and worm gears, Interference in involute gears. Methods of avoiding interference, Back lash. Comparison of involute and cycloidal teeth.	7+3(T)
4	Gear Trains: Simple gear trains, Compound gear trains for large speed reduction, Epicyclical gear trains, Algebraic and tabular methods of finding velocity ratio of epicycle gear trains(Simple Problems with tabular column method only). Tooth load and torque calculations in epicyclic gear trains. Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's Theorem, Determination of linear and angular velocity using instantaneous center method	12+5(T)
5	Klein's Construction: Analysis of velocity and acceleration of single slider crank mechanism. Cams: Types of cams, Types of followers. Displacement, Velocity and, Acceleration time curves for cam profiles. Disc cam with reciprocating follower having knife-edge, roller and flat-face follower, Disc cam with oscillating roller follower. Follower motions including SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion.	12+5(T)

Graphical Solutions may be obtained either on the Graph Sheets or on the Answer Book itself

Note 1:

- SEE question paper shall contain 10 questions having internal choice in each unit.
- Students shall answer one question from each unit.

Note 2:

- Assignments are evaluated for 5 marks.
- CIE shall be evaluated for 20 marks

Outcome:

After the completion of the above course students will be able to

- 1. Discuss the common mechanisms used in machines and everyday life.
- 2. Calculate mobility (number of degrees-of-freedom) and enumerate rigid links and types of joints within mechanisms.
- 3. Analyze the complete (translational and rotational) mechanism velocity and acceleration graphically.
- 4. Classify gear mechanism and analyze gear train, and interpret gear standards and specification in design.
- 5. Explain cam mechanism and cam motion profiles, and calculi the velocity and acceleration of cam.

Cos	Mapping with POs
CO1	PO1,PO2,PO3
CO2	PO1,PO2,PO3
CO3	PO1,PO2,PO3
CO4	PO2,PO3,PO5,PO8,PO9,PO12
CO5	PO2,PO3,PO5,PO8,PO9,PO12

TEXT BOOKS:

- 1. "Theory of Machines", Rattan S.S, Tata McGraw-Hill Publishing Company Ltd., New Delhi, and 3rd edition -2009.
- 2. "Theory of Machines", Sadhu Singh, Pearson Education (Singapore) Pvt. Ltd, Indian Branch New Delhi, 2nd Edi. 2006
- 3. "Theory of mechanisms and machine" Amithaba Gose and Asok kumar malik Third edition, east west press, 2006

REFERENCE BOOKS:

- 1. "Theory of Machines & Mechanisms", J.J. Uicker, G.R. Pennock, J.E. Shigley. OXFORD 3rd Ed. 2009.
- 2. **Mechanism and Machine theory**, Ambakar. A G ,PHI learning 2007
- 3. **Theory of machine,** Joseph Edward Shigley, OXFORD PRESS.

Sub Title: ENGINEERING ECONOMY		
Sub Code: 18IM43	No. of Credits:3 =2 : 2 : 0 (L-T-P)	No. of lecture hours/week: 4
Exam Duration : 3 hr.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

Course Objectives:

- 1. To Prepare Students to analyze cost or Revenue Data
- 2. To apply engineering economic decision making to realistic problems.
- 3. To justify or reject alternatives or Projects on an Economic basis
- 4. To apply the Replacement analysis as part of maintenance aspects for better decision making
- 5. To learn estimation and costing of the manufactured products as part of financial aspect for profit maximization or minimization of losses in the business

Unit No.	Syllabus Content	No of Hours
1	INTRODUCTION: Engineering Decision- Makers, Engineering and Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy. Interest and Interest factors: Interest rate, simple interest, Compound interest, Cash- flow diagrams, Exercises and Discussion.	08
2	PRESENT WORTH COMPARISON: Conditions for present worth comparisons, Basic Present worth comparisons, Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Future worth comparison, Pay – back comparison, Exercises, Discussions and problems. Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situations for Equivalent Annual Worth Comparison, Consideration of asset life, Comparison of assets with equal and unequal lives, Use of sinking fund method, Annuity contract for guaranteed income, Exercises, Problems.	14
3	RATE OF RETURN CALCULATIONS: Rate of return, Minimum acceptable rate of return, IRR, IRR misconceptions, Cost of capital concepts, replacement models. Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges. Structural analysis of alternatives: Identifying and Defining alternatives, IRR analysis of mutually exclusive alternatives, Capital Budget view point, Ranking criteria.	14
4	REPLACEMENT ANALYSIS: Introduction, reasons for replacement, Individual Replacement of machinery or equipment with/without value of money, Group Replacement Policies, Problems. EFFECTS OF INFLATION: Causes, consequences and control of inflation. After tax actual cash flow comparisons, Lease/ Buy decisions.	07
5	ESTIMATING & COSTING: Components of costs such as Direct Material Cost, Direct Labor Cost, Fixed, Over – Heads, Factory Costs, Administrative – Over Heads, First Cost, Marginal Cost, Selling price, Estimation for simple components. Break-even analysis: Basic Concepts Linear & non-linear break even analysis.	09

Note 1:

- SEE question paper shall contain 10 questions having internal choice in each unit.
- Students shall answer one question from each unit.

Note 2:

- Assignments are evaluated for 5 marks.
- CIE shall be evaluated for 20 marks

Outcome:

By the end of the course students will be able to

- 1. Perform and evaluate present worth, future worth and Annual worth analyses on one of more economic alternatives.
- 2. Assess the payback period and capitalized Cost on one or more economic alternatives.
- 3. Carry out and estimate the benefit/cost, life cycle.
- **4.** Interpret breakeven analyses on one or more economic alternatives

Cos	Mapping with POs
CO1	PO2,PO4,PO5,PO7,PO11
CO2	PO4,PO5,PO6,PO7,PO11,PO12
CO3	PO4,PO6,PO7,PO11,PO12
CO4	PO6,PO7,PO11,PO12

TEXT BOOKS:

- 1. **Engineering economics** RIGGS J.L. McGraw Hill, 2015.
- 2. **Engineering economy** PAUL DEGARMO, Macmillan Pub, Co. 2006.
- 3. **Engineering Economy** Naidu, Babu and Rajendra, New Age International Pvt. Ltd. 2006 **REFERENCE BOOKS:**
- 1. **Financial Management** I M PANDAY, Vikas Publishing House 2016.
- 2. Engineering economy THUESENH.G. PHI, 9th edition, 2012
- 3. **Engineering Economics** Tara Chand, 9th edition, 2012

Sub Title: STATISTICS FOR ENGINEERS		
Sub Code: 18IM44 No. of Credits:4=4:0:0 (L-T-P) No. of lecture hours/week: 4		
Exam Duration : 3 hr.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

Course Objectives:

- 1. Apply the basic fundamental concepts of Statistics to engineering problems and the importance of Data summary and Display.
- 2. Evaluate the application of discrete probability distribution to various manufacturing problems.
- 3. Evaluate the application of Continuous probability distribution to various manufacturing problems.
- 4. Explain the hypothesis to random experiments of manufacturing processes.
- 5. Test the statistical parameters by regression and correlation. and test for variance

Unit	Syllabus Content	No of
No.		Hours
1	THE ROLE OF STATISTICS IN ENGINEERING (DATA SUMMARY AND PRESENTATION): Statistical Thinking, Collecting data, Statistical Modeling Frame work, measure of central tendency and variance, Importance of Data summary and Display, Tabular and Graphical display	08
2	DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS: Discrete Random variables, Probability distributions and Probability mass functions, Cumulative distribution functions, Mean and Variance of a discrete random variable, Discrete uniform distribution, Binominal distribution, Hyper Geometric distribution, Poisson distribution and their Applications.	08+ 02(T)
3	CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS: Continuous random variables, Probability distributions and probability density functions, cumulative distribution functions, Mean and Variance of a continuous random variable, uniform distribution, Normal distribution, Normal approximation to Binominal and Poisson distribution, Exponential distribution and their Applications.	08+ 02(T)
4	ESTIMATION THEORY: Statistical Inference, Random sampling, Properties of Estimators, Sampling distribution, Sampling distribution of mean, variance and proportion. Introduction to confidence intervals. STATISTICAL INFERENCE FOR A SINGLE SAMPLE AND TWO SAMPLES: Hypothesis testing, Inference on the mean of a population (variance known and unknown), Inference on the variance of a normal population, Inference on a population proportion. Testing for Goodness of Fit, Inference for a difference in Means, Variances known, Inference for a difference in means of two normal distributions, Variances unknown, Inference on the Variances of two normal populations, Inference on two population proportions.	10+ 02(T)
5	SIMPLE LINEAR REGRESSIONS AND CORRELATION: Simple Linear Regression, Properties of Least square Estimators and	10+2(T)

Estimation of variances, Common abuses of regression, Prediction of new observations, Assessing the adequacy of regression model, Transformations to a straight line, Introduction to multiple regression (no problems), Correlation.

DESIGN OF EXPERIMENTS: Strategy of experimentation, completely randomized single - factor experiment, Tests on individual treatment means, the random effects model, the randomized complete block design, one way analysis of variance and two way analysis of variance.

Note 1:

- SEE question paper shall contain 10 questions having internal choice in each unit.
- Students shall answer one question from each unit.

Note 2:

- Assignments are evaluated for 5 marks.
- CIE shall be evaluated for 20 marks

Outcome:

At the end of the course students will be able to

- 1. Apply the statistical data in the form of Tabular and Graphical display.
- 2. Identify discrete type of probability and solve the various engineering problems.
- 3. Solve Continuous type of probability and solve the various engineering problems
- 4. Estimate the hypothesis and give inference to random experiments.
- 5. Evaluate the statistical parameters by estimation.

Cos	Mapping with POs
CO1	PO1,PO2,PO12
CO2	PO1,PO2,PO3,PO12
CO3	PO1,PO2,PO3,PO12
CO4	PO1,PO2,PO3,PO4,PO12
CO5	PO1,PO2,PO3,PO5,PO9,PO12

TEXT BOOKS:

- 1. **Applied statistics and Probability for Engineers** Douglas C Montgomery, George C Runger, 2nd Edition, John Wiley and Sons, ISBN-0-471-17027-5
- 2. **Statistics for Management -** Richard I Levin, David S Rubin, 6th Edition, Prentice Hall India, ISBN-81-203-0893-X

REFERENCE BOOKS:

- 1. **Probability and Statistics in Engineering** William W Hines, Douglas C Montgomery, 2nd Edn, John Wiley and Sons
- 2. **Business Statistics for Management and Economics** Daniel, Terrell, 6th Edn, Houghton Mifflin Company, ISBN-0-395-62835-0
- 3. **Probability and Statistics** Walpole & Mayer, MacMillan Publishing Company, 1989.

Subject Title : COMPUTER AIDED MACHINE DRAWING			
Sub Code	: 18IML45	No of Credits: 3	No. of Hrs / Week : 4
Exam Dura	tion: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:
			13

Objective:

- 1. To visualize an object and convert it into a drawing.
- 2. To train the students to use commercial solid modeling software package
- 3. To explain the basic concept and to draw the views of section of solids, orthographic projections and threaded fasteners
- 4. To gain knowledge of conventional representation of mechanical Components
- 5. This course will give an insight to design, creation of an assembly and detailed drawing of machine components

Unit No	Syllabus	No of Hours
1	Introduction: Review of graphic interface of the software. Review of basic	8
	sketching commands and navigational commands. Starting a new drawing	
	sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap.	
	Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones	
	and Cylinders resting only on their bases (No problems on, axis inclinations,	
	spheres and hollow solids). True shape of sections.	
	Orthographic Views: Conversion of pictorial views into orthographic	
	projections of simple machine parts with or without section. (Bureau of Indian	
	Standards conventions are to be followed for the drawings) Hidden line	
	conventions. Precedence of lines.	
2	Geometric Dimensions and Tolerances: Drafting, tolerance and geometrical	08
	symbols used in machine drawing.	
	Fasteners: Hexagonal headed bolt and nut with washer (assembly), square	
	headed bolt and nut with washer (assembly)	
	Riveted Joints: Single and double riveted lap joints, butt joints with	
	single/double cover straps (Chain and Zigzag, using snap head rivets).	
3	Assembly Drawings(Part drawings should be given)	18
	1. Screw jack (Bottle type)	
	2. Machine vice	
	3. Plummer block	
	4. I.C. Engine connecting rod	

Note 1: SEE Question paper contains total six Questions (two questions from each unit) and student should answer any one question from Unit I and Unit II and III (student shall answer total 3 questions).

Course Outcomes:

After the completion of the above course students will have the

- 1. Ability to use standard software tools to create part assemblies
- 2. Ability to create fully constrained solid models that can be quickly modified using standard software tools
- 3. Ability to identify and explain standard features in solid modeling including protrusion, revolution, cutouts and patterns.
- 4. Ability to use standard software tools to create engineering drawings to describe the geometries and dimensions of parts
- 5. Ability to create computer aided drawings by interpreting and applying drafting standards.

Cos	Mapping with POs
CO1	PO2,PO11
CO2	PO2,PO11
CO3	PO2,PO3,PO11
CO4	PO2,PO3,PO11
CO5	PO2,PO3,PO11

Text books:

- 1. 'Machine Drawing', K.R. Gopala Krishna, Subhash Publication
- 2. 'Machine Drawing', N.D.Bhat & V.M.Panchal

Reference books:

1. 'A Primer on Computer Aided Machine Drawing - 2007', Published by VTU, Belgaum.

Suitable Software Used: Solid Edge

Scheme of Examination:		
ONE question from Unit 1	10 Marks	
ONE question from Unit 2	10 Marks	
ONE question from Unit 3	30 Marks	
Total	50 Mark	

Subject Title : WORKSTUDY AND ERGONOMICS LAB		
Sub Code : 18IML46	No. of Credits:1	No. of lecture hours/week: 2
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 13

PART – A (METHOD STUDY)			
Objecti	Objective cording Techniques: Preparing the following charts and diagrams (Minimum 3 Charts) -		
1. 7	1. To apply procedurate undampeted conseptrated Flodustrials engineering flow stradfain, described		
6	expicinginaental problems.		
2 2. [Experiments so whe Application of ording the briques on economy, Two handed process chart.		
3 3. 1	makenies and daudengementalistary to last serve was simple components and office work.		
4.	And we will an interpretation of the property		
5.	o test the statistical parameters by regression and correlation.		
	PART – B (WORK MEASUREMENT)		
1	Rating practice using: walking simulator, pin board assembly, dealing a deck of cards		
	and marble collection activity		
2	Determining the standard time for simple operations using stopwatch time study		
3	Exercises on estimating standard time using PMTS.		
4	4 Measurement of parameters (heart beat rate, calorie consumption) using walking simulator		
5	Measurement of parameters (heart beat rate, calorie consumption, revolutions per minute)		
	using ergometer		
6	Effect of Noise, Light, Heat on human efficiency in work environments.		

Outcome:

After undergoing the machine shop practice will be able to

- 1. Use basic fundamental concepts of Industrial engineering to practical applications.
- 2. Construct various charts and diagrams for manufacturing activities to minimize the delays and unnecessary activities.
- 3. Draw and develop different plant layouts for feasibility check.
- 4. Perform rating experiments for good observation.
- 5. Test the statistical parameters by regression and correlation.

Cos	Mapping with POs
CO1	PO1,PO9,PO12
CO2	PO1,PO2,PO5,PO12
CO3	PO2,PO3,PO5,PO6,PO7,PO12
CO4	PO1,PO3,PO4,PO12
CO5	PO1,PO2,PO4,PO6,PO12

Scheme of Examination:

One question is to be set Part A : 10 marks

One question is to be set from Part B : 30 marks

Viva-Voce : 10 marks.

Total : 50 marks.

Subject Title : MECHANICAL MESUREMENTS AND METROLOGY LAB		
Sub Code : 18IML47 No of Credits : 0:0:1 No. of Hrs / Week : 2		
Exam Duration: 3 Hrs. $CIE + SEE = 50 + 50 = 100$ Total No. of Contact Hours:		

Objective:

- 1. To study the Measurement standards available and to apply.
- 2. To study and learn the calibration procedure for different instruments.
- 3. To provide hands on experience and to study the various types of gauges, projectors, comparators and transducers.
- 4. To know and learn the applications of different measuring instruments used in manufacturing / production industries for inspection and calibration.

	MECHANICAL MEASUREMENTS
1	Calibration of Pressure Gauge
2	Calibration of Thermocouple
3	Calibration of LVDT
4	Calibration of Load cell
5	Determination of modulus of elasticity of a mild steel specimen using strain gauges
	METROLOGY
1	Measurements using Optical profile Projector and Toolmaker Microscope.
2	Measurement of straightness using Autocollimator, measurement of angle using Sine Center
	/ Sine bar / bevel protractor
3	Measurement of cutting tool forces using
	Lathe tool Dynamometer
	Drill tool Dynamometer.
4	Measurement of Screw threads Parameters using Two wire or Three-wire method.
5	Measurement of surface roughness using Talysurf. Linear measurements using Mechanical
	Comparator, Electronic comparator.
6	Measurement of gear tooth profile using gear tooth Vernier /Gear tooth micrometer
7	Calibration of Micrometer using slip gauges
8	Measurement using Optical Flats

Outcome:

After the completion of the above course students will be able to

- 1. Will be able to demonstrate standard operational procedures of different measuring instruments
- 2. Able to Calibrate Precision Instruments
- 3. Able to identify the different operating and instrument errors for calibration
- 4. Able to plot and interpret the operation characteristic and learning curves and also can give remedies/ suggestions for improvement that can be error free instrument.

Cos	Mapping with POs	
CO1	PO1, PO3, PO4	
CO2	PO1, PO2, PO12	
CO3	PO5, PO12	
CO4	PO4, PO5, PO12	

Scheme of Examination:	
ONE question from Mechanical Measurements	20 Marks
ONE question from Metrology	20 Marks
Viva –Voce	10 Marks
Total	50 Marks

Subject Title : MATERIAL TESTING LAB			
Sub Code	Sub Code : 18IML48 No of Credits : 0:0:1 No. of Hrs / Week : 3		
Exam Duration: 3 Hrs.		CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 13

Objective

- 1. To learn and demonstrate the basic principles in the area of strength and mechanics of materials through a series of experiments.
- 2. To provide hands on experience in measuring loads, deflection and strains.

Expt.	Description	
No		
1	Preparation of specimen for Metallographic examination of different engineering	
	materials. Identification of microstructures of plain carbon steel, tool steel, gray C.I,	
	SG iron, Brass, Bronze & composites.	
	(Only Demonstration)	
2	Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness	
	studies of heat-treated samples. (Only Demonstration)	
3	To study the wear characteristics of ferrous, non-ferrous and composite materials for	
	different parameters. (Only Demonstration)	
4	Non-destructive test experiments like, (Only Demonstration)	
	(a). Ultrasonic flaw detection	
	(b). Magnetic crack detection	
	(c). Dye penetration testing. To study the defects of Cast and Welded	
	specimens.	
5	Tensile, shear and compression tests of metallic and non metallic specimens using	
	Universal Testing Machine	
6	Torsion Test	
7	Bending Test on metallic and nonmetallic specimens.	
8	Izod and Charpy Tests on M.S, C.I Specimen.	
9	Brinell, Rockwell and Vickers's Hardness test.	

Outcome:

After the completion of the above course students will be able to use

- 1. Demonstrate the Nondestructive testing methods
- 2. Experiment and compute loads, deflection, strains and hardness and various other parameters using basic material testing equipment's.
- 3. Evaluate the strengths of metallic specimens using UTM

Cos Mapping with POs	
CO1	PO3,PO12
CO2	PO1,PO2,PO6,PO12
CO3	PO1,PO2,PO6,PO12

Scheme of Examination:

Two question (one from 1,2,3 and 4 and one from 5, 6, 7, 8, 9) : 15 + 25 Marks

Viva -Voice: : 10 Marks

Total : 50 Marks

Subject Title: CONSTITUTION OF INDIA & PROFESSIONAL ETHICS			
Subject Code: 18HS41	No. of Credits: 1	No of lecture hours per week: 2 Hrs	
Exam Duration: 2 Hrs	Exam Marks: 50	Total No. of lecture hours: 16 hrs per week	

Total Text Objectives:

Constitution of India and professional Ethics taught to the students to enable them an insight into the constitution and enlighten them about the fundamental rights, Protection of rights through enforcement of writs. Functions of judiciary, knowledge and importance of election in democratic country procedure of elections to the post of president, members of parliament and state legislative assembly and the function of Parliament, legislative Assembly and their powers.

Professional ethics- The duties and basic responsibilities of engineers towards society and their employer, apply of new ideas and protection of those ideas.

Course Objective

- 1. The objective of part-I of the syllabus is to know how the Constitution of India was framed and the basic structure of Indian Constitution and the rights given by the Constitution to their Citizens.
- 2. The objective of part-II.. To inculcate knowledge on election commission in the democratic system. The functions of judiciary in upholding of the Indian Constitution
- 3. The objective of part-III. Is enlightening them about the system of government adopted in both Central and State and Method of election of representative of Parliament and State Assembly their powers and function and also enlighten them about the term democracy
- 4. The Objective of part IV. To create awareness on Professional ethics and Human Values
- 5. The objective of part-V. To inculcate knowledge and exposure on Safety and Risk, Risk Benefit Analysis and have an idea about the Collective Bargaining, Confidentiality, Professional, Employee, Intellectual Property Rights

UNIT	SYLLABUS CONTENTS	No. of
NO		hours
1	INTRODUCTION	8
	Framing of India Constitution, Salient Features of the Constitution, Basic	
	Structure, Preamble of the Constitution,	
	Fundamental Rights- Article (12-35), Art 32 &226, Restrictions under	
	Constitution Fundamental Duties Art (51A).	
2	Directive Principles Of State Policy	3
	Election commission	
	Judiciary system-Role of Supreme Court of India and High Court of State	
3	UNION GOVERNMENT	5
	Executive - President, Prime Minister, council of ministers	
	Legislature- Parliament, Lok-Sabha, Rajya-Sabha	
	STATE GOVERNMENT	
	Executive – Governor, Chief Minister, Council of Ministers.	
	Legislative-Legislative Assembly, Legislative Council	
	HUMAN VALUES& PROFESSIONAL ETHICS:	5
4	Morals, values and Ethics - Integrity - Work ethic - Service learning -	
	Civic virtue – Respect for others – Living peacefully – Caring – Sharing –	
	Honesty - Courage - Valuing time - Cooperation - Commitment -	
	Empathy – Self-confidence.	

	SAFETY, RESPONSIBILITIES AND RIGHTS	4
5	: Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis	
	and Reducing Risk - Respect for Authority - Collective Bargaining -	
	Confidentiality – Conflicts of Interest – Occupational Crime – Professional	
	Rights – Employee Rights – Intellectual Property Rights (IPR) Piracy and	
	plagiarism.	

Course Outcomes

- 1. Students come to know that who are all take part in the framing of Indian Constitution and how it was framed, what it contained. The Rights they can enjoy as a citizen of India. Case law gives detailed knowledge to the students about their fundamental rights. Procedure of enforcement of fundamental rights.
- 2. Student gets the knowledge about procedure of conducting of election by the election commission, its duties and powers along with powers and functions of judiciary.
- 3. Student comes to know regarding system of parliamentary form of government and how the representative of Central and State Government are elected their powers and functions
- 4. Student comes to know the correct meaning of ethics and their ethical duties and responsibilities and using of honesty in their profession, and the decision making ability.
- 5. Student gets the knowledge of using the intellectual property rights and its protection and its application in their profession.

TEXT BOOKS:

- 1. INTRODUCTION TO THE CONSTITUTION OF INDIA by DURGA DAS BASU. (Students Edition) Prentice Hall EEE, 19th/20th Edn. 2001.
- 2. ENGINEERING ETHICS by CHARLES E. HARIES, MICHAEL.S.PRITCHARD AND MICHAEL J. ROBINS THOMPSON ASIA, 2003-08-05

Reference Books:

- 1 An Introduction to Constitution of India by M.V.Pylee, Vikas Publishing, 2002.
- 2. Constitution of India by B S Raman
- 2 Engineering Ethics by M.Govindarajan, S. Natarajan, V.S.Sendilkumar, Prentice Hall of India Private Ltd, New Delhi, 2004.
- 3 Constitution of India and Professional Ethics—K R Phaneesh
- 4 Introduction to the Constitution of India—Brij Kishore Sharma

Subject Title : Environmental Studies			
Sub Code : 18HS42	Sub Code : 18HS42 No of Credits: 1 No. of Hrs / Week : 2		
Exam Duration: 3 Hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:	
		16	

Objectives:

- 1. To create awareness among the students about impacts of developmental and human activities on natural resources, remedial measures and life support systems viz. land, water, air etc.
- 2. It makes how to conserve natural resources for sustainable development.
- 3. To understand the importance of environmental protection and sustainable development.

Unit.	Syllabus	No of	Hours
No	·	Teaching	Tutorial
1	Introduction: Concept of environmental studies. Definition of environment, components of the environment and structure of the atmosphere. Study of different ecosystems. Human Activities And Its Effect On Environment: Agriculture, Industry, Mining, Transportation, & Urbanization.	04 hours	
2	Natural Resources: Forest Resources, Water Resources, Mineral Resources, Food Resources and Land Resources ENERGY: Definition of energy and energy resources, different types of energy-conventional and non-conventional energies (Classification only).	03 hours	
3	Environmental Pollution And Effects: Air pollution, Water pollution "water born and water induced disease", Soil pollution and Noise pollution. Current Environmental Issues Of Importance: Population Growth, Climate	03hours	
4	ENVIRONMENTAL Episodes: Episodes (Los Angeles smog, Minamata disease in Japan 1945, Bhopal (India) gas tragedy 1984) - Brief Description Legislation to control and protect the environment, about environmental awareness. Environmental Impact Assessment And Sustainable Development.	03 hours	

Text Books

- 1. Ranjit Daniels R.J. and Jagdish Kirshnaswamy, (2009), "Environmental Studies", Wiley India Private Ltd., New Delhi
- 2. Benny Joseph (2005), "Environmental Studies", Tata McGraw Hill Publishing Company Limited
- **3.** Rajagopalan R. (2005), "Environmental Studies From Crisis to Cure", Oxford University Press

References

- 1. Raman Sivakumar, (2005), "Principles of Environmental Science and Engineering", Second Edition, Thomson Learning, Singapore
- 2. Meenakshi P. (2006), "Elements of Environmental Science and Engineering", Prentice Hall of India Private Limited, New Delhi
- 3. Prakash S.M. (2007), "Environmental Studies", Elite Publishers, Mangalore
- 4. Erach Bharucha (2005), "Text Book of Environmental Studies", for UGC, Universities Press
- 5. Tyler Miller Jr. G. (2004), "Environmental Science Working with the Earth", Tenth Edition, Thomson Brooks/Cole
- 6. Tyler Miller Jr. G. (2006), "Environmental Science Working with the Earth", Eleventh Edition, Thomson Brooks/Cole

www.iitg.ernet.in>rkbc>presentation

www.nptel.org.in

http://books.google.co.in

Course Outcomes:

- **CO1.** The students will be introduced and refreshed about the ecology and ecosystem in general and understand the effect of human activities on environment.
- **CO2**. The students will be able to analyze the importance of natural resources and its protection.
- **CO3**. The students will understand the value of environment protection by studying past episode.
- **CO4**. The students will acquire the skill to adopt the suitable method for sustainable development through environmental impact assessment and rainwater harvesting.

Subject Title: EMPLOYABILITY SKILLS		
Subject Code: 18HS43	Mandatory Course	No of lecture hours per week: 2 Hrs
Exam Duration:	Exam marks: NIL	Total No. of lecture hours: 26 hrs per
Exam Duradon.		semester

COURSE OBJECTIVE:

- 1. According to the present day requirement, this unit is designed on job seeking topics, adopting a task based approach with activities and worksheets.
- 2. In this unit students will be taught to prepare project report effectively which is integral part of their academics by making use of referencing skills. And also they will be taught how to write an abstract and will be familiarized with research paper guidelines.
- 3. The unit 3 aims at preparing the student to face interviews confidently.
- 4. Under the topics like synonyms, antonyms and homophones students' vocabulary will be enhanced.
- 5. The lessons under this unit help students' to use idioms and phrases, decoding the analogies and the correct usage of collective nouns

UNIT NO	SYLLABUS CONTENT	HRS/COS
1	a. Employability Skills	8 CO1
	b. PRESENTATION SKILLS	
	c. RESUME WRITING	
	d. COVERING LETTER	
	e. E-MAIL WRITING	
2	a. PROJECT REPORT	2 CO2
	b. REFERENCING SKILLS	
	c. ABSTRACT WRITING	
	d. RESERCH PAPER GUIDELINE AND FORMAT	
3	e. INTERVIEW SKILLS	8 CO3
4	f. SYNONYMS	4 CO4
	g. ANTONYMS	
	h. HOMOPHONES	
5	i. IDIOMS & PHRASES	4CO5
	j. ANALOGY	
	k. COLLECTIVE NOUNS	

COURSE OUTCOME:

- 1. After the completion of this unit students will have learnt to make presentations both in formal and informal situations. And also will have learnt the art of resume writing.
- 2. After the completion of this unit student will have learnt how to do a project report using referencing skills. And also they will have learnt how to write abstract and will have been familiarized with research paper guidelines.
- 3. This unit will have helped student to communicate with various skills required for job interviews.
- 4. After the completion of this unit the students will have learnt the strategies of vocabulary.

5. After the completion of this unit student will have learnt to use idioms and phrases in everyday conversation.

REFERENCE:

- English Skills for Technical Students by British Council, Orient Black Swan.
- A course in Grammar and Composition by Geetha Nagaraj, Cambridge University Press India Pvt. Ltd.
- Communication Skills for Professionals by Nira Konar, PHI learning Pvt. Ltd.
- Enhancing English and Employability Skills by State Board of Technical Education.

For FOURTH Semester B.E. (Lateral Entry: Common to all branches)

Subject Title: BASIC ENGINEERING MATHEMATICS-II						
	No of lecture hours per week					
Subject Code: MADIP41	No. of Credits: 00	Total No. of lecture hours: 50				

Course objective: To develop a basic Mathematical knowledge required for higher semesters with few examples of its engineering applications.

Unit No.	Syllabus content	No. of hours
1	Partial Differential Equations: Formation of Partial differential equations (PDE) by elimination of arbitrary constants/functions. Solution of non-homogeneous PDE by direct integration. Solution of homogeneous PDE involving derivative with respect to one independent variable only. Solution of PDE by the Method of separation of variables (first and second order equations).	10
2	Vector Calculus I: Vector Differentiation: Scalar and vector point functions — Gradient, Directional derivative, Divergence, Curl, Solenoidal and Irrational vector fields. Vector identities involving Gradient, Divergence and Curl. Applications-Velocity, acceleration, conservative, Solenoidal, irrational and angular momentum fields.	10
3	Vector Calculus II: Vector Integration: Line, surface and volume integrals-simple problems, Green's theorem in a plane, Stoke's and Gauss divergence theorem (without proofs). Applications-involving simple problems of triangles, cubes, rectangular parallelepipeds and solid figures.	10
4	Functions of a Complex Variable: Review of continuity, differentiability. Definition-analytic function, Cauchy-Riemann equations in Cartesian and polar forms. Harmonic and orthogonal properties of analytic function. Construction of analytic functions.	10
5	Complex Integration: Complex line integrals, Cauchy's theorem and Cauchy's integral formula. Taylor's and Laurent's series (without proof), Singularities, poles and residues, Residue theorem (without proof). Applications- Contour integrals of the forms: $\int_{0}^{2\pi} f(\sin \theta, \cos \theta) d\theta$	10

61

Course Outcomes: After the successful completion of the course, the students are able to

CO1: analyze the basic concepts of partial differential equations and their solutions through standard methods.

CO2: use the idea of gradient, divergence, curl involved in vector fields arising in fields and wave transmission theory.

CO3: assess the practical importance of Laplace and inverse Laplace transforms and their utility in network analysis, circuit theory and convection problems.

CO4: apply logical thinking to problem-solving in context and identify an appropriate solution for various engineering streams.

CO5: use the skills in understanding Mathematical knowledge.

Course Outcomes (CO) Mapping with Programme Outcomes (PO)

CO1: PO1, PO2

CO2: PO1, PO2

CO3: PO1, PO2

CO4: PO1, PO4

CO5: PO1, PO2

TEXTBOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition), Khanna Publishers, New Delhi.
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill publications, New Delhi, 11th Reprint, 2010

REFERENCE BOOKS.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics (Latest Edition), Wiley Publishers, New Delhi.
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 4. G.F. Simmons and S.G. Krantz, Differential Equations, Tata McGraw Hill, 2007.
- 5. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc- Graw Hill, 2004.

Dr. AMBEDKAR INSTITUTE OF TECHNOLOGY BANGALORE - 56 AIDED BY GOVERNMENT OF KARNATAKA & AUTONOMUS INSTITUTION AFFILIATED TO VTU, BELGAUM,

PROPOSED SYLLABUS

For

V Semester (FOR THE ACADEMIC YEAR 2021-2022) (Batch 2019)

Department of Industrial Engineering & Management

Website: www.drait.edu.in e-mail id: principal@drait.edu.in

Dr. AMBEDKAR INSTITUTE OF TECHNOLOGY BANGALORE - 56 AIDED BY GOVERNMENT OF KARNATAKA

&

AUTONOMUS INSTITUTION AFFILIATED TO VTU, BELGAUM,

Vision

♣ To create Dynamic, Resourceful, Adept and Innovative Technical professionals to meet global challenges.

Mission

- ♣ To offer state-of-the-art undergraduate, postgraduate and doctoral programs in the fields of Engineering, Technology And Management
- ♣ To generate new knowledge by engaging faculty and students in research, development and innovation.
- ♣ To provide strong theoretical foundation to the students, supported by extensive practical training to meet the industry requirements.
- ♣ To install moral and ethical values with social and professional commitment.

Department of Industrial Engineering & Management

Objective

- > To maintain a Comprehensive curriculum that enables students to become leading engineers and creative researchers in the global marketplace.
- ➤ To collaborate with private and public sectors in the search of methodologies and creative solutions to problems that contributes to the advancement of education, technology and professional development.
- > To contribute to the profitable growth of industrial economic sectors by using IE analytical tools, effective computational approaches, and systems thinking methodologies.
- > To maintain high standards of professional and ethical responsibility.
- ➤ To provide a broad education necessary to determine the impact of engineering solutions in a global economic, environmental, a societal context.

Vision:

♣ To be globally recognized as a leader in industrial engineering education, research and enhance the application of technical knowledge to benefit the society.

Department of Industrial Engineering & Management

Faculty List:

1	Dr.N.Mohan	Professor and Head
2	Dr. S. K. Rajendra	Associate Professor
3	Dr. Rajeshwari P	Associate Professor
4	Dr. C R Mahesha	Assistant Professor
5	Mrs. Suprabha R	Assistant Professor
6	Mr. Chetan N	Assistant Professor
7	Mr. Rajesh K	Assistant Professor
8	Mrs. Sarvamangala S P	Assistant Professor

V SEMESTER												
						eachi ırs /V]	Exam	inatio	n	
Sl. No		ourse and ourse code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	T	P	nQ				
1	HS	18HS51/52	M&E / IPR (title as per BOS decision)	HS	3	1	ļ	03	50	50	100	3
2	PC	18IM51	Operations Research		3	2		03	50	50	100	4
3	PC	18IM52	Computer Integrated Manufacturing		2	2		03	50	50	100	3
4	PC	18IM53	Design of Machine Elements		3	2	1	03	50	50	100	4
5	PC	18IM54	Quality Assurance and Reliability		2	2	1	03	50	50	100	3
6	PE	18IM55X	Professional Elective -1		3			03	50	50	100	3
7	PC	18IM56X	Open Elective- A		3			03	50	50	100	3
8	PC	18IML57	Quality Engineering Laboratory			-1	2	03	50	50	100	1
9	PC	18IML58	CIM Laboratory				2	03	50	50	100	1
			Т	OTAL	19	8	4	27	450	450	900	25

Note: HS: Humanities, PC: Professional Core, MC: Mandatory Course,
Electives

Course	Professional Electives - 1
code	

18IM551	Advanced Machining Processes
18IM552	Marketing Management
18IM553	Rapid Prototyping
18IM554	Enterprise Resource Planning and e- commerce
18IM555	Data Warehousing And Mining

Course code	Open Elective -A
18IM561	Operations Research

				-		hing H /Week			Exami	nation		
Sl. No	_	ourse and ourse code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	T	P	I)	5 1	I	
1	HS	18HS61/62	M&E/IPR	HS	3			03	50	50	100	3
2	PC	18IM61	Materials Management		3			03	50	50	100	3
3	PC	18IM62	Facilities Planning and Design		2	2		04	50	50	100	3
4	PC	18IM63	Lean Manufacturing		2	2		04	50	50	100	3
5	PC	18IM64	Simulation Modelling and Analysis		2	2		04	50	50	100	3
6	PE	18IM65X	Professional Elective -2		3			03	50	50	100	3
7	OE	18IM66X	Open Elective -B		3			03	50	50	100	3
8	PC	18IML67	Simulation Laboratory				2	03	50	50	100	1
9	MP	18IMP68	Mini-project				2	03	50	50	100	2
10	INT	18IMI69	Industry Internship	(To be carried out during the intervening vacations of VI and VII semesters)								
				TOTAL	18	06	04	30	450	450	900	24

Electives					
Course code	Professional Electives - 2				
18IM651	Product Design and Development				
18IM652	Maintenance and Safety Engineering				
18IM653	Composite Materials				
18IM654	Organizational Behavior				
18IM655	Management Information System				
18IM656	Advanced Manufacturing Technology				

Course	Open Elective -B
code	
18IM661	Project Management

V Semester IEM

Sub Title: MANAGEMENT & ENTREPRENEURSHIP							
Sub Code: 18HS51/52 No. of Credits:3=3: 0: 0 (L-T-P) No. of lecture hours/week: 3							
Exam Duration : 3 hrs	CIE + Assignment + Group Activity + SEE =100 40 + 5 + 5 + 50 = 100	Total No. of Contact Hours: 39					

Course Objectives:

- 1. To impart the knowledge about the Management concepts, evolution and Management functions.
- 2. To familiarize the student on Entrepreneurship and Entrepreneurial process.
- 3. To understand the role of SSI in economic development and gain an insight of funding agencies.
- 4. To have a clear understanding of concept of project, preparation of project & its screening.

Unit No.	Syllabus Content	No of Hours
1	MANAGEMENT: Introduction- Meaning, characteristics of management,	08
	functions of Management- POSDCORB, Levels and Skills of Management,	
	Roles of Managers Management as science or an art or profession,	
	Development of management thought -Early management approaches (in	
	brief)- Psychological, Bureaucratic, Scientific and Administrative theory and	
	Human Relations Movement, Modern management approaches (in brief) -	
	Behavioral, Systems, Quantitative, and Contingency approach	
	FUNCTIONS OF MANAGEMENT- PART I:	
	PLANNING: Types of Plans: Single use & Standing plans, Steps in Planning	
	process.	
	ORGANIZING: Types of organization (Line, Staff, Line & Staff, Matrix and Committee form) Departmentation (Functional, Product, Process, Territorial and Customer), MBO and MBE.	
2	FUNCTIONS OF MANAGEMENT – PART II	12
	STAFFING: Sources of recruitment, Process of selection,	
	DIRECTING: Leadership: Definition, Leadership styles - Autocratic,	
	Democratic, Charismatic, Laissez faire and Participative, Motivation:-	
	Definition, Maslow, Herzberg & McGregor's Theory X & Y. <i>Communication</i> —	
	Definition, types, communication process and barriers of communication, CO-	
	ORDINATION: importance, CONTROLLING: steps in controlling,	
	REPORTING: importance, BUDGETTING: importance.	
	Case study discussion with respect to Indian context	

	ENTREPRENEUR : Definition & Meaning, Characteristics, types of	10
		10
	entrepreneur, Difference between Entrepreneurs, Intrapreneur & Manager,	
	Stages in Entrepreneurial process, barriers to entrepreneurs, Role of	
	Entrepreneurs in economic development.	
	Rural entrepreneurs - Meaning & schemes.	
	Women entrepreneurs – Concept, challenges, women entrepreneurship in	
	India, Institutional support & special bank scheme.	
	Family Business: Meaning, Roles & responsibility, types of family business,	
	challenges faced by family business, reasons for failure of family business.	
	Case study discussion with respect to Indian context.	
	Activity: Profile of successful entrepreneur.	
3	ENTREPRENEUR: Definition & Meaning, Characteristics, types of	12
	entrepreneurs- Imitative, Innovative, Fabian and drone and Others,	
	Intrapreneur- meaning, Difference between Entrepreneurs, Intrapreneur &	
	Manager, Stages in Entrepreneurial process, barriers to entrepreneurs, Role of	
	Entrepreneurs in economic development and Business Pan.	
	Entrepreneurs in economic development and business I an.	
	Rural entrepreneurship— Definition, challenges & opportunities.	
	Women Entrepreneurs – Definition, challenges, and Institutional support to	
	Women Entrepreneurs in India.	
	Family Business: Meaning and Definition, types of family business and	
	reasons for failure of family business.	
	Corporate Social Responsibility- Meaning, definition and benefits.	
	Corporate Social Responsibility- Meaning, definition and benefits.	
	Case study discussion with respect to Indian context.	
	Activity: Profile of successful entrepreneur and Writing Business plan	40
4	MSME: Definition of MSME (latest). SMALL SCALE INDUSTRY:	10
	Meaning, and definition, Characteristics, steps to startSSI, role of SSI in	
	economic development, problems faced by SSI. Introduction to GATT, WTO	
	&LPG, Sources of financing (brief), Forms of ownership - Sole proprietorship,	
	Hindu Undivided Family, Partnership, and Cooperative.	
	Institutional Support : <i>Central level Institutions</i> – NBMSME, KVIC, NSIC,	
	SIDBI, IIB, EDIand NABARD. State level Institutions- DIC, KSFC,	
	KIADB, TECSOK.	
	STARTUP COMPANIES-Meaning and Challenges. Make in India concept	
	and MUDRA Bank Initiative.	
	Activity for students: Schemes for startup companies.	
5	PREPARATION OF PROJECT:	
	Project- Meaning, Classification of project, Project identification, Project	
	selection, Project Appraisal, Project implementation. Project Report –Outline,	
	Feasibility Study-Financial, Technical, Marketing, and Social Feasibility Study,	
	PESTLE Analysis for Project and errors in preparation of projectreport.	
	Activity for students: Preparation of project report	

Note: Every unit will have an internal choice question for SEE.

Course Outcomes:

CO1: The students will gain domain knowledge on management concepts, evolution, management functions.

CO2: The students will be able to gain domain knowledge on Entrepreneurship, entrepreneurial process

CO3: The students will get an in depth knowledge of entrepreneurial process & contribute to the betterment of the society.

CO4: Students will be able to identify business opportunities & design a project report.

RECOMMENDED BOOKS:

- 1. Entrepreneurship and Management- S Nagendra and V S Manjunath- Pearson Publication 4 /e 2009
- 2. Principles of Management PC Tripathi, and P N Reddy Tata MacGrawHill.
- 3. Entrepreneurship Development Poornima M Charanthimath Pearson Education 2ndEdition.

- 1. Dynamics of Entrepreneurial Development and Management-Vasant Desai-Himalaya Publishing House. Latest edition.
- 1. Entrepreneurship and management Shashi k Gupta- Kalyani publishers, Latestedition.
- 2. Financial Management- Shashi k Gupta- Kalyani publishers, Latestedition.

Sub Title: Intellectual Property Rights		
Sub Code: 18HS51/52 No. of Credits: 3= 3: 0: 0 (L-T-P) No. of lecture hours/week:		
Exam Duration: 2 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

The main objective of the IPR is

- 1. To make the students aware of their rights for the protection of their invention done in their project work.
- 2. To get registration in our country and foreign countries of their invention, designs and thesis or theory written by the students during their project work and for this they must have knowledge of patents, copy right, trademarks, designs and information Technology Act.
- 3. Further teacher will have to demonstrate with products and ask the student to identify the different types of IPR's.

Unit No	Syllabus	No of Hours
1	INTRODUCTION TO IPR: Meaning of property, Origin, Nature, Meaning of Intellectual Property Rights, Introduction to TRIPS and WTO. Kinds of Intellectual property rights—Copy Right, Patent, Trade Mark, Trade Secret and trade dress, Design, Layout Design, Geographical Indication, Plant Varieties and Traditional Knowledge.	03
2	PATENT RIGHTS AND COPY RIGHTS: Origin, Meaning of Patent, Types, Inventions which are not patentable, Registration Procedure, Rights and Duties of Patentee, Assignment and license, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties. COPY RIGHT: Origin, Definition &Types of Copy Right, Registration procedure, Assignment & license, Terms of Copy Right, Piracy, Infringement, Remedies, Copy rights with special reference to software.	10
3	TRADE MARKS : Origin, Meaning & Nature of Trade Marks, Types, Registration of Trade Marks, Domain Names, Infringement & Remedies, and Offences relating to Trade Marks, Passing Off, and Penalties.	04
4	DESIGN - Meaning, Definition, Object, Registration of Design, Cancellation of Registration, International convention on design, functions of Design. Semiconductor Integrated circuits and layout design Act-2000.	05
5	BASIC TENENTS OF INFORMATION TECHNOLOGY ACT -2000-Cyber crimes, digital signature and E-Commerce.	04

Note 1:

Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2:

Two assignments are evaluated for 5 marks.

Course outcomes:

- 1. The students once they complete their academic projects, they get awareness of acquiring the patent
- 2. They also learn to have copyright for their innovative works.
- 3. They also get the knowledge of plagiarism in their innovations which can be questioned legally.

Cos	Mapping with POs
CO1	PO7
CO2	PO7, PO12
CO3	PO7, PO12

TEXT BOOKS:

- 1. Intellectual Property Rights and the Law, Gogia Law Agency, by Dr. G.B. Reddy
- 2. Law relating to Intellectual Property, Universal Law Publishing Co, by Dr. B.L.Wadehra
- 3. IPR by P. Narayanan
- 4. Law of Intellectual Property, Asian Law House, Dresser. Myneni.

Sub Title: OPERATIONS RESEARCH		
Sub Code: 18IM51 No. of Credits:4=3: 1: 0 (L-T-P) No. of lecture hours/week: 4		
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

- 1. To Define and formulate the LPP for different product types with constraints.
- 2. Application of graphical, Simplex and Big M and Duality technique.
- 3. To Define and discuss the Transportation methods to find optimum cost.
- 4. To explain and define the concepts of queuing and Game theory.
- 5. Determine the Critical path and its duration, different types of floats using PERT/CPM.

Unit No.	Syllabus Content	No of Hours
1	 INTRODUCTION: OR Methodology, Definition of OR, Application of OR to Engineering and Managerial Problems, Features of OR models, Limitation of OR. Models of OR. LINEAR PROGRAMMING, I: Definition, Mathematical formulation, Standard form, solution space, Solution – Feasible, basic feasible, Optimal, Infeasible, Multiple, Optimal, Redundancy, Degeneracy, Graphical Method. 	08
2	LINEAR PROGRAMMING II: Simplex method, variants of simplex algorithm – Artificial (Big-M method) basis techniques, Duality, Economic interpretation of Dual, Solution of LPP using duality concept, Dual simplex method. Application problems	
3	TRANSPORTATION PROBLEM: Formulation of transportation model, Basic feasible solution using different methods (North-West corner, Least Cost, Vogel's Approximation Method) Optimality Methods. Unbalanced transportation problem, Degeneracy in transportation problems, Variants in Transportation Problems, Applications of Transportation problems. ASSIGNMENT PROBLEM: Formulation of the Assignment problem, unbalanced assignment problem TRAVELING SALESMAN PROBLEM	, , ,
4	QUEUING THEORY: Queuing system and their characteristics, The M/M/I Queuing system, Steady state performance analyzing of M/M/1 queuing model. M/M/K/ Model. GAME THEORY: Formulations of games, Two persons zero sum game, games with and without saddle point, graphical solutions (2xn, mx2 game), and dominance property. Solution of game through LPP.	8+(2T)
5	PROJECT MANAGEMENT USING NETWORK ANALYSIS: Network construction, determination of critical path and duration, CPM Structured approach, Calculations of schedules and floats, PERT-Estimation of project duration and variance.	8+(2T)

Note 1:

Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2:

Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Can formulate the LPP using constraints and solve by graphical method.
- 2. Able to determine the optimum solution using Simplex method.
- 3. Can find out the optimum transportation and assignment cost.
- 4. Can identify and apply different queuing model to service and arrival pattern problems and solve the game problems by graphical method and dominance property rule.
- 5. Able to determine the Critical path and its duration using PERT/CPM.

Cos	Mapping with POs
CO1	PO1, PO2, PO3, PO4, PO5, PO12
CO2	PO1, PO2, PO3, PO4, PO5, PO11, PO12
CO3	PO1, PO2, PO3, PO4, PO5, PO11, PO12
CO4	PO1, PO2, PO3, PO4, PO5, PO7
CO5	PO1, PO2, PO3, PO4, PO5, PO7, PO10,
	PO11

TEXT BOOKS:

- **1. Operation Research and Introduction -**Taha H A, Prentice Hall of India, 6th edition, 1999
- **2. Principles of Operations Research -**Philips, Ravindran and Solberg- Theory and Practice, PHI, 2nd Edition, 2007
- 3. Operations Research -S.D. Sharma Kedarnath, Ramnath &Co, 1996

REFERENCE BOOKS:

1. Introduction to Operation Research -Hiller and Libermann, McGraw Hill 5th edn, **Operations Research Theory and Application -**J K Sharma, Pearson Education Pvt Ltd .4th Edn. 2009 ISBN-0333-92394-4

Sub Title: COMPUTER INTEGRATED MANUFACTURING			
Sub Code: 18IM52 No. of Credits:3 =2 :1: 0 (L-T-P) No. of lecture hours/week: 3			
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39	

- 1. To study on automating the system, the use of computers in design and manufacturing.
- 2. To define basic concepts of geometric modeling techniques, Design and exchange of data.
- 3. To explain modern concepts of manufacturing using NC, CNC and DNC.
- 4. To express basic concepts of programming for drilling, milling and turning operations.
- 5. To outline basic concepts of industrial robotics and its applications to industries.

Unit No.	Syllabus Content	No of Hours
1	Introduction: Automation definition, Types, Automation Strategies, organization and information processing in manufacturing. Fundamentals of CAD and CAM, product cycle and CAD/CAM, Design process, Applications of computers in design, creating the manufacturing database, Advantages & Disadvantages of CAD and CAM.	9
2	Introduction to computer graphics: Color CRT raster scan monitors, computer input devices, hard copy devices. Software Configuration of a Graphics System, Functions of a Graphics Package, Construction of Geometry, Wire-Frame, Surface and Solid Modeling. Desirable modeling facilities. Geometric 2D and 3D transformations.	9
3	Numerical control machines: Introduction- basic components of an NC system-the NC procedure- NC coordinate system, NC motion control system, Applications of NC System, Advantages and limitations of NC Machines. Computer controls in NC: Problems with conventional NC, CNC system, Functions and advantages of CNC System. Components of DNC system, Functions and advantages of DNC System. Computerized Manufacturing Planning System: Computer Aided Process Planning, retrieval types, Generative type. Group Technology: Part families, part classification and coding, cellular manufacturing, Applications of GT.	13
4	CNC Programming: Manual part programming, Methods, Preparatory Functions, Miscellaneous Functions, Program Number, Tool Length Compensation, Canned Cycles, Cutter Radius Compensation, Drilling and milling exercises. Turning Center programming: Axes System, General Programming Functions, Motion Commands, Exercises. CNC Machine Tools: Overview of CNC machining centers, CNC turning centers Tool presetting, ATC.	14
5	Introduction to Robotics: Introduction, Robot configuration, Robot	7

motions, End effectors, Robot Sensors, Robot applications. Programming the robots, Robot-Programming Languages.

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. <u>Note 2:</u> Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Summarize the role of CAD/CAM in modern design and manufacturing
- 2. Create and analyze the capabilities of Computer Aided Designing Systems for designing mechanical parts and elements in 2D and 3D dimensions.
- 3. Compare and distinguish between the modern concepts of manufacturing using NC, CNC and DNC.
- 4. Compile and illustrate manual part program to carryout drilling, milling, and turning operations on CNC machine tools.
- 5. To demonstrate the concepts of industrial robotics and its applications to industries

TEXT BOOKS:

- 1. Mikel P. Groover and Emory W. Zimmers CAD/CAM, Jr Pearson Education Inc, 2017.
- 2. P.N. Rao CAD/CAM Principles and Applications, TMH, New Delhi 2017.

- 1. Newman and Sproull **Principles of Interactive Computer Graphics**, Tata McGraw Hill, 1995.
- 2. Ibrahim Zeid CAD/CAM, Tata McGraw Hill, 2016.
- 3. P. N. Rao, N. K. Tewari and T. K. Kundra **Computer Aided Manufacturing**, Tata McGraw Hill, 2016.

Cos	Mapping with POs
CO1	PO5, PO6, PO7
CO2	PO3, PO4, PO5
CO3	PO3, PO5
CO4	PO3, PO5, PO6, PO7
CO5	PO3, PO5, PO6, PO7

Sub Title: DESIGN OF MACHINE ELEMENTS		
Sub Code: 18IM53 No. of Credits:4=3: 1: 0 (L-T-P) No. of lecture hours/week: 4		
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

- 1. Explain the basic components of machinery.
- 2. Select and size the components and achieve design goals in the construction of mechanical systems
- 3. Choose the design parameters from Data Hand book to solve the design issues.
- 4. Define the design issues in various engineering components.
- 5. Determine the stress developed due to various types of loads.

Unit	Syllabus Content	No of
No.		Hours
1	Design for Static Strength : static loads, static strength and factor of safety. Theories of failure: Maximum Normal Stress Theory, Maximum Shear	9+7(T)
	Stress Theory, Distortion energy theory. Failure of Brittle & Ductile	
	materials. Stress concentration. Determination of stress concentration factor.	
2	Design for Fatigue Strength : Fatigue strength, S-N Diagram, low cycle and high cycle fatigue. Endurance limit. Modifying factors: Load, Size and Surface finish effects. Fatigue stress concentration factor. Combined study and Fluctuating stresses. Goodman and Soderberg Relationship. Stresses due to combined loading.	7+4(T)
3	Design of Springs: Types of springs, stresses in coiled springs of circular and non-circular cross sections, tension and compression springs, stresses in leaf springs.	7+4(T)
4	Design of Mechanical joints: Types of riveted joints, rivet materials, failures of riveted joints (Problems on longitudinal joint only). Types of welded joints, Strength of butt and fillet welds, Eccentrically loaded welds, Design of cotter and knuckle joints.	9+6(T)
5	Design of Gears: Design of spur gear, Lewis equation, form factor, stresses in gear tooth, dynamic and wear load.	7+5(T)

Note 1:

Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2:

Two assignments are evaluated for 5 marks.

Outcome:

By the end of the course students will be able to

1. Illustrate how the static and dynamic strength parameters affect the material and to know the concepts of factor of safety.

- 2. Conduct a failure analysis for the design of mechanical components subjected to cyclic load
- 3. Calculate the stress distribution for axial, shear forces and bending moments and torques in spring and joints using the "strength of materials" approach.
- 4. Explain the gear type and design the spur gear

Cos	Mapping with POs
CO1	PO1, PO3, PO4, PO9
CO2	PO1, PO3, PO4, PO9
CO3	PO1, PO3, PO4, PO9
CO4	PO1, PO3, PO9

TEXT BOOKS:

- Joseph Edward Shigley Mechanical Engineering Design, Tata McGraw Hill, New Delhi, 1986.
- 2. VL. Maleev and Hartman **Machine Design**, CBS Publishers and Distributors, Delhi, 1983.
- 3. V. B. Bahandari **Design of Machine Elements**, Tata McGraw Hill, New Delhi, 2000.
- 4. C.S Sharma and Kamlesh purohit- Design of machine Elements, PHI learning Eastern economy edition.2009

- 1. Robert. L. Norton Machine Design, Pearson Education Asia, New Delhi, 2001.
- 2. Hall, Holowinko, Laughlin Theory and Problems of Machine Design, Schaums Outline Series, 2002.
- 3. N. C. Pandey and C. S. Shah Elements of Machine Design, 2002 Chorotar Publishing house.

Sub Title: QUALITY ASSURANCE AND RELIABILITY		
Sub Code: 18IM54 No. of Credits:3=2:1: 0 (L-T-P) No. of lecture hours/week		No. of lecture hours/week: 4
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

- 1. To explain and define the basic concepts of Quality, Quality Assurance and discuss the ISO series.
- 2. To introduce the Statistical process control and process capability.
- 3. Application of control charts for variables and attributes.
- 4. To determine the customer's and producer's risk using sampling distribution.
- 5. To explain and define the concepts of failure models and reliability of the system.

Unit	Syllabus Content	No of
No.		Hours
1	INTRODUCTION: Definition of Quality, Quality function, Dimensions of	08
	Quality, Quality Engineering terminology, Brief history of quality	
	methodology, Statistical methods for quality improvement, Quality costs –	
	four categories costs and hidden costs. Brief discussion on sporadic and	
	chronic quality problems. Introduction to Seven QC tools.	
	QUALITY ASSURANCE: Definition and concept of quality assurance,	
	departmental assurance activities. Quality audit concept, audit approach etc.	
	structuring the audit program, planning and performing audit activities, audit	
	reporting, ingredients of a quality program. ISO Series.(BIS standards/ISO	
	9000 series standards)	
2	STATISTICAL PROCESS CONTROL: Introduction to statistical	12+(3T)
	process control – chance and assignable causes variation. Basic principles of	121(31)
	control charts, choice of control limits, sample size and sampling frequency,	
	rational subgroups. Analysis of patterns of control charts. Case Studies on	
	application of SPC. Process capability – Basic definition, standardized	
	formula, relation to product tolerance and six sigma concept of process	
	capability.	
	CONTROL CHARTS FOR VARIABLES: Control charts for X bar and	
	Range, Statistical basis of the charts, Development and use of X bar R charts,	
	Interpretation of charts for X bar and Standard Deviation (S), Development	
	and use of X bar S control charts with Variable sample size, Control charts	
	<u>*</u>	
	for individual measurements, cumulative-sum chart, moving-range charts.	

3	CONTROL CHARTS FOR ATTRIBUTES: Controls chart for fraction non- conforming (defectives) development and operation of control chart, brief discussion on variable sample size. Control chart for non-conformities (defects) – development and operation of control chart for constant sample size and variable sample size. Choice between variables and attributes control charts. Guidelines for implementing control charts.	08
4	SAMPLING INSPECTION: Concept of accepting sampling, economics of inspection, Acceptance plans – single, double and multiple sampling. Operating characteristic curves – construction and use. Determinations of average outgoing quality, average outgoing quality level, average total inspection, producer risk and consumer risk. USE OF PUBLISHED SAMPLING PLANS: Gauge Repeatability & Reproducibility & Measurement system analysis.	12+(3T)
5	RELIABILITY AND LIFE TESTING: Failure models of components, definition of reliability, MTTF, MTBF, MTTR, Failure rate, common failure rate curve, types of failure, reliability evaluation in simple cases of exponential failures in series, paralleled and series-parallel device configurations, Redundancy and improvement factors evaluations.	06

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. <u>Note 2:</u> Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Able to identify the Quality products using dimensions of quality and be Aware of Quality Assurance and relate the ISO series
- 2. Can determine six sigma and process capability and construct control charts for variables.
- 3. Can determine control limits and construct control charts for attributes.
- 4. Can evaluate the acceptance criteria using sampling distribution.
- 5. Can Explain and evaluate the failure models and reliability of the system.

Cos	Mapping with POs
CO1	PO3, PO5, PO6, PO7, PO8, PO9, PO12
CO2	PO1, PO2, PO3, PO5, PO8, PO9, PO12
CO3	PO1, PO2, PO3, PO5, PO8, PO9, PO12
CO4	PO1, PO2, PO3, PO5, PO8, PO9, PO12
CO5	PO1, PO2, PO3, PO5, PO8, PO9, PO12

TEXT BOOKS

Introduction to statistical Quality Control - D C Montgomery 3rd Edition, John Wiley and Sons.

Statistical Quality Control - Grant and Leavenworth, McGraw Hill, 6th Edition

- 1. **The QS9000 Documentation Toolkit** -Janet L Novak and Kathleen C Bosheers," Prenctice Hall PTR, 2nd Edition
- 2. **ISO 9000 a Manual for Total Quality Management** Suresh Dalela and Saurabh, S Chand and Co. 1st Edition
- 3. **Total Quality Management** NVR Naidu, KM Babu and G. Rajendra New Age International Pvt. Ltd 2006
- 4. **Quality Planning & Analysis** J M Juran, Frank M Gryna; Tata McGraw Hill, 3rd edition

Professional Elective - I

Sub Title: ADVANCED MACHINING PROCESSES		
Sub Code: 18IM551	No. of Credits:3 =3: 0: 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hours	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Course objectives:

- 1. Explain the basic concepts of Advanced Machining Process.
- 2. Determine the factors influencing process parameters and their performance and applications.

Unit	Syllabus Content	No of
No.		Hours
1.	INTRODUCTION TO ADVANCED MACHINING PROCESS- Introduction to advanced machining, need for advanced machining process, Comparison between traditional and non-traditional machining, general classification of advanced machining processes, classification based on nature of energy employed in machining, selection of advanced machining processes, Specific advantages, limitations and applications of non-traditional machining processes.	04
2	ULTRASONIC MACHINIG PROCESS, ABRASIVE JET MACHINING PROCESS AND WATER JET MACHINING (WJM): Ultrasonic Machining Process: Working Principles — equipment used and operations of Ultrasonic Machining, -USM Process Parameters-Amplitude and frequency and vibration, Effect of grain diameter, Effect of applied static load, Effect of slurry and tool and work material Applications, Advantages and Limitations of USM Abrasive Jet Machining Process: AJM Variables and accuracy- carrier Gas Type of abrasive, Size of abrasive grain, velocity of the abrasive jet, Mean No. abrasive particles per unit volume of the carrier gas, Work material, standoff distance (SOD), shape of cut & surface finish, Nozzle wear, accuracy & surface finish. Applications, advantages & Limitations of AJM. Water Jet Machining (WJM): Equipment & process, Operation, applications, advantages and limitations of WJM	12
3	ELECTRIC DISCHARGE MACHINING PROCESS (EDM)- Introduction, mechanism of metal removal, EDM equipment, dielectric medium- its functions & desirable Properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM.	06
4	ELCETRO CHEMICAL AND CHEMICAL MACHINING PROCESS: Introduction, Principle of electro chemical machining: ECM equipment, elements of ECM operation, Chemistry of ECM. Electrolytes functions and properties – MRR, accuracy, surface finish and Process Parameters.	12

	Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM) Elements of the process: Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process.	
5	LASER BEAM MACHINING (LBM), ELECTRON BEAM MACHINING (EBM) AND PLASMA ARC MACHINING (PAM) Introduction, Principle, equipment and mechanism of metal removal, applications, advantages and limitations. Hybrid Manufacturing Process and Additive Manufacturing Process (Introduction aspects only)	05

Outcome:

- 1. Explain the modern manufacturing process and define the concepts of non-conventional machining process.
- 2. Describe the working principle, process parameters and variables in mechanical energy-based machining process.
- 3. Define the concepts of electrical energy-based metal removal process.
- 4. Illustrate the process of chemical and electro chemical machining.
- 5. Explain the machining process of thermal energy-based machine tools.

Note 1:

Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2:

Two assignments are evaluated for 5 marks.

Cos	Mapping with POs
CO1	PO1, P03, PO8, P10, P11.
CO2	PO1, P03, PO5, PO8, P10, P11.
CO3	PO2, PO5, PO10, P11.
CO4	PO1, P03, PO8, P10, P11.
CO5	PO1, P03, PO5, PO8, P10, P11.

TEXT BOOKS:

- 1. Modern machining process PANDEY AND SHAH, TATA Mc Graw Hill 2000.
- 2. New technology BHATTACHARAYA 2000

- 1. **Production Technology**, by HMT TATA McGraw Hill 2001.
- 2. Modern Machining Process ADITYAN 2002.
- 3. **Thermal Metal cutting processes** B G Ranganath I K International Publishing house Pvt. Ltd.
- 4. **Fundamentals of Machining and Machine Tools** R.K.Singal I K International Publishing house Pvt Ltd,
- 5. Wohlers Report 2001-Terry Wohlers, Wohlers Associates, 2008.

Sub Title: MARKETING MANAGEMENT		
Sub Code: 18IM552	No. of Credits:3=3: 0: 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. To understand the concepts of marketing management.
- 2. To comprehend marketing decisions, based upon the combination of product, price, promotion, and distribution elements.
- 3. Identify the roles of advertising, sales promotion, public relations, personal selling
- 4. To understand fundamental premise underlying advertising and sales promotion

Unit No.	Syllabus Content	No of Hours
	INTRODUCTION TO MARKETING	08
1	Introduction, Definitions of market and marketing, Selling Vs marketing, The	Uð
	Exchange Process, Elements of Marketing Concept, Functions of Marketing, Old	
	Concept or Product oriented Concept, New or Modern or Customer- oriented	
	Concept, Marketing Myopia, Marketing Environment analysis, (Micro and Macro),	
	Marketing in the 21st century opportunities, challenges & Ethics.	
	BUYER BEHAVIOUR ANALYSIS	
	Meaning and Characteristics, Importance, Factors Influencing Consumer Behaviour,	
	Consumer Purchase Decision Process, Buying Roles, Buying Motives. The black	
	box model of consumer behaviour. B2B marketing Vs Consumer	
	Marketing	
2	MARKET SEGMENTATION, TARGETING & POSITIONING (STP):	08
	Concept of Market Segmentation, Benefits, Requisites of Effective Segmentation,	
	Bases for Segmenting Consumer Markets, Market Segmentation Strategies.	
	Targeting - Bases for identifying target Customer target Marketing strategies,	
	Positioning - Meaning, Product Differentiation Strategies, Tasks involved in	
	Positioning. Branding - Concept of Branding, Types, Brand Equity, Branding	
	strategies.	
	Managing the Product:	
	Pricing decisions, Marketing Channels, Promotion Strategy, Sales Promotion:	
	Marketing	
	Planning, Case Study on "Facebook", Marketing Management Concept, product	
	hierarchy, product line, product mix, product mix strategies,	
3	PRODUCT PLANNING AND DEVELOPMENT: Product life cycle and its	07
	strategies, New Product Development, packing as a marketing tool, Role of labeling	
	in packing.	
	Services Marketing & its Characteristics	
	INTRODUCTION TO E-MARKETING: Landscape – Past – Today – Future –	
	Internet Marketing Paradigm, Internet Infrastructure Stack Business Models &	
	Strategies: Strategic Planning, Strategy to Electronic Planning, Strategic Drivers of	
	the Internet Economy, Business Models to E-Business Models.	

4	BRANDING: Branding, Reasons for branding, functions of branding, features and types of brands, kinds of brand name. LABELLING: Types, functions, advantages and disadvantages	10
	PACKAGING: Meaning, growth of packaging, function of packaging, kinds of	
	packaging. PRICING: Importance of Price, pricing objectives, factors affecting pricing decisions, procedure for price determination, kinds of pricing, pricing strategies and decisions.	
	DISTRIBUTION: Marketing channels – functions, types of channels of distribution, number of channel levels. Physical distribution – importance, total systems concept, strategy, use of physical distribution.	
5	ADVERTISING AND SALES PROMOTION: Objectives of advertisement function of advertising, classification of advertisement copy, advertisement media – kinds of media, advantages of advertising. Objectives of sales promotion, advantages sales promotion. PERSONAL SELLING: Objectives of personal selling, establishing the Sales force objectives, sales – force strategy, sales force structure and size, salesmanship, qualities of good salesman, types of salesman, major steps in effective selling.	

Note 1:

Each unit has internal choice. Total of 10 questions i.e. 2 full questions from each unit.

Note 2:

- Assignments are evaluated for 5 marks comprising of the following:
- Analyze Product Life Cycle of few Products like-Electronic goods, Computers etc
- Study Packaging strategies used by FMCG companies
- Understand Marketing strategies, plans used by automobile, cosmetic, FMCG companies
- Marketing Games and quiz for Students

.Outcomes:

- 1. Develop an ability to assess the impact of the environment on marketing function.
- 2. To use the STP model in marketing to analyze the product, its price.
- 3. Identify and analyze the strategic elements of product development processes
- 4. Understand the role of packaging, labeling, pricing and distribution in the brand-building process
- 5. Understand the effectiveness of advertising and sales promotion.

Cos	Mapping with POs
CO1	PO1,PO5
CO2	PO1,PO2, PO5,PO6, PO7,PO9,
	PO10,PO12
CO3	PO3,PO5, PO6, PO7, PO8, PO9,
	PO10,PO11, PO12.
CO4	PO3, PO5, PO6, PO7, PO8, PO9,
	PO10,PO11, PO12.

TEXT BOOKS:

- 1. Principles of Marketing Philip Kotler, Prentice Hall. 11th Edn.
- 2. Marketing Management Philip Kotler, Prentice Hall. 12th Edn.
- 3. Marketing Management: A South Asian Perspective–Kotler, Keller, Koshy & Jha, 14/e, Pearson Education, 2012.
- 4. Marketing- Lamb, Hair, Mc Danniel, 7/e, Cengage Learning 2012.
- 5. Marketing Management, Tapan Panda, 2/e, Excel Publication
- 6. Marketing Management An Indian perspective Prof. Vijay Prakash Anand

- 1. Fundamentals of Marketing Wiliam J Stanton, McGraw Hill, 1994
- 2. Marketing Management S.A Sherlaker", 1999.
- Rajagopal, Marketing Management Text& Cases Vikas Publishing House, ISBN 81-2590773-4

Sub Title: RAPID PROTOTYPING			
Sub Code: 18IM553 No. of Credits:3=3: 0: 0 (L-T-P) No. of lecture hours/week: 3			
Exam Duration: 3 hours	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39	

Course objectives:

- 1. To understand the concept of Rapid Prototyping and its applications.
- 2. To comprehend various RP machining techniques and its applications.
- 3. To understand the different Rapid tooling.
- 4. To learn more about RP software and RP process optimization.

UNIT	Syllabus Content	No of
No		Hours
1	Introduction: Need for the compression in product development, history of RP systems, Survey of applications, Growth of RP industry, and classification of RP systems. Stereo Lithography Systems: Principle, Process parameter, Process details, Data preparation, data files and machine details, Application.	08
2	Selective Laser Sintering: Type of machine, Principle of operation, process parameters, Data preparation for SLS, Applications. Fusion Deposition Modelling: Principle, Process parameter, Path generation, Applications	08
3	Solid Ground Curing: Principle of operation, Machine details, Applications. Laminated Object Manufacturing: Principle of operation, LOM materials. Process details, applications. Concepts Modelers: Principle, Thermal jet printer, Sander's model market, 3-D printer. Genisys Xs printer HP system 5.	08
4	Rapid Tooling: Indirect Rapid tooling, Silicon rubber tooling, Aluminium filled epoxy tooling, Spray metal tooling, Cast kirksite, 3Q keltool, etc. Rapid Tooling: Quick cast process, Copper polyamide, Rapid Tool, DMILS, Prometal, Sand casting tooling, Laminate tooling soft Tooling vs. hard tooling	10
5	Software For RP: STL files, Overview of Solid view, magics, Gimmicks, magic communicator, etc. Internet based software, Collaboration tools. Rapid Manufacturing Process Optimization: factors influencing accuracy. Data preparation errors, Part building errors, Error in finishing, influence of build orientation	05

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. <u>Note 2:</u> Two assignments are evaluated for 5 marks.

Course Outcomes: By the end of the course students will be able to

- 1. Understand the Rapid Prototyping system, its applications and growth.
- 2. Analyse the Selective Laser Sintering and Fusion Deposition modelling technique and applications.
- 3. Learn the concepts of Solid Ground Curing, Laminated Object Manufacturing and the Concepts Modelers.
- 4. Explain the different Rapid tooling types.
- 5. Appreciate the rapid prototyping software and Rapid Manufacturing Process Optimization.

Cos	Mapping with POs
CO1	PO2, PO3, PO5, PO6, PO7, PO9, PO12
CO2	PO1, PO2, PO3, PO6, PO7, PO9, PO12
CO3	PO1, PO2, PO3, PO6, PO7, PO9, PO12
CO4	PO4, PO5, PO7, PO8, PO9, PO10, PO12
CO5	PO4, PO5, PO7, PO8, PO9, PO10, PO12

TEXT BOOK:

- 1. Stereo Lithography and other RP & M Technologies, Paul F. Jacobs: SME, NY 1996.
- 2. Rapid Manufacturing, Flham D.T & Dinjoy S.S Verlog London 2001.

REFERENCE BOOKS / WEBLINKS:

- 1. Rapid Prototyping, Terry Wohlers Wohler's Report 2000" Wohler's Association 2000.
- 2. Rapid Prototyping Materials, Gurumurthi, IISc Bangalore.
- 3. Rapid Automated, Lament wood. Indus press New York

Sub Title: ENTERPRISE RESOURCE PLANNING AND E-COMMERCE			
Sub Code: 18IM554 No. of Credits: 3= 3: 0: 0 (L-T-P) No. of lecture hours/week: 3			
Exam Duration: 3hr	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39	

- 1. Review the transition from MRP to ERP; identify the levels of ERP maturity.
- 2. Appraise how ERP is used to integrate business processes; define and analyze a process; create a process map and improve and/or simplify the process; apply the result to an ERP implementation.
- 3. Identify the elements of a value chain, and explain how core processes relate; identify how the organizational infrastructure supports core business processes.

Unit	Syllabus	No of
No		Hours
1	Enterprise—An Overview: Introduction, Business Functions and Business	7
	Processes, Integrated Management Information, Role of Enterprise in	
	Implementing the ERP System, Business modeling, Integrated Data	
	Model.	
	Introduction To ERP: Introduction, Common ERP Myths, A Brief	
	History of ERP, Advantages of ERP, Reasons for the growth of the ERP	
	market, Problems in ERP Implementation, Roadmap for successful ERP	
	implementation.	
2	ERP and Related Technologies: Introduction, Business Process	8
	Reengineering, Data Warehousing, Data Mining, On-line Analytical	
	Processing, Product Life Cycle Management, Supply Chain Management,	
	Customer Relationship Management, Geographical Information Systems,	
	Intranet and Extranets, Advanced technology and ERP security,	
	Middleware, Computer Crimes, Security and ERP, Crime and Security.	
	ERP Modules: Introduction, Finance Management, Manufacturing	
	Management, Marketing and Sales Distribution, Materials and Supply	
	Chain Modules, Plant Maintenance, Quality Management, Human	
	Resource.	

3	ERP Implementation Life Cycle: Pre-evaluations Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation of Team Training, Testing, Going Live, End user Training, Post implementation. Vendor, Consultants and Users: Introduction, In-house implementation — Pros and Cons, Vendors, Consultants, End-users. Future Direction in ERP: Introduction, New Markets, New Channels, Faster Implementation Methodologies, Easier Customization Tools, Business models and BAPIs, Application Platforms, New business segments, Need based applications, Reduction in Implementation Time, Open Source, Web enabled and Wireless Technologies, Enterprise Application Integration, Market Snapshot, Shifting Revenue Models, The SOA Factor.	10
4	History of E-Commerce and Indian Business Context: Worldwide Ecommerce Growth, Early Business Information Interchange Efforts, Emergence of Internet, Advantages and disadvantages of E-commerce, Transition to E-commerce in India, Ecommerce opportunities for industries, E-transition challenges for Indian corporate, The Information Technology Act 2000. Business Models for E-Commerce: The Birth of Portals, E-business Models based on the relationship of Transaction Parties: B2C, B2B, C2C, C2B, E-business Models based on the relationship of Transaction Types	8
5	Advances in E-Commerce: Enabling Technologies of the World Wide Web, E-marketing, E-security, E-payment systems, E-CRM, E-SCM, EStrategy, Mobile commerce.	6

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes: After the successful completion of the course, the students will be able to

Demonstrate the core interactions and dependencies that exist between the key functions of a business.

Appraise the role of information systems in the support of business functions and, particularly, cross-functional business processes

Explain the way Enterprise planning Systems have developed, their functional capabilities and the role of the underpinning technologies

Demonstrate an Determining of the foundations and importance of E-commerce Analyze the impact of E-commerce on business models and strategy

Cos	Mapping with POs
CO1	PO1, PO2, PO3, PO4, PO6, PO9
CO2	PO1, PO2, PO3, PO4, PO6, PO8
CO3	PO1, PO2, PO3, PO4, PO6, PO8, PO9

CO4	PO2, PO3, PO4, PO6, PO9
CO5	PO2, PO3, PO4, PO6, PO9

TEXT BOOKS:

- 1. Alexis Leon, "Enterprise Resource Planning", 2nd Edition, Tata McGraw Hill Publishing Company Ltd., 2010, ISBN: 978-0-07-065680-2
- 2. P. T. Joseph, S.J., "E-Commerce An Indian Perspective", 2nd Edition, PHI, 2005, ISBN-81203-2788-8
- 3. Ravi Shankar and S. Jaiswal, "Enterprise Resource Planning", Galgotia Publication Pvt. Ltd., 1999, 1st Edition
- 4. Thomas Volloman, etal, "Manufacturing Planning & Controls", Iwrin / McGraw hill, 1997

Sub Title: DATA WAREHOUSING AND MINING			
Sub Code: 18IM555 No. of Credits: 3= 3: 0: 0 (L-T-P) No. of lecture hours/week: 3			
Exam Duration: $3hr$ CIE + SEE = $50 + 50 = 100$ Total No. of Contact		Total No. of Contact Hours: 39	

- 1. To analyse the organization's business, and its requirements using current and historical data.
- 2. To understand the various concepts needed to design and develop a data warehouse.
- 3. To apply data mining and other tools for identifying pattern in large data sets.

Unit	Syllabus	No of
No		Hours
1	OVERVIEW AND CONCEPTS: Need for Data Warehousing, Basic Elements of	7
	Data Warehousing, Trends in Data Warehousing.	
	PLANNING AND REQUIREMENTS: Project planning and management,	
	collecting the requirements.	
2	ARCHITECTURE AND INFRASTRUCTURE: Architectural components,	10
	Infrastructure and metadata.	
	DATA DESIGN AND DATA REPRESENTATION: Principles of dimensional	
	modelling. Dimensional modelling advanced topics, data extraction, transformation	
	and loading, data quality.	
3	INFORMATION ACCESS AND DELIVERY: Matching information to classes of	7
	users, OLAP in data warehouse, Data warehousing and web.	
	IMPLEMENTATION AND MAINTENANCE Physical design process, data	
	warehouse deployment, growth and maintenance.	
4	MINING INTRODUCTION: Basics of data mining, related concepts, Data mining	9
	techniques.	
	DATA MINING ALGORITHMS: Classification, Clustering.	
	DATA MINING ALGORITHMS: Association rules.	
5	KNOWLEDGE DISCOVERY: KDD process.	6
	WEB MINING Web content mining, Web structure mining and Web usage mining.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes: After the successful completion of the course, the students will be able to

After going through this course the student will be able to

CO1: Explain different methods of preprocessing data.

CO2: Design and implement a simple data warehouse.

CO3: Develop simple data cubes for online analytical processing.

CO4: Evaluate data mining tools for various engineering applications.

Cos Mapping with POs	
----------------------	--

CO1	PO1, PO2, PO 3, PO 4, PO 5
CO2	PO 2, PO 3, PO 4, PO 5
CO3	PO 2, PO 3, PO 4, PO 5, PO 6
CO4	PO 2, PO 4, PO 5, PO 6, PO 11

TEXT BOOKS:

- 1. Data Warehousing Fundamentals Paulraj Ponnian, John Wiley.- 1 st edition
- 2. Data Mining Introductory and advanced Topics M.H. Dunham Pearson education 2002.
- 3. Data mining concepts and techniques Han, Kamber 2nd edition

- 1. The Data Warehouse Lifecycle Toolkit Ralph Kimball, John Wiley 2nd edition.
- 2. Mastering Data Mining M Barry and G. Linoff John Wiley 1st edition.
- 3. Building the Data warehouses W. H. Inmon, Wiley Dreamtech 1 st edition.
- 4. The Data Warehouse Toolkit R. Kimball John Wiley 2nd edition.
- 5. Decision Support and Data warehouse systems E.G. Mallach TMH.- 2000.

OPEN ELECTIVE- A

Sub Title : OPER	ATIONS RESEARCH	
Sub Code: 18IM561	No. of Credits:3=3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Objectives:

- 6. To Define and formulate the LPP for different product types with constraints.
- 7. Application of graphical, Simplex and Big M and Duality technique.
- 8. To Define and discuss the Transportation methods to find optimum cost.
- 9. To explain and define the concepts of queuing and Game theory.
- 10. Determine the Critical path and its duration, different types of floats using PERT/CPM.

Unit	Syllabus Content	No of
No.		Hours
1	INTRODUCTION: OR Methodology, Definition of OR, Application of OR to Engineering and Managerial Problems, Features of OR models, Limitation of OR. Models of OR.	08
	LINEAR PROGRAMMING I: Definition, Mathematical formulation, Standard form, solution space, Solution – Feasible, basic feasible, Optimal, Infeasible, Multiple, Optimal, Redundancy, Degeneracy, Graphical Method.	
2	LINEAR PROGRAMMING II: Simplex method, variants of simplex algorithm – Artificial (Big-M method) basis techniques, Duality, Economic interpretation of Dual, Solution of LPP using duality concept, Dual simplex method. Application problems	10+(2T)
3	TRANSPORTATION PROBLEM: Formulation of transportation model, Basic feasible solution using different methods (North-West corner, Least Cost, Vogel's Approximation Method) Optimality Methods. Unbalanced transportation problem, Degeneracy in transportation problems, Variants in Transportation Problems, Applications of Transportation problems. ASSIGNMENT PROBLEM: Formulation of the Assignment problem, unbalanced assignment problem TRANELING SALESMAN PROBLEM	10+(2T)
	TRAVELING SALESMAN PROBLEM	
4	QUEUING THEORY: Queuing system and their characteristics, The M/M/I Queuing system, Steady state performance analyzing of M/M/1 queuing model. M/M/K/ Model.	8+(2T)
	GAME THEORY: Formulations of games, Two persons zero sum game, games with and without saddle point, graphical solutions (2xn, mx2 game), and dominance property. Solution of game through LPP.	
5	PROJECT MANAGEMENT USING NETWORK ANALYSIS: Network	8+(2T)
	construction, determination of critical path and duration, CPM Structured approach, Calculations of schedules and floats, PERT-Estimation of project duration and variance.	. ,

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. <u>Note 2:</u> Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Can formulate the LPP using constraints and solve by graphical method.
- 2. Able to determine the optimum solution using Simplex method.
- 3. Can find out the optimum transportation and assignment cost.
- 4. Can identify and apply different queuing model to service and arrival pattern problems and solve the game problems by graphical method and dominance property rule.
- 5. Able to determine the Critical path and its duration using PERT/CPM.

Cos	Mapping with POs
CO1	PO1,PO2,PO3,PO4,PO5,PO12
CO2	PO1,PO2,PO3,PO4,PO5,PO11,PO12
CO3	PO1,PO2,PO3,PO4,PO5,PO11,PO12
CO4	PO1,PO2,PO3,PO4,PO5,PO7
CO5	PO1,PO2,PO3,PO4,PO5,PO7,PO10,PO11

TEXT BOOKS:

- **1. Operation Research and Introduction -**Taha H A, Prentice Hall of India, 6th edition, 1999
- **2. Principles of Operations Research -**Philips, Ravindran and Soleberg- Theory and Practice, PHI, 2nd Edition, 2007
- 3. Operations Research -S.D. Sharma Kedarnath, Ramnath &Co, 1996

- 1. Introduction to Operation Research -Hiller and Libermann, McGraw Hill 5th edn,
- **2. Operations Research Theory and Application -**J K Sharma, Pearson Education Pvt Ltd ,4th Edn, 2009 ISBN-0333-92394-4

Sub Title: QUALITY ENGINEERING LAB		
Sub Code: 18IML57 No. of Credits:1 =1:0:0 (L-T-P) No. of lecture hours/week: 3		
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 12

- 1. To Explain and apply the basic fundamental concepts of Statistics to engineering problems.
- 2. Application of probability distributions to various manufacturing problems.
- 3. Application of hypothesis to random experiments of manufacturing processes.
- 4. To test the statistical parameters by regression and correlation.
- 5. To construct the Variable and attribute type of control charts.
- 6. To test the goodness of fit for various quality characteristics using different distribution.

Unit No.	Syllabus Content	No of Hours
1	i).To test the Goodness of fit for the given quality characteristic using Normal distribution ii).To test the Goodness of fit for the given quality characteristic using Poisson distribution iii).,To test the Goodness of fit for the given quality characteristic using Binomial distribution iv).To test the Goodness of fit for the given quality characteristic using Uniform distribution v).Conduction of Repeatability and Reproducibility studies for appraiser and instrument using R&R Software vi).Assessing Process Capability of the given manufacturing process using Normal Probability paper method and process capability indices vii).Assessing Process Capability of the given manufacturing process using Digital Motorized multifunctional Height Gauge and SQC Display unit	18
2	 i) Experiments on Application of 7 QC Tools as applied to Manufacturing and Service Operations. ii).Construction of control chart for variable quality characteristic using Digital Motorized Multifunctional Height Gauge iii).Construction of control chart for attribute quality characteristic iv).Construction of control charts using Systat Software v) Attribute sampling Plans – Single, Double and Multiple sampling plans. vi)Experiments on correlation and Simple linear regressions vii).Experiments on multiple linear regressions 	18

Outcomes:

- 1. Able to identify type of probability distribution and solve the various manufacturing problems.
- 2. Able to test the hypothesis and give inference to random experiments.
- 3. Can make use or test the statistical parameters by estimation.
- 4. Able to apply 7 QC tools

Cos	Mapping with POs
CO1	PO1,PO2,PO3,PO4,PO12
CO2	PO1,PO2,PO3,PO4,PO5,PO6,PO7,PO10,PO12
CO3	PO1,PO2,PO3,PO4,PO12
CO4	PO1,PO2,PO3,PO4,PO5,PO12

Scheme of Examination:

ONE question from Unit -1:20 marks ONE question from Unit -2:20 marks Viva-Voce: 10 marks.

Reference Books:

1. Introduction to statistical Quality Control D C Montgomery - 3rd Edition, John Wiley and Sons.

2. Quality Planning & Analysis- J M Juran, Frank M Gryna; Tata McGraw Hill, 3rd edn.,

3. Statistical Quality Control - Grant and Leavenworth, McGraw Hill

Sub Title: Computer Integrated Manufacturing Lab				
Sub Code: 18IML58 No. of Credits:1=1:0:0 (L-T-P) No. of lecture hours/week				
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 13		

Develop and determine of the practical aspects of enabling computer aided technologies used in design and manufacturing.

Develop a degree of competency in the development and application of modern CAD/CAM system through hands on experience in the solution of practical problems.

Define to Operate and program industrial (manipulator) robots.

Unit No.	Syllabus content	Hrs
1	CNC part programming using CAM packages. Writing and execution of manual part program using ISO code for machining of simple parts, turning, taper turning, form turning, and thread cutting. Use radius compensation, canned cycles, macros etc. CNC milling: Writing and execution of part program for contour milling.	18
2	Simulation of Turning, Drilling, Milling operations. 3 typical simulations to be carried out using simulation packages like CADEM, or any equivalent software.	15
3	(Only for Demo/Viva voce) Robot programming: Using Teach Pendent to perform pick and place, stacking of objects in increasing or decreasing size, palletizing operations etc.	03

Outcome:

- 1. Explain the concepts and modeling and the usage of models in different engineering applications.
- 2. Explain the benefits of a comprehensive and integrated CAD/CAM system.
- 3. Create accurate and precise geometry of complex engineering systems and use the geometric models in different engineering applications.
- 4. Compare the different types of modeling techniques and explain the central role solid models play in the successful completion of CAD/CAM-based product development.
- 5. Use and assess state-of-the-art CAD/CAM codes efficiently, effectively and intelligently in advanced engineering applications. Use and Operate industrial (manipulator) robots.

Cos	Mapping with POs
CO1	PO2,PO5,PO7,PO12
CO2	PO2,PO5,PO7,PO12
CO3	PO2,PO5,PO7,PO12
CO4	PO2,PO5,PO7,PO12
CO5	PO2,PO5,PO7,PO12

Scheme of Examination:

ONE question from Unit -1: 20 marks ONE question from Unit -2: 20 marks Viva-Voce : 10 marks

Suggested software:

Simulation Packages: Fanuc/ CNC Base (SLM/SLC)
 Simulation Packages: CADEM, CAPStrun, CAPSmill

3. Robot Simulation Aristosim.

VI Semester IEM

SUB TITLE : MANAGEMENT & ENTREPRENEURSHIP		
Sub Code : 18HS61/62	No. of Credits:3=3 : 0 : 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

COURSE OBJECTIVES:

- 1. To help students understand the Management concepts & its evolution.
- 2. To impart the knowledge about various Managerial functions.
- 3. To make the student learn the Entrepreneurial process.
- 4. To gain an insight of funding agencies & understand the role of SSI in economic development.
- 5. To have a clear understanding of various business opportunities & designing the Business plan.

Unit No.	Syllabus Content	No of Hours
1	MANAGEMENT: Introduction- Meaning, characteristics of management, scope, functions of management, Management as science or an art or profession, Management and Administration, Roles of managers. Levels of management, Development of management thought -Early management approaches, Modern management approaches.	08
2	PLANNING: Definition & Meaning, Types of Plans (Single use & Standing), Steps in Planning process. ORGANIZING: — Definition & Meaning, Types of organization. Depart mentation, Committees, Centralization Vs Decentralization, Authority and responsibility, span of control, MBO and MBE. Decision Making: Definition, Decision Making Process. STAFFING: Nature and importance of staffing, process of selection and recruitment. DIRECTING: Meaning, Leadership: Definition, Leadership styles — Autocratic, Democratic, Charismatic, Laissez faire and Participative. Leadership theories — Trait, Behavioral and Contingency. Introduction to motivation theories — Maslow, Herzberg, & McGregor's Theory of X & Y. Communication — Meaning and importance, communication process, barriers of communication, overcoming barriers. Coordination: Meaning and importance, stages of group forming, types of groups. CONTROLLING: Meaning and steps in controlling, Types of control, Method of establishing control (in brief).	12
3	Case study discussion with respect to Indian context. ENTREPRENEUR: Definition & Meaning, Characteristics, types of entrepreneur, Difference between Entrepreneurs, Intrapreneur & Manager, Stages in Entrepreneurial	10
	process, barriers to entrepreneurs, Role of Entrepreneurs in economic development. Rural entrepreneurs - Meaning & schemes.	
	Women entrepreneurs – Concept, challenges, women entrepreneurship in India,	
	Institutional support & special bank scheme. Family Business: Meaning, Roles & responsibility, types of family business,	
	challenges faced by family business, reasons for failure of family business.	
	Case study discussion with respect to Indian context.	

	Activity: Profile of successful entrepreneur.	
4	MSME: Definition & Concept of MSME, role & importance, current schemes for	12
	MSME.	
	SMALL SCALE INDUSTRY: Meaning, Characteristics, Steps to start an SSI,	
	problems faced by SSI. Introduction to GATT, WTO & LPG. Sources of financing,	
	forms of ownership.	
	Institutional Support: Different schemes. Central level Institutions - SIDBI,	
	NABARD, HUDCO, TCO. State level Institutions-DIC, SFC, KIADB, TECKSOK.	
	STARTUP COMPANIES-Meaning and Challenges.	
	Activity for students: Schemes for startup companies.	
5	PREPARATION OF PROJECT: Meaning, Project identification, Project selection,	10
	Project Appraisal, Project Report – Contents, Errors of project report, Feasibility Study-	
	Market Feasibility Study, Technical Feasibility Study, Financial Feasibility Study,	
	Social Feasibility Study. Business plan: Meaning, contents of business plan, reasons for	
	failure of business plan.	
	Activity for students: Writing of a business plan.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2: Two assignments are evaluated for 5 marks.

Course Outcomes:

CO1: The students will gain knowledge on management concepts & its evolution.

CO2: The students will learn the application of managerial skills & attributes.

CO3: The students will get an in depth knowledge of entrepreneurial process & will be able to apply the entrepreneurial skills.

CO4: Students compile information & explore the sources of funding agencies.

CO5: Students will be able to identify business opportunities & prepare the business plan.

Cos	Mapping with POs
CO1	PO4,PO5
CO2	PO5,PO7,PO11,PO12
CO3	PO4,PO7,PO10,PO11,PO12

XT BOOKS:

- 1. Entrepreneurship and Management- S Nagendra and V S Manjunath- Pearson Publication 4 /e, 2009.
- 2. Dynamics of Entrepreneurial Development and Management-Vasant Desai-Himalaya Publishing House.
- 3. Principles of Management PC Tripathi, and P N Reddy Tata Mc- Graw Hill.
- 4. Management and Entrepreneurship- N V R Naidu and T Krishna Rao. I K International Publishing house.

- 1. Entrepreneurship Development Poornima M Charanthimath Pearson Education 2nd Edition.
- 2. Entrepreneurship and management Shashi k Gupta- Kalyani publishers, Latest edition.
- 3. Organizational behavior, Stephen P Robbins, Timothy A. Judge, Neharika Vohra, Pearson, 14/e, 2012.
- 4. Financial Management- Shashi k Gupta- Kalyani publishers, Latest edition.

Sub Title: Intellectual I	Property Rights	
Sub Code: 18HS61/62	No. of Credits: 2= 2 : 0 : 0 (L-T-P)	No. of lecture hours/week : 2
Exam Duration: 2 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours : 26

The main objective of the IPR is

- 1. To make the students aware of their rights for the protection of their invention done in their project work.
- 2. To get registration in our country and foreign countries of their invention, designs and thesis or theory written by the students during their project work and for this they must have knowledge of patents, copy right, trademarks, designs and information Technology Act.
- 3. Further teacher will have to demonstrate with products and ask the student to identify the different types of IPR's.

Unit No	Syllabus	No of Hours
1	INTRODUCTION TO IPR: Meaning of property, Origin, Nature, Meaning of Intellectual Property Rights, Introduction to TRIPS and WTO. Kinds of Intellectual property rights—Copy Right, Patent, Trade Mark, Trade Secret and trade dress, Design, Layout Design, Geographical Indication, Plant Varieties and Traditional Knowledge.	03
2	PATENT RIGHTS AND COPY RIGHTS: Origin, Meaning of Patent, Types, Inventions which are not patentable, Registration Procedure, Rights and Duties of Patentee, Assignment and license , Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties. COPY RIGHT: Origin, Definition &Types of Copy Right, Registration procedure, Assignment & license, Terms of Copy Right, Piracy, Infringement, Remedies, Copy rights with special reference to software.	10
3	TRADE MARKS : Origin, Meaning & Nature of Trade Marks, Types, Registration of Trade Marks, Domain Names, Infringement & Remedies, and Offences relating to Trade Marks, Passing Off, and Penalties.	04
4	DESIGN- Meaning, Definition, Object, Registration of Design, Cancellation of Registration, International convention on design, functions of Design. Semiconductor Integrated circuits and layout design Act-2000.	05
5	BASIC TENENTS OF INFORMATION TECHNOLOGY ACT -2000- Cyber crimes, digital signature and E-Commerce.	04

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Course outcomes:

- 1. The students once they complete their academic projects, they get awareness of acquiring the patent
- 2. They also learn to have copyright for their innovative works.
- 3. They also get the knowledge of plagiarism in their innovations which can be questioned legally.

Cos Mapping with POs	
----------------------	--

CO1	PO7
CO2	PO7,PO12
CO3	PO7,PO12

XT BOOKS:

Intellectual Property Rights and the Law, Gogia Law Agency, by Dr. G.B. Reddy Law relating to Intellectual Property, Universal Law Publishing Co, by Dr. B.L.Wadehra IPR by P. Narayanan

Law of Intellectual Property, Asian Law House, Dr.S.R. Myneni.

Sub Title: MATERIALS MANAGEMENT		
Sub Code: 18IM61	No. of Credits:3=3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. Define the concepts of modern materials management and aims to increase profitability.
- 2. Explain the purchasing principles and relationships with vendors.
- 3. Define the Application of different systems of codification and analysis of stores management and selective control techniques.
- 4. Determine basic concepts of Inventory management and their applications to industry.
- 5. Develop inventory models for different manufacturing situations along with price breaks.

Unit No.	Syllabus Content	No of Hours
1	Introduction: Importance of Materials Management – Definition, scope, organization for Materials Management, Objectives of materials management, an overview of system concepts, Benefits of an integrated system approach. Materials Planning: Making the materials plan work, the materials cycle and flow control system, Materials budget.	07
2	Purchasing: Purchasing Principles, Procedures and Practices, Fundamental Objectives of Purchasing, Scope, Preparation of forms and records for purchasing, Methods of Purchasing, reciprocity, Cost-Plus Contracts, Hedging, Sources of Supply and Supplier Selection, Legal Aspects of Purchasing, Law of Agency, Law of Contract, Vendor-Vendee Relations, Vendor Development, Vendor Rating.	10
3	Stores Management and Operation: Storage System, Stores Location and Layout, Development of Storing, Centralization and Decentralization of Stores. The Systems classification and Codification of Materials, ABC, FSND, VED analysis. Case studies on ABC Analysis	07
4	Inventory Management: Definition of inventory, Need of inventory and its management, functions of inventory management, types of inventories, inventory control, cost elements, Economic Order Quantity, Max - Min system. Inventories and demand uncertainty.	05
5	Deterministic Inventory models: Dynamic inventory models, Instantaneous and finite rate of replenishment with and without shortage. Models with Price breaks & quantity discounts, (Numerical Exercises on EOQ) Determining safety stock. Q-system & P-system.	10

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

1vote 2. 1 wo assignments are evaluated for 5 mg

Outcome:

- 1. Explain the concepts and Importance of Integrated Materials Management
- 2. Elaborate about the concepts of purchasing, types, objectives, procedure including vendor rating.

- 3. Design and layout for a stores, do codification, use selective control techniques to stock the items in stores.
- 4. Explain the basic concepts on inventory, inventory costs, EOQ.
- 5. Use the inventory models in practical applications.

Cos	Mapping with POs
CO1	PO3,PO9,PO10
CO2	PO4,PO8,PO9,PO12
CO3	PO3,PO4,PO9
CO4	PO2,PO3,PO4
CO5	PO2,PO3,PO4,PO9,PO11

TEXT BOOK:

- 1. Materials Management, P. Gopalakrishnan, PHI Pvt. Ltd, New Delhi, 2002
- 2. Materials Management, A.K. Datta., PHI Pvt. Ltd, New Delhi, 2001.
- 3. Operations Research, Kanti Swaroop, S Chand & Co. 2003

- 1. Handbook of Materials Management, P. Gopalakrishnan, PHI Pvt. Ltd, New Delhi, 2002.
- 2. Operations Research, Taha, McMillan, 4th edition.
- 3. Gupta and hira, problems on operations reasearch

Sub Title: FACILITIES PLANNING AND DESIGN		
Sub Code: 18IM62	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. Explain the concepts of plant layout, layout planning and designing efficient facilities
- 2. Solve location and layout problems by considering the entire manufacturing and/or service systems within their supply chains.
- 3. Assess the role of facilities planning in reducing costs and increasing productivity and service level through selection of better material handling.
- 4. Elaborate on the concepts of computer-aided layout designs better facility design.

Unit No.	Syllabus Content	No of Hours
1	PLANT LOCATION: Factors influencing plant location, Theories of plant location and	10
	location economics. Location models: Selection of site by Break even analysis, Factor	
	Rating method, Centre of gravity method (problems)	
	Plant layout-Objectives of plant layout, Principles of plant layout, types of plant layout,	
	and their merits and demerits	
	PLANT DESIGN: Layout procedures: Immer, Nadler, Muther, Apple and Reed's	
	approaches, systematic layout planning.	
2	MATERIAL HANDLING: Objectives and principles of Material handling, Unit load	06
	concept, Material handling equipments, Selection of material handling equipments,	
	Production line balancing.	
3	COMPUTERIZED LAYOUT PLANNING: CRAFT, COFAD, PLANET, CORELAP,	05
	ALDEP	
4	SPACE DETERMINATION AND AREA ALLOCATION: Factors for consideration in	10
	space planning, receiving, storage, production, shipping, tool room and tool crib, other	
	auxiliary service actions, Establishing total space requirement, area allocation factors to be	
	considered, expansion, flexibility, aisles column, area allocation procedure, the plot plan.	
	CONSTRUCTION OF THE LAYOUT: Methods of constructing the layout, evaluation	
	of layout, efficiency indices.	
5	QUANTITATIVE APPROACHES TO FACILITIES PLANNING: Deterministic	08
-	models single and multi-facility location models, Location allocation problems – quadratic	
	assignment problem, Warehouse layout models,	
	Evaluation, selection and implementation of facilities plan.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

By the end of the course students will be able to

- 1. Solve facility location problems and prepare a facilities layout for the efficient flow of materials through a facility
- 2. Analyze material handling systems through different material handling equipment and material handling principles used in the warehousing, manufacturing
- 3. Plan the layout and evaluate facilities related problems using different layout planning algorithms
- 4. Identify activity, relationships and space requirements for various departments
- 5. Evaluate and select facilities plan

Cos	Mapping with POs
CO1	PO3,PO4
CO2	PO3,PO6
CO3	PO5,PO6
CO4	PO4,PO7
CO5	PO3,PO4,PO7

TEXT BOOKS:

- 1. Plant Layout and Material handling James M Apple, 2nd Edition, John, Wiely and Sons 2. Facility layout and Location- Francies R L and White J A, Mc- Graw Hill 2nd edition

REFERENCE BOOKS:

- 1. Practical layout- Muther Richard, Mc- Graw Hill-1955.
- 2. Facilities Design, Sunderesh Heragu, PWS Publishing Company, ISBN-0-534-95183.
- 3. Plant Layout Design James M Moore, Mc Millon Co.1962 LCCCN61- 5204.

Sub Title: LEAN MANUFACTURING		
Sub Code: 18IM63	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. To recall the history and the birth of Lean Manufacturing system.
- 2. To know the tools and techniques of lean manufacturing like stability, standardization etc.
- 3. To understand the concepts of the two pillars of TPS i.e. JIT and JIDOKA.
- 4. To appreciate the lean culture.

Unit	Syllabus Content	No of
No.		Hours
1	ORIGIN OF LEAN PRODUCTION: Craft Production – Mass Production – Ford System – Growing Dysfunction – Origin and History of Lean Production. LEAN PRODUCTION SYSTEM: Necessity of Lean Production – Systems and Systems thinking – Construction of Lean Production: Lean image and Lean Activities – Muda and its types – Mura – Muri.	08
2	STABILITY: Standards in Lean System – Visual Management – 5S – Total Productive Maintenance: Key measures; Six Big Losses; Hidden Losses; Machine Loss Pyramid; Small group activity.	06
3	STANDARDIZED WORK: Comparison of Methods Engineering and Lean thinking – Elements to be managed - Necessity and prerequisites of Standardized work – Elements of Standardized work - Charts: Production capacity chart; Standardized combination table; Standardized work analysis chart – Man power reduction – Comparison of overall efficiency with individual efficiency – Kaizen – Common Layouts	09
4	JUST IN TIME (JIT): Definition - Principles of JIT: Continuous Flow; Pull – JIT system – Kanban – Six Kanban rules - Expanded role of conveyance – Production leveling – Three types of Pull Systems – Value Stream Mapping: Symbols; Current state VSM and Future state VSM. JIDOKA: Development and necessity – Poke Yoke: Common errors – Inspection system and Zone control – Using Poke Yokes – Jidoka implementation.	10
5	LEAN INVOLVEMENT AND CULTURE: Necessity of involvement – Waste of Humanity – Activities supporting involvement – Kaizen Circle Activity – Practical Kaizen Training – Key factors in Practical Kaizen Training – Lean Culture – Standardization – Standards and abnormality control – 'Five Why' analysis.	06

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

After completing the course students re able to

- 1. Appreciate the birth of lean manufacturing and the history before it evolution.
- 2. Discuss and apply the various tools and techniques of lean manufacturing.
- 3. Know the concepts of JIT and JIDOKA.
- 4. Understand the Lean culture and its analysis.

Cos	Mapping with POs	
		ŦΩ

CO1	PO3,PO5,PO8,PO10
CO2	PO3,PO5,PO8,PO10,PO11
CO3	PO3,PO5,PO8,PO10,PO11
CO4	PO10,PO11
CO5	PO5,PO8,PO10,PO11

TEXT BOOKS:

- 1. Devadasan S R, Mohan Sivakumar V, Murugesh R and Shalij P R, "Lean and Agile Manufacturing: Theoretical, Practical and Research Futurities", Prentice Hall of India Learning Limited, New Delhi, 2012.
- 2. Dennis P, "Lean Production Simplified: A Plain Language Guide to the World's Most Powerful Production System", Productivity Press, New York, 2007.

REFERENCES:

- 1. Gopalakrishnan N, "Simplified Lean Manufacture: Elements, Rules, Tools and Implementation", Prentice Hall of India Learning Private Limited, India, 2010.
- 2. Bill Carreira, "Lean Manufacturing that Works: Powerful Tools for Dramatically Reducing Wastes and Maximizing Profits", Prentice Hall of India Learning Private Limited, India, 2007.
- 3. Don Tapping, Tom Luyster and Tom Shuker, "Value Stream Management: Eight Steps to Planning, Mapping and Sustaining Lean Improvements", Productivity Press, New York, USA, 2002.

Sub Title: SIMULATION MODELLING AND ANALYSIS		
Sub Code: 18IM64	No. of Credits: 2 : 1 : 0 (L-T-P)	No. of lecture hours/week: 4
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 52

- 1. Demonstrate the major capabilities and commonly encountered limitations of discrete-event simulation for modeling systems that industrial engineers commonly encounter.
- 2. Be able to build and run simple discrete-event simulation models in practical situations
- 3. Illustrate the main assumptions underlying these models; and Explain what can happen when these assumptions do not hold.
- 4. Be able to communicate the results of the modeling process to management and other non-specialist users of engineering analysis.

Unit	Syllabus Content	No of
No.		Hours
1	Introduction To Simulation: Simulation, advantages & disadvantages, Areas of	6+2T
	application, System environment, Components of a system, Model of a system, Types	
	of models, Monte carlo simulation and Steps in a simulation study.	
2	Simulation Examples: Simulation of Queuing systems, Simulation of Inventory	8 + 4T
	Systems.	
	General Principles: Concepts in discrete - events simulation, event scheduling / Time	
	advance algorithm	
3	Random Numbers: Properties, Generations methods, Tests for Random number-	6 + 4T
	Frequency test, Runs test, Auto correlation test, Gap test, Poker test	
4	Introduction To Probability Distributions: Weibull and triangular distribution and	6 + 4T
	their applications.	
	Random Variate Generation: Inverse Transform Technique- Exponential, Uniform,	
	Weibull, Triangular distributions, Direct transformation for Normal and log normal	
	Distributions, convolution methods- Erlang distribution, Acceptance – Rejection	
	Techniques – Poisson Distribution, Gamma Distribution.	
5	Analysis Of Simulation Data: Input Modeling: Data collection, Identification and	8 + 4T
	distribution with data, parameter estimation, Goodness of fit tests, Selection of input	
	models without data. Verification and Validation of Model - Model Building,	
	Verification, Calibration and Validation of Models	
	Output Analysis: Stochastic Nature of output data, Measures of Performance and their	
	estimation.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

After completion of the course the student will be able to

- 1. Illustrate basic concepts in modeling and simulation (M&S).
- 2. Classify various simulation models and give practical examples for each category.
- 3. Construct a model for a given set of data and motivate its validity.
- 4. Generate and test random number variates and apply them to develop simulation models.
- 5. Fit statistical distributions to input data, obtain parameter estimation and goodness of fit.

Cos	Mapping with POs
CO1	PO1,PO2
CO2	PO2,PO3,PO4
CO3	PO4,PO6
CO4	PO4,PO5,PO6
CO5	PO1,PO2,PO4

TEXT BOOKS:

- **1.Discrete Event system Simulation** Jerry Banks, John S Carson, II, Berry L Nelson, David M Nicol, III Edition, Pearson Education, Asia, ISBN 81-7808 505 4.
- **2.Systems Simulation with Digital Computer** Narsingh Deo; PHI Publication (EEE), ISBN 0-87692-028-8
- **3.Simulation Modelling & Analysis** Averill M Law, W David Kelton; McGraw Hill International Editions Industrial Engineering series, ISBN 0-07-100803-9.

Professional Elective – II

Sub Title: PRODUCT DESIGN AND DEVELOPMENT		
Sub Code: 18IM651	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE +Assignment + SEE = 45 + 5 + 50 = 100	Total No. of Contact Hours: 39

Objectives:

The objective of this course is

- 1. To familiarize the student with the basic concepts of product design, design phases and product life cycle.
- 2. To formulate design problems, need for design requirement, its specification and constraints.
- 3. To optimize design configuration and understand the concept of Idea- Rack.
- 4. To explain the importance of design simplicity, complexity and richness and also decision making aspects.
- 5. To understand the concepts of Computer Aided Modelling.

Unit	Syllabus Content	No of
No.		Hours
1	DESIGN AS A DISCIPLINE: mass production and professional designers-quality of life- get	08
	more, pay less- cost reduction and higher sophistication- products of dynamic culture.	
	PRODUCT LIFE CYCLE: various stages of product life cycle- design stage-manufacturing and	
	marketing/ implementation- usage and maintenance- the death of a product.	
	DESIGN PHASES: design methodology- formulation- idea rack- short listing and selecting two	
	idea- detailing- prototype preparation.	
2	USER CENTRED DESIGN SURVEY: importance on problem formulation, primary focus on	08
	people, target domain, clients and users, interaction, integrated approach, kinds of knowledge,	
	style and peer group, user centred feedback.	
	NEED STATEMENT AND DESIGN REQUIREMENTS: need statement, guidance for	
	designers, independent of physical embodiment, major requirements and articulation.	
	SPECIFICATIONS AND CONSTRAINTS: quantitative and qualitative	
	Specifications and constraints, design space, refinement of design space, side stepping, various	
	approaches like engineering, architectural, hybrid.	
3	IDEA-RACK: seeking several concepts, usability considerations: flexibility, interdisciplinary	08
	design and interaction, design activities like original design, adaptive design, and variant design.	
	Tools helpful in generating ideas like deep encounter, analogy, reversal, fusion of opposites,	
	brainstorming, realizing new constraints.	
	OPTIMIZATION CONFIGURATION EXPLORATION: conventional optimization vs	
	configuration optimization, thumb rules, yield to nature's forces, light weight components, use	
	of standard parts, design for manufacturing, material selection.	
4	SIMPLICITY, COMPLEXITY AND RICHNESS: axiom and KISS, value consideration, tools	07
	for simplification, simple and complex, richness, value for complexity.	
	DECISION MAKING: indecision is a negative act, delegating responsibilities, decisions on	
	scanty data, important elements of decision making like analysis, synthesis, emotions, intuitions,	
	risk and management of failures.	
5	UNCOUPLED, DECOUPLED AND COUPLED DESIGNS: Functional domain and functional	08
	requirements, physical domain and design parameters, mathematical representation like design	
	matrix and coupled design, uncoupled, decoupled. Additional expenditure.	
	PRODUCTS STATIC AND DYNAMIC SOCIETIES: Form, context and misfits, products of	
	static societies, products of dynamic societies, products of dynamic cultures, short comings,	

comparison and middle path.

Outcomes:

After going through this course the student will be able to:

CO1: Understand the design phases

CO2: Formulate need statement and specifications

CO3: Apply decision making statement

CO4: Learn Computer Aided Modelling concepts.

Cos	Mapping with POs
CO1	PO1, PO10
CO2	PO2, PO3, PO4, PO11
CO3	PO5, PO6, PO7, PO11, PO12
CO4	PO9, PO11

TEXT BOOKS:

- 1. Product Design, Prashant Kumar, PHI Learning Pvt. Ltd., 2012, ISBN:978
- 2. Product Design and Development, Karl.T.Ulrich, Steven D Eppinger, 8120344273 McGrawHill, 2000, ISBN 978 30078029066
- 3. Product Design and Manufacturing, A C Chitale and R C Gupta, 13: PH1, 13: 978 48120342828.
- 4. SOLIDWORKS 2018 for Designers, Sham Tickoo, CADCIM Technologies 3rd Edition, 2003. ISBNes,16th revised Edition Paperback, 2018.

Sub Title: MAINTENA	NCE & SAFETY ENGINEERING	
Sub Code: 18IM652	No. of Credits:3= 3 : 0 : 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours : 39

- 1. To explain the basic concepts of maintenance system and maintenance of machinery.
- 2. To elucidate the economics of Maintenance and importance of computers in Maintenance management.
- 3. To describe the significance of Industrial Safety, fire prevention, and protection
- 4. To elaborate the importance of Industrial pollution control and to Define about the types and sources of Industrial pollution

Unit	Syllabus	No of
No		Hours
1	INTRODUCTION TO MAINTENANCE SYSTEM: Definition, Scope, Objective,	7
	Importance of maintenance system, Type of maintenance system, Break Down Maintenance	
	system, Preventive Maintenance, Predictive Maintenance, design out Maintenance,	
	corrective Maintenance, Planned Maintenance, total productive Maintenance, conditioning	
	Maintenance.	
2	MAINTENANCE OF MACHINERY: Causes of machine failure, performance	10
	evaluation, complete overhauling of lathes, Drilling machines, Drilling machines, Milling	
	machines, shapers and Grinding machines, maintenance planning and scheduling, Repair	
3	order control man power equipment, Maintenance job analysis, spare parts control.	6
3	ECONOMICS IN MAINTENANCE: repair, replacement, Repair complexity, Finding out most optimal preventive frequency.	0
	COMPUTERS IN MAINTENANCE MANAGEMENT: File data bank, storage of data	
	such as break downs, spare parts, lubricating point, drawing of machine parts.	
4	INDUSTRIAL SAFETY: Economic importance of accidents, Types of safety	6
_	organizations, Analysis of accident safety standard for- Mechanical equipment,	Ü
	Electrical equipment and systems, Chemical hazards, Material Handling, exhaust	
	systems, Plant housekeeping, building, Aisles passages, floors, tool cribs,	
	washrooms.	
5	FIRE PREVENTION AND PROTECTION: Condition favouring fire breakdown,	10
	preventing of firing methods, fire protection- Classification of fires, fire extinguishing system,	
	fire alarms, fire fighting equipments, mock drills, emergency, response time.	
	INDUSTRIAL POLUTION CONTROL: Dust control- Fiber collectors, mechanical dust	
	collectors, wet type collectors, Electro static precipitators, Noise pollution control-Noise	
	measurement and control, Industrial vibration and its control, ILO conventions, Risk	
	assessment.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Able to memorize types of maintenance systems
- 2. Able to evaluate machine failure and performance of the machines
- 3. Able to evaluate the economics of maintenance and express the use of computers in maintenance
- 4. Demonstrate and outline the Industrial safety through proper safety standards to reduce accidents.
- 5. Demonstrate and outline the Industrial pollution control and fire prevention and protection.

Cos	Mapping with POs
CO1	PO7,PO11,PO12
CO2	PO1,PO2,PO3,PO4,PO11,P12
CO3	PO1,PO2,PO3,PO4,PO11,P12
CO4	PO5,PO6,PO9,PO10,P12
CO5	PO6,PO9,PO10,P12

TEXT BOOKS:

- 1. Staniar-plant Engineering hand Book, 2nd Edition, Mc Graw Hill
- 2. Morrow, Lindley. R and Higgins-Maintenance Engineering hand Book, 3rd Edition McGrawHill-2001

REFERENCE BOOKS:

- 1. Frank Herbaty-Hand book of maintenance management, Crest Publishing house-2004
- 2. W. Grant Lerson & Eugene L. Grant-Hand book of Industrial Engg & Management, Prentice Hall
- 3. of India, 2nd Edition-1988
- 4. Herbert. F. Lund-Industrial Pollution control Hand Book, Mc Graw Hill
- 5. H. P. Garg-Industrial Maintenance, 3rd Edition-S.Chand publishers

Sub Title: COMPOSITE MATERIALS		
Sub Code: 18IM653	No. of Credits:3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. To introduce composite materials and its different types.
- 2. To explain the advanced methods of the manufacturing of composite material and different fabrication techniques.

Unit	Syllabus	No of
No		Hours
1	Introduction To Composite Materials: Definition-Classification and characteristics of composite materials- fibrous composites, laminated composites and particulate composites	06
2	FIBER REINFORCED PLASTIC PROCESSING: Primary and secondary manufacturing of composites — Layup and curing, fabricating process-open and closed mould process-hand layup techniques-structural laminate bag molding, Autoclave Molding filament Winding, Pultrusion, Compression Molding, RTM, RIM, SRIM, machining, drilling and routing.	08
3	FIBER REINFORCED PLASTIC PROCESSING: Production procedures for bag molding- filament winding, pultrusion, pulforming, thermo-forming, injection, injection molding, liquid injection molding, blow molding.	06
4	FABRICATION OF COMPOSITES: Cutting, machining, drilling, mechanical fasteners and adhesive bonding, joining, computer aided design and manufacturing, tooling, fabrication equipment.	08
5	METAL MATRIX COMPOSITES (MMC'S): Reinforcement materials, types, characteristics, and selection base metals selection-Need for production MMC's and its application. CERAMIC MATRIX COMPOSITES – Manufacturing routes and application	09

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. <u>Note 2:</u> Two assignments are evaluated for 5 marks.

Outcome:

- 1. Students are able to explain the different concepts of manufacturing of fiber reinforced composites.
- 2. Laminate design for different combinations of plies with different orientations of the fiber.
- 3. To Explain the machining of composite materials
- 4. To Explain the Manufacturing routes and application of Metal matrix and Ceramic matrix composites

Cos	Mapping with POs
CO1	PO3,PO8,PO10
CO2	PO3,PO8,PO10
CO3	PO3
CO4	PO3,PO8,PO10

TEXT BOOKS:

- 1. .Mein Schwartz., "Composite Materials Handbook", McGraw Hill, 1992
- 2. Autar K.Kaw, "Mechanics of Composite Materials", CRC Press, 2005.
- 3. Gibson, R.F., "Principles of Composite Material Mechanics", McGraw-Hill, 1994, 2nd Edition CRC press in progress.
- 4. Hyer, M.W., "Stress Analysis of Fiber Reinforced Composite Materials", McGraw-Hill, 1998.

REFERENCE BOOK:

- 1. "ASM Hand book on Composites", Volume 21, 2001
- 2. Vanviack L.H, "Physical Ceramics for Engineers", Addison Wesley Publication, 1964.
- 3. Issac M. Daniel and OriIshai, "Engineering Mechanics of Composite Materials", Oxford University Press, 2006, First Indian Edition, 2007.
- 4. Mallick, P.K., Fiber, "Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 1993.
- 5. Halpin, J.C., "Primer on Composite Materials, Analysis", Techomic Publishing Co., 1984.
- 6. Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.
- 7. Mallick, P.K. and Newman, S., "Composite Materials Technology: Processes and Properties", Hansen Publisher, Munish, 1990.

Sub Title: ORGANIZATIONAL BEHAVIOUR		
Sub Code: 18IM654	No. of Credits:3 =3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. To introduce the scope and importance of Organization behavior.
- 2. To Explain and study the different behaviors in organizations.
- 3. To develop motivation and leadership power.
- 4. To introduce the dynamics of Organization behavior.

Unit	Syllabus Content	No of
No.		Hours
1	Introduction: Organizational Behaviour: Introduction, definition, historical development, fundamental principles of OB, contributing disciplines, challenges and opportunities. Management: Introduction, Definition of management, Nature, Purpose and Functions, Levels and types of managers, managerial roles, skills for managers, evolution of management thought, Fayol's fourteen principles of management, Recent trends in management.	6
2	INDIVIDUAL BEHAVIOUR: Personality-types, factors influencing personality, theories, Defining, types of Definers, the Defining process, Defining theories, Organizational Behaviour modification, Misbehavior, types, Management Intervention, Emotions, Emotional labour, Emotional Intelligence, Theories. Attitudes, Characteristics, Components, Formation, Measurement, Values. Perception, Importance, Factors influencing perception, Interpersonal perception, Impression Management, Motivation- Importance Types, Effects on work Behaviour.	10
3	GROUP BEHAVIOUR: Organization structure, formation, groups in organization, influence, group dynamics, emergence of informal leader and working norms, group decision making techniques, team building, interpersonal relations, communication, control.	10
4	MOTIVATION: Maslow's hierarchy of needs, Douglas Mc Gregor Theory X & Theory Y, Chris Argyris pattern A & pattern B, Motivation Hygiene theory, Motivation and Satisfaction. LEADERSHIP AND POWER: Meaning, importance, leadership style, theories, leaders Vs managers, sources of power, power centers, power and politics.	6
5	DYNAMICS OF ORGANIZATIONAL BEHAVIOUR: Organizational culture and climate, factors affecting organizational climate-importance, job satisfaction, determinants, measurements, influence on behavior. organizational change, importance, stability Vs change, proactive vs reaction change, the change process, resistance to change, managing change, stress work, stressors, prevention and management of stress, balancing work and life. Organizational development, characteristics, objectives, organizational effectiveness.	7

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2: Two assignments are evaluated for 5 marks.

Cos	Mapping with POs
CO1	PO5,PO6,PO12
CO2	PO5,PO6,PO7.PO8,PO10,PO12
CO3	PO6,PO7,PO8,PO9,PO10,PO12
CO4	P05,PO6,PO7,PO8,PO9,PO10,PO12
CO5	PO3,PO5,PO6,PO7,PO8,PO9,PO12

TEXT BOOKS:

- 1. Organizational Behaviour, Stephen P Robbins, $15^{\text{th}}\text{Edn},\,2015$ Pearson Education Publications, ISBN-81-7808-561-5
- 2. Management of Organizational Behavious, Paul Henry and Kenneth H. Blanchard, Prentice Hall of India, 1996.
- 3. Organizational Behaviour Fred Luthans, 9thEdn, McGraw Hill International Edition, ISBN-0-07-20412-1 REFERENCE BOOKS:
- 1. Organization Behavior Hellriegel, Srocum and woodman, Thompson Defineing, 9th Edition, Prentice HallIndia, 2010
- 2. Organizational Behavior VSP Rao and others, Konark Publishers 2002.

Sub Title: MANAGEMENT INFORMATION SYSTEM		
Sub Code: 18IM655	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. Determine the importance of information systems for business and management;
- 2. Evaluate the role of the major types of information systems in a business environment and their relationship to each other;
- 3. Assess the impact of the Internet and Internet technology on businesselectronic commerce and electronic business;

Unit	Syllabus Content	No of
No.		Hours
1	Fundamentals of information system: Fundamental roles of is in business,	10
	managerial challenges of it, types of information system, components of an IS,	
	information system resources and activities, competitive strategy concepts, strategy	
	uses of it, competitive advantages.	
	uses of it, competitive advantages.	
2	<u>Electronic business system</u> : Introduction, cross-functional enterprise application,	10
	enterprise application integration, transactional processing systems, enterprise	
	collaboration systems, enterprise application architecture.	
	Functional business systems: Introduction, marketing information systems,	
	manufacturing systems, human resource systems, accounting systems, financial	
	, , , , , , , , , , , , , , , , , , , ,	
	management systems.	0.5
3	Electronic commerce systems: Introduction, the scope of ecommerce, essential of e-	06
	commerce process, electronic payment process. E-commerce applications and issues:	
	ecommerce application trends, business-to customer ecommerce, web store requirement,	
	business-to-business e-commerce.	
4	Security and ethical challenges: Introduction, ethical responsibility of business	06
	professionals, computer crime, privacy issues, other challenges, health issues, societal	
	solutions. Security management of it: introduction, internetworked security defenses, other	
	security measures, system control and audits.	
5	Enterprise and global management of IT: Managing IT, business/IT planning, managing	07
	and IT function. Failures of IT management: global IT management, cultural political and	
	geo-economics challenges, global business/IT applications.	

<u>Note 1:</u> Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Able to determine and define the basic concepts and technologies used in the field of information systems for business operations.
- 2. Able to apply and operate E-business
- 3. Able to operate and extend the use of E-commerce
- 4. Able to summarize, judge the ethical, social, and security issues of information systems.
- 5. Able to understand global businesses planning functions and applications

Cos	Mapping with POs
CO1	PO4,PO5 ,PO11,PO12

CO2	PO11,PO12
CO3	PO3,PO5,PO8,PO10,PO11,PO12
CO4	PO8,PO11,PO12
CO5	PO4,PO5,PO7, PO11,PO12

TEXT BOOKS:

- 1. **Management Information system** managing information technology in the internet worked enterprise-James. A O'Brien Tata McGraw Hill publishing company limited, 2002.
- 2. Management Information System Laudon & Laudon PHI ISBN 81-203-1282-1.1998.
- 3. **Kalakota and Whinston**, Frontiers of Electronic Commerce, Pearson education Inc. and Dorling Kindersley Publishing Inc, 7th Edition.

REFERENCE BOOKS:

- 1. Management Information system- S.Sadogopan.PHI 1998Edn. ISBN 81-203-1180-9
- 2. **Information systems for modern management** G.R. Murdick PHI, 2nd Edition.
- 3. Turban E.F, Potter R.E, "Introduction to Information Technology"; Wiley, 2 004.
- 4. Jeffrey A.Hoffer, Joey F.George, Joseph S. Valachich, "Modern Systems Analysis and Design", Third Edition, Prentice Hall, 2002.

Sub Title: ADVANCED MANUFACTURING TECHNOLOGY		
Sub Code: 18IM656	No. of Credits:3 =3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration : 3 hours	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Course objectives:

- Explain the basic concepts of Advanced Manufacturing Technology
- Discuss the principles, methods, areas of usage, possibilities and limitations as well as environmental effects of the advanced manufacturing technologies
- Be familiar with the characteristics of various materials that are used in advanced manufacturing.

Unit	Syllabus Content	No of
No.		Hours
1.	ADVANCED CASTING TECHNOLOGY: Expendable-Mold - shell mould casting,	08
	Vacuum Mould casing, investment casting, plaster-mold and ceramic-mold casting,	
	Permanent-Mold casting processes - squeeze casting and semisolid metal casting,	
	centrifugal casting, uses of Rapid Prototyping to produce pattern, process selection -	
	dimensional tolerances for various casting processes and metals.	
2	ADDITIVE MANUFACTURING TECHNOLOGY: Overview — History —	07
	Need-Classification -Additive Manufacturing Technology in product development-	
	Materials for Additive Manufacturing Technology — Tooling — Applications.	
3	LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING	08
	SYSTEMS: Classification — Liquid based system — Stereolithography Apparatus	
	(SLA)- Principle, process, advantages and applications — Solid based system —	
	Fused Deposition Modeling — Principle, process, advantages and applications,	
	Laminated Object Manufacturing	
4	ADVANCED COMPOSITES MANUFACTRUING: Classification, binders,	09
	applications, manufacturing of plastic products by different processes like injection	
	moulding, transfer moulding, blow moulding, expansion moulding, Fabrication of	
	Particulate Composites Fabrication of Laminar Composites and Fabrication of Fiber-	
	Reinforced Composites.	
5	GREEN MANUFACTURING- Introduction to Green Manufacturing, Motivations and	06
	Barriers to Green Manufacturing, Environmental Impact of Manufacturing, Strategies for	
	Green Manufacturing-Applications of Green Manufacturing. DIGITAL	
	MANUFACTURING- Introduction to Digital Manufacturing and its Applications	
	SMART MANUFACTURING- Introduction to Digital Manufacturing and its	
	Applications, With some Case study.	

Outcome:

By the end of the course students will be able to

- 1. Explain the advanced manufacturing technologies and define the concepts of various manufacturing process.
- 2. Describe the differences and of the application of a range of additive manufacturing processes
- 3. Describe the specific process characteristics of various advanced manufacturing technologies
- 4. Understand the operating principles, capabilities, and limitations of liquid and solid based additive manufacturing system, including fused deposition modeling and stereolithography.
- 5. Explain the various advanced manufacturing technologies and identify their possible applications.

Note 2: Two assignments are evaluated for 5 marks.		
Cos	Mapping with POs	
CO1	PO1, P03, PO8, P10, P11.	
CO2	PO1, P03, PO5, PO8, P10, P11.	
CO3	PO2, PO5, PO10, P11.	

TEXT BOOKS:

CO₄

CO₅

1. Principles of Modern Manufacturing (SI Version), Mikell P Grove, 2014. John Wiley & Sons

PO1, P03, PO8, P10, P11.

PO1, P03, PO5, PO8, P10, P11.

2.Materials and Processes in Manufacturing, Paul DeGarmo E, Black J T and Ronald A Kohjer, 2011, John Wiley India

Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010.

Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.

<u>5...</u>Composite Manufacturing: Materials, Product and Process Engineering, Sanjay K Mazumdar, 2010, CRC Press.

REFERENCE BOOKS:

- **1. Production Technology**, by HMT TATA McGraw Hill 2001.
- 2. Modern Machining Process ADITYAN 2002.
- 3. Principles of Modern Manufacturing (SI Version), Mikell P Grove, 2014. John Wiley & Sons,
- 4. **Materials and Processes in Manufacturing**, Paul DeGarmo E, Black J T and Ronald A Kohjer, 2011, John Wiley India.
- 5. **Rapid Prototyping and Engineering applications**: A tool box for prototype development", Liou L.W. and Liou F.W., CRC Press, 2007.
- 6. "Rapid Prototyping: Theory and practice", Kamrani A.K. and Nasr E.A., Springer, 2006.
- 7. "Rapid Tooling: Technologies and Industrial Applications", Hilton P.D. and Jacobs P.F., CRC press, 2000.
- 8. CAD and Protyping for Product Design, 2014 Dougles Bryden,
- 9. **Fundamentals of Digital Manufacturing Science**, Zude Zhou, Shane Shengquan Xie, Dejun Chen, 2012, Springer publishers, ISBN: 978-0-85729-563-7, e-ISBN 978-0-85729-564-4.

Open Elective -B

Sub Title: PROJECT MANAGEMENT		
Sub Code: 18IM661 No. of Credits: 3=3:0:0 (L-T-P) No. of lecture hours/week: 3		No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Objectives:

- 1. To introduce concepts of project management with a strong emphasis on issues and problems associated with delivering successful projects.
- 2. To Define and study the project planning and estimating its cost.
- 3. To determine the elapsed time and idle time through project scheduling
- 4. To determine the critical path for the projects through project management tools and techniques.

Unit No.	Syllabus Content	No of Hours
1	CONCEPTS OF PROJECT MANAGEMENT: Introduction, meaning of project, features of project, types of project, benefits of project management, obstacles in project management, pm a prfession, pm and his role, project consultants, what is operation, difference between project and operation, what is process in project management and process groups, what is scope, difference between project group objectives and project scope PRODUCT LIFE CYCLE: Phases of project life cycle, project planning, project execution, project closure, project risks.	06
2	PROJECT IDENTIFICATION: Sources of project ideas, purpose and need for project identification, steps of project identification, methodology for project identification, project identification for an existing company. FEASIBILITY STUDY AND PROJECT REPORT: Nature of project feasibility analysis, need for feasibility studies, components of feasibility study, commercial and economic feasibility, technical, financial, managerial, social feasibility. Format of feasibility report, checklist for feasibility report, project report.	07
3	PROJECT PLANNING: Nature of project planning, need for project planning, functions of project planning, steps in project planning, project planning structure, project objectives and policies, tools of project planning. PROJECT SCHEDULING: Purpose of scheduling, time monitoring efforts, bounding schedules, project monitoring and implementation, situation analysis and problem definition, setting goals and objectives, implementation, project evaluation, importance and challenges in monitoring and project evaluation.	06
4	PROJECT CONTROL: Projected control purposes, problems of projected control, Gantt Charts, Critical 64	10

	Path Method (CPM), advantages of CPM, main obje4ctives of CPM, advantages of CPM, PERT, advantages of PERT, differences in PERT and CPM. PROJECT RISK: Risk, Riskvs Uncertainty, types of risk, Risk Analysis, objectives, activities involved in risk analysis, risk assesment, risk management.	
5	PROJECT MANAGEMENT SOFTWARE:	10
	Project management softwares general factors, factors influencing price of project software, Insta Plan III, Yojana, Prism project manager, Primavera, Agile methods, Scanner Master.	
	ENVIRONMENTAL IMPACT ASSESMENT AND ENVIRONMENT	
	ANALYSIS: EIA in different countries, Environmental analysis, components of environmental	
	analysis, economic environment, political, governmental, legal environment, social and cultural environment, natural, global, technological environment.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

Upon successful completion of this course, the student will be able to:

- 1. Apply the concept, tools and techniques for managing large projects.
- 2. Construct project plans for different types of organizations.
- 3. Evaluate a project to develop the scope of work, provide accurate cost estimates and to plan the various activities;
- **4.** Will be able to explain on resource and time planning, controls, communication mechanisms, reviews and other project management tools.
- 5. Analyze and evaluate risks in large and complex project environments

Cos	Mapping with POs
CO1	PO3,PO4,PO5,PO7,PO8,PO9,PO11
CO2	PO3,PO4,PO5,PO7,PO8,PO9,PO11,PO12
CO3	PO3,PO4,PO5,PO6,PO11
CO4	PO4,PO5,PO11
CO5	PO4,PO10,PO11,PO12

TEXT BOOKS:

- 1. Project management Dr. Lalitha Balakrishnaan, Dr Gowri Ramachandran Himalaya Publishing House, 2019 edition
- 2. **Project Management a System approach to Planning Scheduling & Controlling** Harold Kerzner, CBS Publishers and Distributors. 2016.
- 3. Project Execution Plan: Plan for project Execution interaction Chaudhry S.2016

4. Project Management Institute, "A guide to the project management body of knowledge (PMBOK Guide)".5th edition, 2013, ISBN: 978-1-935589-67-9. 2015

REFERENCES BOOKS:

- 1. **Project Planning Analysis selection financing Implementation and Review-** Tata Mc Graw Hill Publication, 7th edition 2010, Prasana Chandra.
- 2. **Project Management** Beningston Lawrence McGraw Hill 1970.
- 3. A Management Guide to PERT and CPM, WEIST & LeVY Eastern Economy of PH 2002.
- 4. PERT & CPM.-L.S.Srinnath, Affiliated East West Press Pvt. Ltd. 2002.
- 5. **Project planning analysis selection implementation & review** Prasanna Chandra, ISBNO-07-462049-5 2002.
- 6. **Performing and Controlling Project,-**Angus, Planning, 3rd End, Person Education, ISBN:812970020.2001
- 7. **Project planning scheduling & control**, James P.Lawis, Meo Publishing Company 2001.
- 8. **Project Management -**Bhavesh M.Patel, Vikas Publishing House, ISBN 81-259-0777-7 2002

Sub Title: SIMULATION LAB		
Sub Code: 18IML67 No. of Credits: =0:0:1 (L-T-P) No. of lecture hours/we		No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 36

- 1. To Explain and apply the basic fundamental concepts of Statistics to manufacturing operations.
- 2. Application of probability distributions to various manufacturing problems.
- 3. Application of random number generations for different experiments of simulation models.
- 4. To test the input and output analysis using statistical analysis.

Unit	Syllabus Content	No of
No.		Hours
1	Introduction to Simulation Package.	18
	Features of Simulation Package and Input Modeling	
	Identifying probability distributions for given data	
	Building simulation models for manufacturing operations (With Common templates)	
	Building simulation models for manufacturing operations (With Basic templates)	
	Building simulation models for manufacturing operations with transport System	
	Building simulation models for manufacturing operations with layout.	
	Simulation of Multi Product Assembly line System.	
2	Building simulation models for service operations and analysis of data.	18
	Building simulation Models for Banking service (Bank teller problem)	
	Building simulation Models for Mortgage application problem	
	Building simulation Models for food processing problem	
	Building simulation Models for Post office animation	
	Statistical Analysis of Simulation models (input analysis)	
	Statistical Analysis of Simulation models (output analysis)	
	Modelling a Live Problem	

Outcomes:

- 1. Able to identify type of probability distribution and analyze nature of input data
- 2. Able to apply various simulation models using common and basic process templates
- 3. Will be able to solve the various manufacturing related problems and analyze output data

Cos	Mapping with POs
CO1	PO2,PO5, PO11
CO2	PO2,PO4,PO5,PO11
CO3	PO2,PO5,PO11

Scheme of Examination:

ONE question from Unit -1: ONE question from Unit -2: 20 marks 20 marks Viva-Voce: 10 marks.

Suggested software:

1. Suggested Software Packages: Arena / Quest / Witness / Extend. Note: A minimum of 12 exercises are to be conducted.

Sub Title : Mini Projec	et	
Sub Code: 18IMP68	No. of Credits:2 =0 : 0 : 2 (L-T-P)	No. of lecture hours/week:
Exam Duration:	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours :

- 1. To equip students for making a subject presentation based on a thorough research review on any contemporary area of engineering and management fields.
- 2. Offering the student an opportunity to interact with faculty and peer group and to build the ability to making independent presentation.

Sl. No.	Syllabus								
1	Procedure:								
	1. A list of contemporary topics will be offered by the faculty of the department in the								
	in the interlude period between 7 th and 8 th Semester.								
	2. Student can opt for topic of their own choice and indicate their option to the								
	department at the beginning of the 8 th semester.								
	This component is also evaluated twice in the semester like Mini Project-CIE-1 and CIE-II.								
	The final, marks shall be submitted to the exam section at the end of the semester.								

Dr. AMBEDKAR INSTITUTE OF TECHNOLOGY BANGALORE - 56

AIDED BY GOVERNMENT OF KARNATAKA & AUTONOMUS INSTITUTION AFFILIATED TO VTU, BELGAUM,

PROPOSED SYLLABUS

For

VII & VIII Semester (FOR THE ACADEMIC YEAR 2021-2022) (Batch 2018)

Department of Industrial Engineering & Management

Website: www.drait.edu.in e-mail id: principal@drait.edu.in

Dr. AMBEDKAR INSTITUTE OF TECHNOLOGY BANGALORE - 56

AIDED BY GOVERNMENT OF KARNATAKA &
AUTONOMUS INSTITUTION AFFILIATED TO VTU, BELGAUM,

Vision

♣ To create Dynamic, Resourceful, Adept and Innovative Technical professionals to meet global challenges.

Mission

- ♣ To offer state-of-the-art undergraduate, postgraduate and doctoral programs in the fields of Engineering, Technology And Management
- **♣** To generate new knowledge by engaging faculty and students in research, development and innovation.
- ♣ To provide strong theoretical foundation to the students, supported by extensive practical training to meet the industry requirements.
- ♣ To install moral and ethical values with social and professional commitment.

Department of Industrial Engineering & Management

Objective

- To maintain a Comprehensive curriculum that enables students to become leading engineers and creative researchers in the global marketplace.
- > To collaborate with private and public sectors in the search of methodologies and creative solutions to problems that contributes to the advancement of education, technology and professional development.
- > To contribute to the profitable growth of industrial economic sectors by using IE analytical tools, effective computational approaches, and systems thinking methodologies.
- To maintain high standards of professional and ethical responsibility.
- > To provide a broad education necessary to determine the impact of engineering solutions in a global economic, environmental, a societal context.

Vision:

♣ To be globally recognized as a leader in industrial engineering education, research and enhance the application of technical knowledge to benefit the society.

Mission:

- ♣ To offer globally recognized programs that equip graduates with strong problem solving ability in the design, analysis and implementation of integrated systems in manufacturing and service sectors.
- ♣ Create state-of-the-art infrastructure for research and training in Industrial Engineering
- ♣ Promoting collaboration with academia, industries and Research organizations at national and international levels for socioeconomic development

Program Outcomes (POs)

- 1. Ability to apply knowledge of mathematics, science and engineering.
- 2. Ability to design and conduct experiments related to deterministic or stochastic systems, as well as to analyze and interpret data.
- 3. Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- 4. Ability to identify, formulate and solve Industrial and Management Systems Engineering problems.
- 5. Student will be able to use modern industrial Engineering and management tools necessary for engineering practice.
- 6. Ability to determine the impact of engineering solutions in a global, economic, environmental, and societal context.
- 7. Determine the major environmental, social and economic drivers pertaining to the necessity of developing sustainable operations.
- 8. Student will exhibit professionalism and ethical responsibility.
- 9. Effectively collaborate and function on multidisciplinary teams.
- 10. Student will be able to communicate orally and verbally with different sections of society.
- 11. Manage Project and Finance to satisfy customer expectations.
- 12. Engage in life-long learning and appreciate the need for continual self-development.

Program Educational Objectives

- **PEO 1**: Have a strong foundation in Mathematics, Science and Engineering fundamentals that prepare them for a successful career in Industrial Engineering, Management and allied fields.
- **PEO 2**: Function at a technically competent level in designing a system within realistic constraints such as economic, environmental, social, political, ethical, manufacturability, health and safety and sustainability.
- **PEO 3**: To effectively and economically utilize the resources of the Enterprise using various optimization techniques.
- **PEO 4**: Exhibit professionalism, good oral & written communication skills, team work and develop an attitude for lifelong learning.

Department of Industrial Engineering & Management

Faculty List:

1	Dr.N.Mohan	Professor and Head
2	Dr. S. K. Rajendra	Associate Professor
3	Dr. Rajeshwari P	Associate Professor
4	Dr. C R Mahesha	Assistant Professor
5	Mrs. Suprabha R	Assistant Professor
6	Mr. Chetan N	Assistant Professor
7	Mr. Rajesh K	Assistant Professor
8	Mrs. Sarvamangala S P	Assistant Professor

VII	SEME	ESTER										
				Teaching Department	Teaching Hours /Week				Exami	ination		
Sl. No	Course and Course code		('nurse Title		Theory Lecture		Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
		ı			L	T	P					
1	MC	18HS71/ 72	CMEP / OSHA	IM/ CV	2			03	50	50	100	2
2	PC	18IM71	Operations Management		2	2		03	50	50	100	4
3	PE	18IM72	Supply Chain Management		2	2		03	50	50	100	4
4	PE	18IM73 X	Professional Elective -3		3			03	50	50	100	3
5	PE	18IM74 X	Professional Elective -4		3			03	50	50	100	3
6	OE	18IM75 X	Open Elective - C		3			03	50	50	100	3
7	PC	18IML76	Statistics Laboratory				2	03	50	50	100	1
8	PC	18IML77	ERP & OR Laboratory				2	03	50	50	100	1
9	Proj ect	18IMP78	Project Work Phase - 1				2	03	50	50	100	2
10	INT		Internship	VI se exam be cathe in of V seme	(If not completed after VI semester examinations, it has to be carried out during the intervening vacations of VII and VIII semesters)							
			TO	TAL	15	4	6	27	450	450	900	23

Note: PC: Professional Core, PE: Professional Elective, OE: Open Elective, INT: Internship, MC: Mandatory Course

Internship: All the students admitted to III year of BE have to undergo mandatory internship of 4 weeks during the vacations of VI and VII semesters and /or VII and VIII semesters. A SEE examination will be conducted during VIII semester and prescribed credits shall be added to VIII semester. Internship is considered as a head of passing and is considered for the award of degree. Those, who do not take-up/complete the internship will be declared as failed and have to complete during subsequent SEE examination after satisfy the internship requirements.

	Electives									
Course	Professional Electives - 3	Course	Professional Electives - 4							
code		code								
18IM731	Project Management	18IM741	Design of Experiments							
18IM732	Nanotechnology	18IM742	Strategic Management							
18IM733	Human Resource Management	18IM743	Product Design and Manufacturing							
18IM734	Database Management System	18IM744	Total Quality Management							
18IM735	Technology Management	18IM745	Industrial Relations and Labour Welfare							

CMEP: Cost Management of Engineering Projects, OSHA: Occupational Safety and Health Administration

Course code	Open Elective -C
18IM751	Human Resource Management

VIII	SEMEST	ΓER																	
					Tea	ching /Wee		Examination											
Sl. No	Cource code		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Course code		Course code		Course and Course Title		Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Fotal Marks	Credits
					L	Т	P	Dur		3 2	1								
1	MC	18HS81/82	CMEP / OSHA	IM/CV	2			03	50	50	100	2							
2	Project	18IMP82	Project Work Phase - 2				2	03	50	50	100	10							
3	Seminar	18IMS83	Technical Seminar				2	03	50	50	100	1							
4	INT	(Comp interve				vacatio emest	ons of ers	03	50	50	100	2							
	TOTAL 2 4 12 350 350 700 15										15								

Note: PC: Professional Core, PE: Professional Elective, OE: Open Elective, INT: Internship, MC: Mandatory Course

Internship: Those, who have not pursued /completed the internship, will be declared as failed and have to complete during subsequent SEE examination after they satisfy the internship requirements.

CMEP: Cost Management of Engineering Projects OSHA: Occupational Safety and Health Administration

VII SEMESTER

Sub Title: COST MANAGEMENT OF ENGINEEREINGT PROJECTS								
Sub Code: 18HS71	No. of Credits: 2	No. of lecture hours/week: 2						
Exam Duration: 2 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours : 26						

Objectives:

- 1. The objective of this course is to familiarize the student with the basic concepts, standards and practices of financial accounting.
- 2. The course is devoted to the basic financial statements, the analysis and recording of transactions, and the underlying concepts and procedures,
- 3. To carry out financial statement analysis and studying and preparation of cost sheet and budget.

Unit No.	Syllabus Content	No of Hours
1	COST CONCEPTS: Cost- meaning, Cost v/s Expense, meaning of loss, classification of cost, cost driver & cost unit. Overheads- Meaning and Classification of Overheads.	05
2	COMPONENTS OF COSTING: objectives of costing, elements of Costing. Preparation of Cost Sheet, Job Costing-Batch Costing, Process Costing and Activity Based Costing(Simple Problems on Activity Based Costing)	05
3	INTRODUCTION TO ECONOMICS: Meaning, Scope, Engineering Decision Makers, Nature and Significance of Economies, Laws of Demand - Concepts, Exceptions. Elasticity of Demand, Demand Forecasting - meaning, methods. Law of Supply - Concepts, Exception. Law of Diminishing Marginal Utility.	05
4	INDIAN AND GLOBAL BUSINESS ECONOMICS / MACRO ECONOMICS: National Income Concept, Per Capita Income (PCI), Gross Domestic Product (GDP) – Concept, Components. Business Cycles – Meaning, Phases. Inflation-Types, Causes and Measurements- Consumer Price Index (CPI) and Whole Sale Price Index (WSI). SWOT Analysis of Indian Economy.	05
5	FINANCIAL PLANNING: Income Statement and Balance Sheet (Proforma), Indian Financial System Components. Capital Budgetiing – Phases, Techniques- Pay Back Period (PBP), Net present Value (NPV), Internal Rate of Returns (IRR). Projecting the Cash Flows – Components.	06

Outcomes:

Upon completion of the course, you will be able to:

- 1. Understand and apply fundamental accounting concepts, principles and conventions and to carry out journal entries and adjustments.
- 2. Prepare financial statements in accordance with generally accepted accounting principles.
- 3. Prepare and analyze a trial balance, cash flow statement, cost sheet variance analysis.
- 4. To prepare and analyze different types of budget
- 5. To explain the concepts of financial management, working capital and their applications to industries.

Mapping with POs:

Cos	Mapping with POs
CO1	PO1, PO4, PO5, PO7, PO8, PO11, PO12
CO2	PO1, PO3, PO5, PO6, PO11, PO12
CO3	PO1,PO3, PO5, PO11, PO12
CO4	PO1,PO3,PO5,PO10,PO11,PO12
CO5	PO3,PO5,PO8,PO11,PO12

TEXT BOOKS:

1Cost Accouting- Principles and Practices, S P Jain K L Narang, Kalyani Publishers.

- **2 Enineering Economy,** Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5.
- **3. Financial Management-Theory and practices,** Shashi.K.Gupta, R K Sharma, Kalyani Publishers, ISBN 13, 978 9327235975.

REFERENCE BOOKS:

- 1 Cost Accounting, Khan M Y, 2nd Edition, 2000, Tata McGraw Hill, ISBN 007042248.
- **2 Engineering Economics,** R.Paneerselvam, Eastern Economy Edition 2001, PHI, ISBN-81-203-1743-2Khan & Jain.
- 3. Financial Management, Khan & Jain, McGrawHill, India.

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Scheme of semester End Examination (SEE):

Units		Uni	t-1			Uni	Unit-3						
Qno.	1.a	1.b	О	2.a	3.a	3.b	О	4.a	5.a	5.b	О	6.a	6.b
Marks	05	05	R	10	05	05	R	10	05	05	R	05	05

Units	Unit-4				Unit- 5					
Qno.	7.a	7.b	О	8.a	8.b	9.a	9.b	О	10.a	10.b
Marks	05	05	R	05	05	05	05	R	05	05

Semester: VII / VIII		
Course Title: OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA)		
Course Code: 18HS72	Evaluation Procedure:	
Credits: 02	CIE + Assignment + Group Activity + SEE Marks = 40 +	
	5 + 5 + 50 = 100	
Teaching Hours: 26 Hrs. (L:T:P:S) - 2:0:0:0	SEE Duration: 3 Hrs	

Co	Course Learning Objectives:		
1	To gain an historical, economic, and organizational perspective of occupational safety and health.		
2	To investigate current occupational safety and health problems and solutions.		
3	To identify the forces that influence occupational safety and health.		
4	To demonstrate the knowledge and skills needed to identify work place problems and safe work		
	practice.		

UNIT - I			
	6 Hrs		
OCCUPATIONAL HAZARD AND CONTROL PRINCIPLES: Safety, History and development, National Safety Policy. Occupational safety and Health Act (OSHA), Occupational Health and Safety administration - Laws governing OSHA and right to know. Accident – causation, investigation, investigation plan, Methods of acquiring accident facts, Supervisory role in accident investigation.			
UNIT - II			
ERGONOMICS AT WORK PLACE: Ergonomics Task analysis, Preventing Ergonomic Hazards, Work space Envelops, Visual Ergonomics, Ergonomic Standards, Ergonomic Programs. Emergency Response - Decision for action – purpose and considerations.	5 Hrs		
UNIT - III			
FIRE PREVENTION AND PROTECTION:	5 Hrs		
Fire Triangle, Fire Development and its severity, Effect of Enclosures, early detection of Fire,			
Classification of fire and Fire Extinguishers. Electrical Safety.			
UNIT – IV (Blended Learning)			
HEALTH CONSIDERATIONS AT WORK PLACE: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans (EMP) for safety and sustainability.			
UNIT - V			
OCCUPATIONAL HEALTH AND SAFETY CONSIDERATIONS: Water and wastewater treatment plants, Handling of chemical and safety measures in water and wastewater treatment plants and labs, Construction material manufacturing industries like cement plants, RMC Plants, precast plants and construction sites. Policies, roles and responsibilities of workers, supervisors and managers.			

Course Outcomes: The students will be able to		
1 Acquire knowledge on OSHA policies, Laws and regulations.		

- 2 Identify hazards in the workplace that pose a danger or threat to the safety or health, or that of others.
- 3 Control unsafe or unhealthy hazards and propose methods to eliminate the hazards.
- 4 Discuss the role of health and safety in the workplace and effects of industries on environment.
- 5 Identify workplace hazards, safety considerations and roles and responsibilities of workers, supervisors and managers.

Question paper pattern:

The question paper will have ten full questions carrying equal marks.

Each full question will be for 20 marks.

There will be two full questions (with a maximum of four sub - questions) from each unit.

Each full question will have sub - question covering all the topics under a unit.

The students will have to answer five full questions, selecting one full question from each unit.

Text Books:

- Goetsch D. L., (1999), "Occupational Safety and Health for Technologists, Engineers and Managers", Prentice Hall.
- Heinrich H.W., (2007), "Industrial Accident Prevention- A Scientific Approach", McGraw-Hill Book Company National Safety Council and Associate (Data) Publishers Pvt. Ltd., (1991).
- 3 Industrial Safety and Pollution Control Handbook.

Reference Books:

- 1 Colling D.A., (1990), "Industrial Safety Management and Technology", Prentice Hall, New Delhi.
- Della D.E., and Giustina, (1996), "Safety and Environmental Management", Van Nostr and Reinhold International Thomson Publishing Inc.

Additional Books:

- Industrial safety, health and environmental management. R K Jain, Sunil S Rao, Khanna Publications.
- 2 Safety, occupational health and environmental management in construction. S E Sharma, Vineeth Kumar, Khanna Publications.
- 3 Labour laws, Commercial law publishers India Pvt Ltd.
- 4 The occupational Safety, health & working conditions code. Commercial law publishers 2020.
- 5 Occupational health and safety management A practical approach by Charles-De-Reese.
- 6 Occupational ergonomics, theory and applications by Amith Battacharya & James D Mc Glotthin.
- 7 Occupational Safety and health law handbook. Mc Dermott will & Enercy LLP.
- 8 Occupational health and safety management. Lambert Academic Publishing.
- 9 Fundamentals of Industrial Ergonomics Babur Musthaffa (Google books).
- 10 Global occupational safety health and management handbook. Thomas Fuller, CAC press.
- 11 Introduction to Industrial Ergonomics.
- 12 Ergonomics and practical manual for beginners. Manjith Kaur Chauhan.

Sub Title: OPERAT	IONS MANAGEMENT	
Sub Code: 18IM71	No. of Credits: 4= 3: 2: 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Course Objectives:

- 1. Introduction of operations management and its importance in production operations and decision making.
- 2. To apply the knowledge of forecasting of production demand.
- 3. To study and apply the knowledge of Aggregate planning, MPS and MRP
- 4. To study and apply different scheduling methods to determine the idle times of the machines.

Unit No.	Syllabus Content	No of Hours
1	OPERATIONS MANAGEMENT CONCEPTS: Introduction, Historical development, The trend: Information and Non-manufacturing systems, Operations management, Factors affecting productivity, International dimensions of productivity, The environment of operations. Manufacturing and service systems. OPERATIONS DECISION MAKING: Introduction, Management as a science, Characteristics of decisions, and Framework for decision making, Decision methodology.	07
2	FORECASTING DEMAND: Forecasting objectives and uses, Forecasting variables, Opinion and Judgmental methods, Time series methods, Exponential smoothing, Regression and correlation methods, Application and control of forecasts.	07
3	AGGREGATE PLANNING: Introduction- planning and scheduling, Objectives of aggregate plan, Aggregate planning methods. MASTER PRODUCTION SCHEDULING: Master scheduling objectives, Master scheduling methods. Developing a master production schedule, Reconciling the MPS with sales operation. RESOURCE PLANNING FOR SERVICE PROVIDERS: Dependent demand for srvices, Bill of resources. Case study-ERP implementation by SAP	08
4	MATERIAL AND CAPACITY REQUIREMENTS PLANNING: Overview: MRP and CRP, MRP: Underlying concepts, System parameters, MRP logic, System refinements, Capacity management, CRP activities.	08
5	SCHEDULING AND CONTROLLING PRODUCTION ACTIVITIES: Introduction, PAC, Objectives and Data requirements, Scheduling strategy and guide lines, Scheduling methodology, priority control, capacity control. SINGLE MACHINE SCHEDULING: Concept, measures of performance, SPT rule, Weighted SPT rule, EDD rule, minimizing the number of tardy jobs. FLOW -SHOP SCHEDULING: Introduction, Johnson's rule for V jobs on 2 and 3 machines, CDS heuristic. JOB-SHOP SHEDULING: Types of schedules, Heuristic procedure, scheduling 2 jobs on 'm' machines.	09

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2: Two assignments are evaluated for 5 marks.

Course Outcomes:

- 1. Able to memorize history and describe importance of OM to take decision based on different models.
- 2. Able to calculate forecasted values using different forecasting methods
- 3. Will be able to operate the production activities on Aggregate planning, MPS and MRP
- 4. Will be able to operate the production activities based on priorities and capacity.
- 5. Will be able to select the best course of action for better production quality and quantity based on new methods of production.

Cos	Mapping with POs
CO1	PO2,PO4,PO5,PO6,PO9,PO10,PO12
CO2	PO1,PO2,PO3,PO4,PO5,PO8,PO9,PO12
CO3	PO2,PO3,PO4,PO5,PO7,PO8,PO9,PO11,PO12
CO4	PO1,PO2,PO3,PO4,PO6,PO9,PO10,PO11,PO12
CO5	PO2,PO3,PO4,PO5,PO8,PO9,PO12

TEXT BOOKS:

- 1. Operations Management- Monks, J.G., McGraw Hill; Second edition (8 January 2020)
- **2.** Production and Operations Management- Pannerselvam. R, Prentice Hall India Learning Private Limited; 3rd edition (1 January 2012).
- **3.** Production and Operations Management- Chary S.N, McGraw-Hill; Sixth edition (10 April 2019)

- **4.** Modern Production/ Operations Management- John Wiley & Sons Inc; 7th edition (1 January 1983)
- **5.** Operations Management for Competitive Advantage by Chase and Jacobs, McGraw-Hill Education; 11th edition (16 May 2005)
- **6.** B. Mahadevan Operations Management: Theory and Practice, Pearson (1 January 2018)

Sub Title: SUPPLY	CHAIN MANAGEMENT	
Sub Code: 18IM72	No. of Credits: 4= 3 : 2 : 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. To describe the basic strategic frame work to analyze supply chain
- 2. To outline the concept of facility location and network design
- 3. To define about planning and managing inventories, sourcing, transportation.
- 4. To explain about the role of Information & Technology in Supply chain

Unit	Syllabus Content	No of
No.		Hours
1	BUILDING A STRATEGIC FRAMEWORK TO ANALYSE SUPPLY CHAINS:	08
	Supply chain stages and decision phases process view of a supply chain. Supply chain	
	flows. Examples of supply chains. Competitive and supply chain strategies. Achieving strategic fit. Expanding strategic scope. Drivers of supply chain performance	
2	FACILITY LOCATION AND NETWORK DESIGN: Models for facility location and capacity allocation. Impact of uncertainty on SCN –. Framework for structuring drivers –	08
	Inventory, Transportation, Facilities, Information. Obstacles to achieving fit. Case	
	discussions. Distribution Networking – Role, Supply Chain Network (SCN) – Role, Factors, Framework for Design Decisions.	
3	PLANNING AND MANAGING INVENTORIES IN A SUPPLY CHAIN: Review of	08
3	inventory concepts. Trade promotions, Managing multi-echelon cycle inventory, safety	Uð
	inventory determination. Impact of supply uncertainty aggregation, Optimum level of	
	product availability; importance factors. Managerial levers to improve supply chain	
	profitability.	
4	SOURCING, TRANSPORTATION AND PRICING PRODUCTS: Role of sourcing,	08
	supplier – scoring & assessment, selection and contracts. Design collaboration. Role of	
	transportation, Factors affecting transportation decisions. Modes of transportation and their	
	performance characteristics. Tailored transportation, International transportation.	
5	COORDINATION AND TECHNOLOGY IN THE SUPPLY CHAIN: Co-ordination in	07
	a supply chain: Bullwhip effect. Obstacles to coordination. Managerial levers to achieve	
	co-ordination, Building strategic partnerships. The role of IT supply Chain, The role of E-	
	business in a supply chain.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Will be able to indicate the utilization of supply chain management systems and resources being effectively used in an organization
- 2. Will be able to identify capacity allocation facility location models, apply Managerial levers to improve supply chain profitability
- 3. Will be able to plan and manage inventories to improve supply chain profitability
- 4. Will be able to identify factors affecting transportation decisions and design transportation network to improve supply chain operations
- 5. Will be able to relate Bullwhip effect, role of information technology in supply Chain,

apply concepts of Reverse Logistics and recommend Implementation of Six Sigma in Supply Chains

Cos	Mapping with POs
CO1	PO3,PO5,PO8,PO10
CO2	PO3,PO5,PO,PO11
CO3	PO3,PO5,PO11
CO4	PO3,PO5,PO10,PO11
CO5	PO3,PO5,PO8,PO10,PO11

TEXT BOOK:

- 1. **Supply Chain Management** 2001, Strategy, Planning & Operation. Sunil Chopra & Peter Meindl; Pearson Education Asia, ISBN: 81-7808-272-1.
- 2. Supply Chain Management N Chandrashekaran, Oxford Higher education, 2013
- 3. **Supply Chain Engineering: Models and Applications,** A. Ravi Ravindran, Donald Warsing Jr., CRC Press; First edition (1 January 2019)

- 1. **Supply Chain Redesign** Transforming Supply Chains into Integrated Value Systems –Robert B Handfield, Ernest L Nichols, Jr., 2002, Pearson Education Inc, ISBN: 81-297-0113-8
- 2. **Modelling the Supply Chain** –Jeremy F Shapiro, Duxbury;, 2002, Thomson Defineing, ISBN 0-534-37363
- 3. **Designing & Managing the Supply Chain** –David Simchi Levi, Philip Kaminsky & Edith Simchi Levi;; Mc Graw Hill

Professional Electives - 3

Sub Title: PROJECT MANAGEMENT		
Sub Code: 18IM731	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Objectives:

- 1. To introduce concepts of project management with a strong emphasis on issues and problems associated with delivering successful projects.
- 2. To Define and study the project planning and estimating its cost.
- 3. To determine the elapsed time and idle time through project scheduling
- 4. To determine the critical path for the projects through project management tools and techniques.

Unit No.	Syllabus Content	No of Hours
1	CONCEPTS OF PROJECT MANAGEMENT: Concepts of a Project, Categories of projects, Phases of project life cycle, Roles and responsibility of project leader, tools and techniques for project management.	06
2	PROJECT PLANNING AND INTEGRATION: Feasibility report phased planning, Project planning steps, Preparation of cost estimation. Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated change control, close project or phase.	07
3	ORGANIZING AND STAFFING THE PROJECT TEAM: Authorities and responsibilities of project manager, Project organization and types of accountability in project execution, controls. Tendering and selection of contractors.	06
4	PROJECT SCOPE MANAGEMENT: Project scope management, collect requirements, define scope, create WBS, validate scope, and control scope. Project Risk Management: Plan risk management, identify risk, Perform qualitative risk analysis, perform quantitative risk analysis, plan risk resources, control risk	10
5	PROJECT TIME MANGEMENT : Plan schedule management, define activities, sequence activities, estimate activity resources, estimate activity durations, develop schedule, control schedule. Exercises on PERT/CPM. Case studies on project management.	10

Outcomes:	
outcomes.	

Upon successful completion of this course, the student will be able to:

- 1. Apply the concept, tools and techniques for managing large projects.
- 2. Construct project plans for different types of organizations.
- 3. Evaluate a project to develop the scope of work, provide accurate cost estimates and to plan the various activities;
- **4.** Will be able to explain on resource and time planning, controls, communication mechanisms, reviews and other project management tools.
- 5. Analyze and evaluate risks in large and complex project environments

Cos	Mapping with POs
CO1	PO3,PO4,PO5,PO7,PO8,PO9,PO11
CO2	PO3,PO4,PO5,PO7,PO8,PO9,PO11,PO12
CO3	PO3,PO4,PO5,PO6,PO11
CO4	PO4,PO5,PO11
CO5	PO4,PO10,PO11,PO12

TEXT BOOKS:

- 1. Project Management a System approach to Planning Scheduling & Controlling Harold Kerzner, CBS Publishers and Distributors. 2016.
- 2. Project Execution Plan: Plan for project Execution interaction Chaudhry S.2016
- 3. Project Management Institute, "A guide to the project management body of knowledge (PMBOK Guide)".5th edition, 2013, ISBN: 978-1-935589-67-9. 2015

REFERENCES BOOKS:

- Project Planning Analysis selection financing Implementation and Review- Tata Mc Graw Hill Publication, 7th edition 2010, Prasana Chandra.
- 2. **Project Management** Beningston Lawrence McGraw Hill 1970.
- 3. A Management Guide to PERT and CPM, WEIST & LeVY Eastern Economy of PH 2002.
- 4. **PERT & CPM**.-L.S.Srinnath, Affiliated East West Press Pvt. Ltd. 2002.
- 5. **Project planning analysis selection implementation & review** Prasanna Chandra, ISBNO-07-462049-5 2002.
- 6. **Performing and Controlling Project,**-Angus, Planning, 3rd End, Person Education, ISBN:812970020.2001
- 7. **Project planning scheduling & control**, James P.Lawis, Meo Publishing Company 2001.
- 8. **Project Management -**Bhavesh M.Patel, Vikas Publishing House, ISBN 81-259-0777-7 2002

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2: Two assignments are evaluated for 5 marks.

Sub Title: NANOTECHNOLOGY		
Sub Code: 18IM732	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. To have the basic knowledge of nanomaterials and the process.
- 2. Descrive methods ogf nanoscale manufacturing and the characterization can be enabled.
- 3. To learn about Nano sensors and their applications in mechanical, electrical, electronic. Magnetic, Chemical field
- 4. To understand the concept for a nanoscale product based on sensing, transducing and actuating mechanism.

Unit No.	Syllabus Content	No of Hours
1.	Introduction to Nanomaterials: History of Nanotechnology ,structure and properties of carbon based: Fullerenes(Bucky Ball,Nanotubes) ,metal based:Nano shells,Quantum Dots , Dendrimers , Diamond like carbon (DLC) Nanocarriers ,bionanomaterials:protein & DNA based nanostructures,Hybrids:hybrid biological/inorganic ,Nanosafety Issues: Toxicology health effects caused by nanoparticals.	09 Hrs
2.	Characterization of Nanostructures: Spectroscopy: UV-Visible spectroscopy, Fourier Transform infrared spectroscopy (FTIR), Raman Spectroscopy, X-rat spectroscopy. Electron microscopy: Scanning electron microscopy (HRSEM). Transmission electron microscopy (TEM). Scanning probe microscopy: Atomic Force microscopy (AFM), Scanning tunnel microscopy (STM).	08 Hrs
3.	Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and Top-down approaches-Nano Grinding, Sol-gel Process, Chemical Vapour deposition (CVD). Plasma arching and various lithography techniques Hard & Soft lithography. Nanosensors: Introduction, classification of Nanosensors and their applications.	09 Hrs
4.	Micro & Nano – Electromechanical Systems and Microfluidics: MEMS/NEMS: Magnetic ,Chemical and Mechanical Transducers Sensing and Actuators ,Microfluidics: Laminar flow ,Hagen-Poiuselle equation ,basic fluid ideas ,Special comsideration of flow in small channels, mixing ,microvalves µpumps.	06 Hrs
5.	Applications of Nanotechnology: Molecular electronics ,molecular switches ,mechanical cutting tools , machine components ,DLC coated grinding wheels ,solar cells ,Batteries ,fuel cells,Nanofilters Medical nanotechnology in Diagnosyic,Therapeutics,Drug delivery and Nanosurgery. Electromagnetic nanosensors, Biosensors: Biosensors in modern medicine.	07 Hrs

Course Outcomes : After completing the course ,the students will be able to

CO1: Remember, understand and apply knowledge about of nanomaterials and their uses.

CO2: Interpret and apply the techniques of manufacturing and characterization processes

CO3: Apply the knowledge of Nanosensors, related to nanosensors in electronics, mechanical, chemical and

biological systems.

CO4:Create and evaluate nano Design and System in various disciplines

TEXT Books:

- 1. B S Murthy, P Shankar, B Raj and J Murday, Text book of nanoscience and nanotechnology, Springer, Copublication with university press (India) Pvt Ltd. VCH, XII, 1st edition
- 2. V K Khanna, Nanocensors, Physical, Chemical and Biological CRC Press, 1st edition, 2013
- 3. C C Kock, Nanostructured materials, William Andrew publishing, 2nd edition
- **4.** M Wilson, K Kannangara, G Smith, M Simmons, B Raguse, Nano Technology, Overseas Press (India) Pvt Ltd. 1st edition 2005

- 1. Charles P. Poole Introduction to Nanotechnology 1st Edition, Frank J. Owens
- 2. Manasi Karkare, Nanotechnology 0th Edition, Publisher, I K International Publishing House ISBN-13978-8189866990
- 3. Thomas Varghese, K.M. Balakrishna, an Introduction to Synthesis, Properties and Applications of Nanomaterials 1st Edition, by Thomas Varghese (Author),
- 4. Rakesh Rathi, Nanotechnology, S.Chand And Publishing Limited, First edition, 2009

Sub Title: HUMAN RESOURCE MANAGEMENT		
Sub Code: 18IM733	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

- 1. An ability to evaluate and apply theories of social science disciplines to workplace issues
- 2. Use of HRM functional capabilities to select, develop, and motivate workers
- **3.** To develop strong analytical, communication, and decision making skills.

Unit	Syllabus Content	No of
No.		Hours
1	INTRODUCTION: Introduction, meaning, nature, scope of HRM. Importance and Evolution of the concept of HRM. Major functions of HRM, Principles of HRM, Organization of Personnel department, Role of HR Manager. JOB ANALYSIS: Meaning, process of job analysis, methods of collecting job analysis data. Job Description and Specification, Pole Analysis.	08
2	job analysis data, Job Description and Specification, Role Analysis HUMAN RESOURCE PLANNING : Uses and benefits, Man Power Inventory, Man Power Forecasting, Methods of Man Power Forecasting RECRUITMENT: Sources of Man power, Advertisement, Short Listing of Candidates calling Candidates for selection Process.	08
3	SELECTION: Selection procedure – Written Test, Group Discussion. Interview – Different methods, advantages and Limitations, Psychological testing – Advantages and limitations, Induction procedure, transfers, promotion exit interview, (Tutorial on written test, Group Discussion, Interviews)	08
4	TRAINING AND DEVELOPMENT: Identification of Training needs, Training Evaluation, Training Budget, Executive Development – Different Approaches, Non-executive development – Different methods. PERFORMANCE APPRAISAL: Components (all round performance appraisal), Methods, Advantages and limitations of different methods, Personal Counselling based on Annual Confidential Reports.	08
5	INDUSTRIAL RELATIONS: Meaning Characteristics of Industrial Relations, Factors of Industrial, Relations, the Three Actors of Industrial Relations, Importance of Harmonious Industrial Relations, Objectives of Industrial Relations, Functions of Industrial Relations, Code of Industrial Relations, Conditions for Congenial Industrial Relations.	07

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Apply the knowledge and skills needed to effectively manage human resources
- 2. Examine current issues, trends, practices, and processes in HRM
- 3. Compare the common methods for recruiting and selecting human resource

- 4. Contribute to employee performance management and organizational effectiveness
- 5. Evaluate employee orientation, training, and development programs.

Cos	Mapping with POs
CO1	PO2,PO8,PO12
CO2	PO3,PO5,PO11
CO3	PO2,PO8,PO12
CO4	PO3,PO5,PO11
CO5	PO2,PO8,PO11,PO12

TEXT BOOKS

- 1. **Human** Resources Management Dr. K Ashwathappa, Tata McGraw Hill, Edition 2016
- 2. **Essentials of HRM and industrial relations** Subbarao,P , Himalaya publishing house 2016

- **1 Management of Human Resources** CB Mamoria Himalaya Publication House, 2003
- 2 Personnel / Human resource Management Decenoz and robbins PHI, 2002
- 3 Industrial Acts by Jain, 2004
- 4 Industrial Relations Arun Monappa TMH, ISBN 0-07-451710-8

Sub Title: DATA BASE MANAGEMENT SYSTEM		
Sub Code : 18IM734	No. of Credits:3=3: 0 : 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE +Assignment + SEE = 45 + 5 + 50 = 100	Total No. of Contact Hours: 39

- **1.** Explain the fundamental concepts of database management such as database design, database languages, and database-system implementation
- **2.** Analyze database models & entity relationship models.
- **3.** Determine the physical and logical database designs, data modeling, relational, hierarchical and network models.
- **4.** Define the Structured Query Language for easy accessibility of the Database.

Unit No.	Syllabus Content	No of Hours
1	DATABASES AND DATABASE USERS: Introduction, characteristics of data base approach, intended uses of a DBMS, advantages and implication of database approach. DATABASE SYSTEMS CONCEPTS AND ARCHITECTURE: Data models, Schemas and instances, DBMS architecture and data independence, database languages and interfaces, database system environment, classification of data base management systems.	10
2	DATA MODELING: High level conceptual data models for database design. Entity types, entity sets, attributes, and keys. Relationships, relationship types, roles, and structural constraints. Weak entity types. ER diagrams. RECORD STORAGE AND PRIMARY FILE ORGANIZATIONS: Secondary storage devices, buffering of blocks, placing file records on disk, operations on files, heap files and sorted files, hashing techniques. Single-level and multilevel ordered indexes, dynamic multi level indexes using B-trees and B+trees.	10
3	RELATIONAL DATA MODEL AND RELATIONAL ALGEBRA: Brief discussion on Codd rules, relational model concepts, constraints, and schemas. Update operation on relations, basic and additional relational algebra operations, and queries in relational algebra.	06
4	Structured Query Language (SQL): Data definition etc. in SQL2. Basic and complex queries in SQL. Insert, delete, update statements, and views in SQL, embedded SQL.	07

5	DATABASE DESIGN: Design guidelines for relational schemes, functional Dependencies, normalization -1 st , 2 nd , 3 rd , 4 th , and 5 th normal forms. Database design process, factors influencing physical database design guidelines, and guidelines for relational systems.	06
---	--	----

Note 1: Unit 1 and Unit 2 will have internal choice.

Note 2: Two assignments are evaluated for 5 marks: Assignment – 1 from units 1 and 2. Assignment - 2 from units 3, 4 and 5.

Outcomes:

By the end of the course students will be able to

- 1. Distinguish Data Base systems, Data models and DBMS architecture.
- 2. Model the data models for database design and experiment storage devices.
- 3. Write relational algebra operations, and queries in relational algebra.
- 4. Demonstrate the Structured Query Language (SQL) to query, update and manage a database
- 5. Define and relate the database design guidelines, and guidelines for relational systems.

Cos	Mapping with POs
CO1	PO3,PO4,PO5,PO6,PO9,PO10,PO11
CO2	PO3,PO4,PO5,PO6,PO9,PO10,PO11
CO3	PO3,PO5,PO8
CO4	PO3,PO5,PO8
CO5	PO5,PO6,PO8,PO9,PO10

TEXT BOOKS:

- 1. **"Fundamentals of database systems"-**Ramez Elmasri and Shamkanth B. Navathe, , 6th Edition, Addison Wesley Publishing Company.
- 2. "Database Management System", -Raghu Ramakrishnan and Johannes Gehrke, 3rd Edition, TATA McGraw Hill, ISBN 0-07-1231511

- 1. **Modern Data base management** Mc Lfadden, hoffer, Prescott
- 2. **Database Management Design -** Gary W. Hansen and James V. Hanesn, "and" 2nd Edition, PHI Pvt. Ltd.

Sub Title :TECHNOLOGY MANAGEMENT		
Sub Code: 18IM735	No. of Credits: 3= 3: 0 : 0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE +Assignment + SEE =	Total No. of Contact Hours: 39
	45 + 5 + 50 = 100	

- 1. Integrate framework that will allow students to synthesize knowledge from other courses into a comprehensive understanding of competitive advantage.
- 2. Explain the nature of technology and its types, application in development of new technologies.
- 3. Discuss how to think critically in the research and development

Unit	Syllabus Content	No of
No.		Hours
1	THE CONCEPT OF TECHNOLOGY: Introduction, The nature of knowledge, Aspects of classification, Concept and Meaning of technology, The character of a specific technology, Scope of technology, Examples of classification of technology, Scale of technology information, Levels of technology, Technology portfolios, Technology as an environment.	8
2	THE NATURE OF TECHNOLOGICAL CHANGE: Introduction, Meaning of technological change, Concept of invention, Nature of innovation, Emergence of new technologies, Life cycle of a technology, Motivation for technological change, Nature of technological progress, Nature of mature technology, Nature of diffusion, Technological convergence.	8
3	THE ECONOMICS OF TECHNOLOGY: Introduction, Meaning of technological economics, Examples of technological economics, Scope of technological economics, Engineering economics, Production economics, Concept of economy of scale, Concept of optimum size, Technology as a commodity, Technology at the macro-economic level.	8
4	CORPORATE TECHNOLOGY STRATEGY: Introduction, The Business Mission, Where Is The Business? Concept Of Business Strategy, Capability For Strategic Planning, Corporate Technology Strategy, Competitive Technology, Focus Of Strategy, Technological Alliances, Realization Of Strategy, Technology Crisis	8
5	TECHNOLOGY- AN INSTRUMENT OF COMPETITION: Introduction, securing competitive advantage, Technological competition analysis, Technological leadership, Adoption of new technology, marketing a new technology product, Retention of competitive advantages.	7

 $\underline{\text{Note 1: }}$ SEE Question paper contains total 10 Questions, student should answer any one question from each Unit shall answer total five question.

Note 2: Two assignments are evaluated for 5 marks: Assignment – 1 from units 1 and 2. Assignment - 2 from units 3, 4 and 5.

Outcomes:

After completing the course students are able to

- 1. Describe and assess tool, techniques and strategies of the management of technology and innovation.
- 2. Examine the management of techno logy and innovation from the perspective of research and development, new product development, production, operations, finance, commercialization and strategy.
- **3.** Analyze the high levels of complexity and risk associated with the management of technology and innovation and develop company strategies.

COs	Mapping with POs
CO1	PO2,PO8,PO12
CO2	PO3,PO5,PO11
CO3	PO2,PO8,PO12
CO4	PO3,PO5,PO11
CO5	PO2,PO8,PO11,PO12

TEXT BOOKS:

1. Paul Lowe – The management of technology, Perception and opportunities, Chapman and Hall, London 1995. NEW TEXT BOOK

- 1. Frederick Betz Strategic Management of technology, Mc Graw hill inc. 1993.
- 2. Rastogi P.N. Management of Technology & Innovation: Competing through Technology Excellence, Sage Publications, 1995.

PROFESSIONAL ELECTIVES - 4

Sub Title: DESIGN OF EXPERIMENTS		
Sub Code : 18IM741	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Objectives:

- 1. To describe how to design experiments, carry them out, and analyze the data they yield.
- 2. To introduce Taguchi methods, and compare and contrast them with more traditional techniques.
- 3. To examine how a factorial design allows cost reduction, increases efficiency of experimentation
- 4. Design and conduct orthogonal array experiments for process improvement.

Unit	Syllabus Content	No of
No.		Hours
1	Introduction: Strategy of Experimentation, Design of Experiments: Definition,	07
	Objectives, Principles of DOE, Applications, Guidelines.	
	Principles of Quality Engineering- Definition of quality, Taguchi's Quality	
	philosophy, Off-line and on-line quality control, Quality loss function, Quadratic loss	
	function, Noise Factors, P- diagram, Optimization of Product and Process design	
2	Factorial Experimentation – Single Factor Experiments, The 2 ² Design, The 2 ³	10
	Design, The General 2^k Design, A Single Replicate of the 2^k Design, Problems.	
3	Blocking and Confounding in the 2^k Design: Blocking a Replicated 2^k Factorial	08
	Design, Confounding in the 2^k factorial design, Confounding the 2^k factorial design in	
	two Blocks and Four Blocks	
4	Designing of experiments through Orthogonal Arrays: Counting degrees or	07
	freedom, selecting a standard orthogonal array, dummy level technique, and	
	compound factor method. Linear graphs and interaction assignment. Modification of	
	linear graphs, column merging method, branching design. Strategy for constructing an	
	orthogonal array. Comparison with the classical statistical experiment design.	
5	Robust Design: Case study discussion, Noise factors and testing conditions. Quality	07
	characteristics and objective functions. Control factors and their levels. Matrix	
	experiment and data analysis plan. Conducting the matrix experiment, Data analysis,	
	Verification experiment and future plan.	
	Signal-To-Noise Ratio: Evaluation of sensitivity to noise. S/N ratios for Static	
	problems: Smaller-the-better, Larger-the-better, Nominal-the-best and Asymmetric	
	Cases. Signal-to-noise ratio for dynamic problems: S/N ratios for Continuous-	
	continuous, continuous-digital, digital-continuous, digital-digital cases. Introduction	
	to Response Surface Methodology.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Course Outcomes:

CO1: Determine the importance of statistical design of experiments and benefits in R&D

CO2: Investigate the logic of hypothesis testing, including analysis of variance and the detailed

analysis of experimental data.

CO3: Design and conduct orthogonal array experiments for process improvement.

CO4: Choose an appropriate experimental design based on the study objectives

CO5:Interpret the results of the experiment and report the conclusions based on S/N ratio analysis

Cos	Mapping with POs
CO1	PO1,PO3,PO4
CO2	PO2,PO4,PO5
CO3	PO3,PO4
CO4	PO2,PO3
CO5	PO2,PO4

TEXT BOOKS:

- **1. Quality Engineering Using Robust Design** Madhav S. Phadke, Prentice Hall PTR, Englewood Cliffs, 2012
- **2. Applied Design of Experiments and Taguchi Methods** K. Krishnaiah, P. Shahabudeen, PHI, 2013

- **1. Design and Analysis of Experiments** D.C. Montgomery, John Wiley and Sons, 10th Edition, 2019.
- **2. Designing for Quality** Robert H. Lochner and Joseph E. Matar, an Introduction Best of Taghuchi and Western Methods or Statistical Experimental Design", Chapman and Hall Madras, 2nd edition, 1990
- 3. Taguchi techniques for quality engineering, Phillip J. Ross, McGraw Hill, 1996.

Sub Title: STRATEGIC MANAGEMENT			
Sub Code: 18IM742 No. of Credits: 3= 3:0:0 (L-T-P) No. of lecture hours/week: 3			
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:	

- 1. To provide an integrative framework that will allow students to blend knowledge from other courses into a comprehensive determining of competitive advantage.
- 2. To provide a basic determining of the nature and dynamics of the strategy formulation and implementation processes.
- 3. To encourage students to think critically and strategically.

Unit	Syllabus Content	No of
No.		Hours
1	STRATEGIC MANAGEMENT INTRODUCTION: Definition- Levels of strategy- Roles of Strategist- Strategic Management Process benefits and limitations. Mission -Objectives -Social responsibilities.	07
2	STRATEGY FORMULATION: Strategic Thinking, SWOT analysis-Techniques for environmental analysis- TOWS matrix, Balanced Score Card, Steps in strategy implementation -formulation of SBU strategy. Leadership implementation, communicating the strategy:- Annual and Functional objectives-Development of policies- Organizational Implementation- Evaluation and control. Reward system.	10
3	STRATEGY AND STRUCTURE: Strategy- Structure relationship. Organizational restructuring and Transformation, Principles of Organization. Strategic control- Premise and Implementation control strategic Surveillance special alert control- Operational control - Steps in Operational Control, Types of Operational control.	06
4	PORTFOLIO STRATEGY: Business portfolio analysis- BCG matrix, GE multi matrix, an evaluation of Portfolio models - factors influencing portfolio strategy.	06
5	COMPETITIVE ANALYSIS AND STRATEGIES: Structural analysis of industries threat of entry rivalry among existing competitors, threat of substitutes; Bargaining power of suppliers; structural analysis and competitive strategy - competitor analysis value chain. BUSINESS GROWTH: Reasons, Risks and indicators of Business growth, Growth Strategies- Intensive, Growth Strategies, Integrative Growth Strategies, Diversification, External Growth Strategies.	10

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Articulate a vision that gives meaning to all the firm's stakeholders of the firm's objectives
- 2. Formulate a strategic plan that operationalizes the goals and objectives of the firm
- 3. Implement a strategic plan that takes into account the functional areas of business

- 4. Evaluate and revise programs and procedures in order to achieve organizational goals
- 5. Analyse dynamics in competitive rivalry including competitive action and response, for acting both proactively and defensively.

Cos	Mapping with POs
CO1	PO4,PO7,PO8
CO2	PO6,PO7,PO9
CO3	PO6,PO7,PO9,PO11
CO4	PO7,PO10,PO11
CO5	PO7,PO11,PO12

TEXT BOOKS:

- 1. **Strategic Management** Francis Cherunilam, Himalya Publishers, 4th Edition, 2016
- 2. Strategic Management, Azhar Kazmi, Adela Kazmi, McGraw Hill, Fifth Edition, 2020

- 1. **Business Policy and Strategic Management** -P Subba Rao, Himalya Publishers 1st Edition, 2011
- 2. The Competitive Strategy: Techniques for Analyzing Industries and Competitors, Michael Porter, Simon & Schuster, 2004
- 3. **Strategic Management** Robert A Pitts and David Lei, South Western Publishing, 4th Edition, 2006

Sub Title: PRODUCT DESIGN AND MANUFACTURING			
Sub Code: 18IM743 No. of Credits: 3= 3:0:0 (L-T-P) No. of lecture hours/week: 3			
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39	

- 1. To know the principles, contemporary theories and practices of effective product design.
- 2. To Determine and apply concept of adaptive on consumer products.
- 3. To develop skills and concepts on economic product manufacturing
- 4. To translate ideas in to sketches

Unit No.	Syllabus Content	No of Hours
1	Introduction to Product design : Asimow's Model: definition of product design ,Design by evolution, design by innovation, Essential factors of product design, production-consumption cycle, Flow and value addition I the production – consumption cycle, The morphology of design (The seven phases),primary design phases and flow charting, Roll of allowances, process capability and tolerance in detailed design and assembly.	10
2	Product design practice and Industry : Introduction, product strategies, Time to market, Analyses of the product, The three S's standardization, Renard series(preferred numbers), simplification, The designer and his role, the designer myth and reality, The industrial design organization, Basic design consideration, Problems faced by industrial designer, procedure adopted by industrial designer, Types of model designed by industrial designers, what the designer contributes, Role of aesthetics in product design, functional design practice.	7
3	Strength consideration in product design: Principal stress trajectories force, floe lines, balanced design, Criteria and objectives of design, material toughness, Resilience, Designing for uniform strength, Tension via-a via compression. Design for production- Metal parts: Producibility requirement in the design of machine components, forging design, pressed component design, casting design, design for machining ease, The role of process engineer, Ease of location & clamping, Some additional aspect of production design, Die casting and special castings, Design for powder metallurgical parts, expanded metals & wire forms.	10
4	Optimization in design : Introduction, siddal's, classification of design approaches, optimization by differential calculus, langrage multipliers, geometric programming Lohnson's methods of optimum design.	6
5	Economic factors influencing design: Product value, Design for safely, reliability and environmental consideration, Manufacturing operation in relations to design, Economic analysis, and Profit and competitiveness breakeven analyses, Economics of a news product design (Samual Eilon model). Value engineering & product design: Introduction, Historical perfective, what is value? Nature and management of value, maximum value, normal degree of value, Importance of value. The value analyses job plan, creativity, creative techniques. Modern approaches to product design: Concurrent design, Quality functions development(QFD)	6

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Determine principles and concepts of effective product design
- 2. Apply creative thinking skills for idea generation
- 3. Illustrate conceptual ideas through clear drawing.
- 4. Construct ideas using software and to develop the drawings

Cos	Mapping with POs
CO1	PO3,PO8
CO2	PO3,PO8,PO10
CO3	PO3,PO8
CO4	PO3,PO8,PO11

Text Books:

1. Product Design & Manufacturing, A C Chitale and R C Gupta, Prentice Hall India Learning Private Limited; 5th edition (1 January 2011)

Reference Book:

- 1. Tim Jihns, Butterworth Heinmana New product development Oxford, UIC 1997
- 2. Ronald engine Kinetivicz New product development design & Analyses, John Wiley & Sons
- 3. Geoffery Boothroyod, Peter Dew Hurst and Winston knight- Product design for manufacture and assembly

Sub Title: TOTAL QUALITY MANAGEMENT			
Sub Code: 18IM744 No. of Credits:3 =3:0:0 (L-T-P) No. of lecture hours/week:3			
Exam Duration : 3 hours	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39	

Course objectives:

- **1.** Develop and determining the necessary information and skills needed to manage, control and improve quality practices in the organization through TQM Philosophy.
- 2. Apply the improvement methodologies for problem solving in organizations.
- 3. Demonstrate the importance of TQM tools required for problem solving processes.
- 4. Demonstrate the quality Management standards for the present industrial scenario.

Unit No.	Syllabus Content	No of Hours
1	Introdction: TQM introduction- Historical review- Obstacles- Benefits of TQM, Elements of TQM- Principles of TQM- Concepts of TQM- Fundamental Characteristics of TQM- TQM routine duties and awareness- Quality in Manufacturing and Service Systems.	6
2	Principles and Philosophies of Total Quality Management -Gurus of TQM and their Contribution-Deming's Management Philosophy- 14 points for management and PDCA cycle – Juran's Philosophy, Juran-quality trilogy, Imai,s Kaizen and innovation, The Crosby Philosophy- quality treatment and 14 points. Taguchi Loss Function. Leadership: Definition, characteristics of quality leaders, leadership concept.	8
3	Quality Evolution, Customer Satisfaction and Employee Involvement Evolution of Quality Concepts -Four Fitness of quality and Weakness-Evolution of Quality Methodology- Evolution of Company Integration- Quality of Conformance versus Quality of Design-From Deviations to Weakness to Opportunities- Aware of Four Finesses-Future Finesses- Four Revolutions of Management Thinking and Four Levels of Practice of TQM. A Customer Focus – Fact-Based Management– Continuous Improvement – Teamwork and Participation. Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement,	10
4	TQM Tools and Techniques 7 Basic tools of TQM –Nominal Group Technique – Quality Circles – Flow Charts – Pareto Analysis– Poka Yoke (Mistake Proofing), Process, Quality Function Deployment (QFD), House of Quality, QFD Process, Benefits, Total Productive Maintenance (TPM) Concept, Improvement Needs, FMEA, Stages of FMEA, cybernetic Analysis, Six Sigma Concepts and Methodology (Introducion ascpets only)	10
5	Quality Management Systems (Introductory Aspects Only) a. The ISO 9001:2000 Quality Management System Standard b. The ISO 14001:2004 Environmental Management System Standard c. ISO 27001:2005 Information Security Management System d. ISO / TS16949:2002 for Automobile Industry e. CMMI Fundamentals and Concepts and f. Certification process.	05

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Outcomes:

- 1. Ability to Determine the TQM philosophies in organization and concepts of leadership.
- 2. To Define and Determine the evolution of quality concepts, methods and customer satisfaction.
- 3. To gain the knowledge of quality control tools in TQM.
- 4. To determine the concepts of reliability and quality failure.
- 5. To Determine the fundamental concepts of quality management systems

Cos	Mapping with POs
CO1	PO6,PO7,PO11
CO2	PO5,PO8,PO10,PO12
CO3	PO4,PO5,PO6,PO7
CO4	PO4,PO5,PO6,PO7
CO5	PO4,PO5,PO6,PO7

TEXT BOOKS:

- 1. A New American TQM Four Practical Revolutions in Management | -Shoji Shiba, Alan Graham and David Walden, Productivity Press, Portlans (USA), 1993
- 2. Management for Total Quality" –N Logothetis- Prentice Hall of India, New Delhi, 1994.
- 3.Dale H. Besterfield "Total Quality Management" (3rd Edition) 3rd Edition Prentice Hall Publications

REFERENCE BOOK:

- 1. The Quality Improvement Hand Book, -Roger C Swanson, Publisher Vanity Books International, New Delhi, 1995.
- 2. Total Quality Management Kesavan R I K International Publishing house Pvt. Ltd, 2008

E BOOKS:

- 1. http://psbm.org/Ebooks/Total%20Quality.pdf
- 2. http://www.mescenter.ru/images/abook_file/Total_Quality_Management_and_Six_Sigma.pdf MOOCs:
- 3. https://www.mooc-list.com/course/fundamentals-six-sigma-quality-engineering-andmanagement-edx?static=true

Sub Title: INDUSTRIAL RELATIONS AND LABOUR WELFARE			
Sub Code: IM745 No. of Credits: 3= 3:0:0 (L-T-P) No. of lecture hours/week: 3			
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39	

Co	urse Objectives:
1	To gain an historical and industrial perspective of Industrial Relations.
2	To investigate industrial conflicts to solve labour problems and find solutions.
3	To demonstrate the knowledge and skills needed to identify labour welfare measures, funds at work place for better work practice.
4	To identify the forces that influence occupational safety and health.
5.	To identify the welfare of special categories of labour form social assistance and security.

Unit	Syllabus Content	No of
No.		Hours
1	INDUSTRIAL RELATIONS	08
	Concepts – Importance – Industrial Relations problems in the Public Sector – Growth of Trade Unions – Codes of conduct.	
	of frade emons codes of conduct.	
2	INDUSTRIAL CONFLICTS	08
	Disputes – Impact – Causes – Strikes – Prevention – Industrial Peace – Government Machinery –Conciliation – Arbitration – Adjudication.	
	j	
3	LABOUR WELFARE	06
	Concept – Objectives – Scope – Need – Voluntary Welfare Measures – Statutory Welfare Measures – Labour – Welfare Funds – Education and Training Schemes.	
4	INDUSTRIAL SAFETY Causes of Accidents – Prevention – Safety Provisions – Industrial Health and Hygiene —Importance – Problems – Occupational Hazards – Diseases – Psychological problems –Counseling – Statutory Provisions	08
5	WELFARE OF SPECIAL CATEGORIES OF LABOUR Child Labour – Female Labour – Contract Labour – Construction Labour – Agricultural Labour –Differently abled Labour –BPO & KPO Labour - Social Assistance – Social Security – Implications.	09

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2: Two assignments are evaluated for 5 marks.

Course Outcomes:

Students will know how to resolve industrial relations and human relations problems and promote welfare of industrial labour.

Cos	Mapping with POs
CO1	PO3, PO7, PO9, PO12
CO2	PO3, PO8, PO9
CO3	PO7, PO12
CO4	PO3, PO7
CO5	PO3, PO7

TEXT BOOKS:

- 1. Mamoria C.B. and Sathish Mamoria, Dynamics of Industrial Relations, Himalaya Publishing House, New Delhi, 2007.
- 2. Arun Monappa, Ranjeet Nambudiri, Patturaja Selvaraj. Industrial relations & Labour Laws. Tata McGraw Hill. 2012

- 1. Ratna Sen, Industrial Relations in India, Shifting Paradigms, Macmillan India Ltd., New Delhi, 2007.
- 2. C.S. Venkata Ratnam, Globalisation and Labour Management Relations, Response Books, 2007.
- 3. Srivastava, Industrial Relations and Labour laws, Vikas, 2007.
- 4. P.N.Singh, Neeraj Kumar. Employee relations Management. Pearson. 2011.
- 5. P.R.N Sinha, Indu Bala Sinha, Seema Priyardarshini Shekhar. Industrial Relations, Trade Unions and Labour Legislation. Pearson. 2004

OPEN ELECTIVE -C

Sub Title: HUMAN RESOURCE MANAGEMENT		
Sub Code: 18IM751	No. of Credits: 3= 3:0:0 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 39

Objectives:

- 1 An ability to evaluate and apply theories of social science disciplines to workplace issues
- 2 Use of HRM functional capabilities to select, develop, and motivate workers
- 3 To develop strong analytical, communication, and decision making skills.

Unit	Syllabus Content	
No.		Hours
1	INTRODUCTION: Introduction, meaning, nature, scope of HRM.	08
	Importance and Evolution of the concept of HRM. Major functions of	
	HRM, Principles of HRM, Organization of Personnel department, Role of	
	HR Manager.	
	JOB ANALYSIS: Meaning, process of job analysis, methods of collecting	
	job analysis data, Job Description and Specification, Role Analysis	
2	HUMAN RESOURCE PLANNING : Uses and benefits, Man Power	08
	Inventory, Man Power Forecasting, Methods of Man Power Forecasting	
	RECRUITMENT: Sources of Man power, Advertisement, Short Listing	
	of Candidates calling Candidates for selection Process.	
3	SELECTION: Selection procedure – Written Test, Group Discussion.	08
	Interview – Different methods, advantages and Limitations, Psychological	
	testing - Advantages and limitations, Induction procedure, transfers,	
	promotion exit interview, (Tutorial on written test, Group Discussion,	
	Interviews)	
4	TRAINING AND DEVELOPMENT: Identification of Training needs,	08
	Training Evaluation, Training Budget, Executive Development – Different	
	Approaches, Non-executive development – Different methods.	
	PERFORMANCE APPRAISAL: Components (all round performance	
	appraisal), Methods, Advantages and limitations of different methods,	
	Personal Counselling based on Annual Confidential Reports.	
5	INDUSTRIAL RELATIONS: Meaning Characteristics of Industrial	07
	Relations, Factors of Industrial, Relations, the Three Actors of Industrial	
	Relations, Importance of Harmonious Industrial Relations, Objectives of	
	Industrial Relations, Functions of Industrial Relations, Code of Industrial	
	Relations, Conditions for Congenial Industrial Relations.	

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

0 .		
Outcomes:		
Outcomes.		

- 6. Apply the knowledge and skills needed to effectively manage human resources
- 7. Examine current issues, trends, practices, and processes in HRM
- 8. Compare the common methods for recruiting and selecting human resource
- 9. Contribute to employee performance management and organizational effectiveness
- 10. Evaluate employee orientation, training, and development programs.

Cos	Mapping with POs
CO1	PO2,PO8,PO12
CO2	PO3,PO5,PO11
CO3	PO2,PO8,PO12
CO4	PO3,PO5,PO11
CO5	PO2,PO8,PO11,PO12

TEXT BOOKS

- **1 Human Resources Management** Dr. K Ashwathappa, Tata McGraw Hill, Edition 2016
- **2 Essentials of HRM and industrial relations** Subbarao,P , Himalaya publishing house 2016

- **1 Management of Human Resources** CB Mamoria Himalaya Publication House, 2003
- 2 Personnel / Human resource Management Decenoz and robbins PHI, 2002
- 3 Industrial Acts by Jain, 2004
- 4 Industrial Relations Arun Monappa TMH, ISBN 0-07-451710-8

Sub Title: STATISTICS LAB		
Sub Code: 18IML76	No. of Credits: 1= 0 : 0 : 1 (L-T-P)	No. of lecture hours/week: 3
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 36

- 1. Explain and apply the basic fundamental concepts of Statistics to engineering problems and the importance of Data summary and Display.
- 2. Application of probability distributions to various manufacturing problems.
- 3. Application of hypothesis to random experiments of manufacturing processes.
- 4. Test the statistical parameters by regression and correlation.
- 5. Design an engineering problem as random experiment to solve and test for variance.

Unit No.	Syllabus content	Hrs
1	 Determining basic statistics (Mean, Median, Mode, and Standard deviation, Range, Harmonic Mean, Geometric Mean, Variance and Coefficient of variation) for the given quality characteristic and interpreting it. Representing the data in graphical forms: Line graph, Bar graph, Pie Chart, Stem and leaf plot, Histogram, Pareto Chart. 	15
	3. Construction of Scatter diagram for the given variables and interpretation of different forms of scatter diagrams.4. Conduction of regression analysis for two variables using least squares method and fitting a straight line.	
	5. Conduction of multiple regression analysis for the given variables.	
2	 Interval estimation and hypothesis testing on mean of a normal distribution. Interval estimation and hypothesis testing on difference in means of two normal distributions. Hypothesis testing on variance of a normal population. Hypothesis testing on variances of two normal populations. Hypothesis testing on a single population proportion. Fitting an appropriate distribution (normal distribution) for the given variable quality characteristic Conduct One way and two way ANOVA Analysis for the given problem Design of experiments using CATAPULT 	21

Outcome:

By the end of the course students will be able to

- 1. Apply the statistical data in the form of Tabular and Graphical display.
- 2. Identify discrete type of probability and solve the various engineering problems.
- 3. Solve Continuous type of probability and solve the various engineering problems
- 4. Estimate the hypothesis and give inference to random experiments.
- 5. Evaluate the statistical parameters by estimation.

Cos	Mapping with POs
CO1	PO1,PO2,PO3,PO6,PO7,PO11,PO12
CO2	PO1,PO2,PO3,PO6,PO7,PO11,PO12
CO3	PO1,PO2,PO3,PO6,PO7,PO11,PO12
CO4	PO1,PO2,PO3,PO6,PO7,PO11,PO12

Scheme of Examination:

ONE question from Unit -1: 15 marks ONE question from Unit -1: 25 marks Viva-Voce : 10 marks

Suggested software:

1. Statistical Packages: SYSTAT / MINITAB / SPSS/ R- studio and such others

Sub Title: ENTERPRISE RESOURCE PLANNING and OR LAB		
Sub Code: 18IML77	No. of Credits: 1= 0 : 0 : 1 (L-T-P)	No. of lecture hours/week: 2
_	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours:
hrs		13

- 1. To provide an determining of the managerial issues involved in the design and implementation of Enterprise Resource Planning Systems
- 2. Knowledge of formulating mathematical models for quantitative analysis of managerial problems in industry;
- 3. Use of statistical tools for data analysis.

Unit	Syllabus Content	No of
No.		Hours
1	Creating Item Master for various Engineering Designs	24
	Creating Supplier Master for Items	
	Creating customer Master for Items	
	Generating Bill of Materials for Various Engineering Designs	
	Creating Purchase order for Items	
	Creating Work order / job card for Items and Dispatch Instruction for Items	
2	Optimization problems using OR packages	12
	Linear programming	
	Transportation problem	
	Assignment problem	
	PERT/CPM	

Course Outcomes:

CO1: Develop the skills and knowledge to support the implementation and maintenance of Enterprise Resource Planning (ERP) systems.

CO2: Formulate and solve Linear programming problems, transportation and assignment Problems

Cos	Mapping with POs
CO1	PO3,PO5,PO6,PO11
CO2	PO2,PO4,PO5

Scheme of Examination:

ONE question from Unit -1 : 30 marks
ONE question from Unit -2 : 10 marks
Viva-Voce: 10 marks.

Suggested Software Packages

- 1. Statistical Packages: SYSTAT/MINITAB/SPSS and such others
- 2. ERP Packages: SIXTH SENSE / RAMCO / MAARSMAN / CIMAS / UNISOFT
- 3. OR Packages: Lindo / Lingo / Storm

VIII SEMESTER

Sub Title: COST MANAGEMENT OF ENGINEEREINGT PROJECTS					
Sub Code: 18HS81	No. of Credits: 2	No. of lecture hours/week: 2			
Exam Duration: 2 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 26			

Objectives:

- 1. The objective of this course is to familiarize the student with the basic concepts, standards and practices of financial accounting.
- 2. The course is devoted to the basic financial statements, the analysis and recording of transactions, and the underlying concepts and procedures,
- 3. To carry out financial statement analysis and studying and preparation of cost sheet and budget.

Unit No.	Syllabus Content	No of Hours
1	COST CONCEPTS: Cost- meaning, Cost v/s Expense, meaning of loss, classification of cost, cost driver & cost unit. Overheads- Meaning and Classification of Overheads.	05
2	COMPONENTS OF COSTING: objectives of costing, elements of Costing. Preparation of Cost Sheet, Job Costing-Batch Costing, Process Costing and Activity Based Costing(Simple Problems on Activity Based Costing)	05
3	INTRODUCTION TO ECONOMICS: Meaning, Scope, Engineering Decision Makers, Nature and Significance of Economies, Laws of Demand - Concepts, Exceptions. Elasticity of Demand, Demand Forecasting - meaning, methods. Law of Supply - Concepts, Exception. Law of Diminishing Marginal Utility.	05
4	INDIAN AND GLOBAL BUSINESS ECONOMICS / MACRO ECONOMICS: National Income Concept, Per Capita Income (PCI), Gross Domestic Product (GDP) – Concept, Components. Business Cycles – Meaning, Phases. Inflation-Types, Causes and Measurements- Consumer Price Index (CPI) and Whole Sale Price Index (WSI). SWOT Analysis of Indian Economy.	05
5	FINANCIAL PLANNING: Income Statement and Balance Sheet (Proforma), Indian Financial System Components. Capital Budgetiing – Phases, Techniques- Pay Back Period (PBP), Net present Value (NPV), Internal Rate of Returns (IRR). Projecting the Cash Flows – Components.	06

Outcomes:

Upon completion of the course, you will be able to:

- 6. Understand and apply fundamental accounting concepts, principles and conventions and to carry out journal entries and adjustments.
- 7. Prepare financial statements in accordance with generally accepted accounting principles.
- 8. Prepare and analyze a trial balance, cash flow statement, cost sheet variance analysis.
- 9. To prepare and analyze different types of budget
- 10. To explain the concepts of financial management, working capital and their applications to industries.

Mapping with POs:

Cos	Mapping with POs
CO1	PO1, PO4, PO5, PO7, PO8, PO11, PO12
CO2	PO1, PO3, PO5, PO6, PO11, PO12
CO3	PO1,PO3, PO5, PO11, PO12
CO4	PO1,PO3,PO5,PO10,PO11,PO12
CO5	PO3,PO5,PO8,PO11,PO12

TEXT BOOKS:

1Cost Accouting- Principles and Practices, S P Jain K L Narang, Kalyani Publishers.

- **2 Enineering Economy,** Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5.
- **3. Financial Management-Theory and practices,** Shashi.K.Gupta, R K Sharma, Kalyani Publishers, ISBN 13, 978 9327235975.

REFERENCE BOOKS:

- 1 Cost Accounting, Khan M Y, 2nd Edition, 2000, Tata McGraw Hill, ISBN 007042248.
- **3 Engineering Economics,** R.Paneerselvam, Eastern Economy Edition 2001, PHI, ISBN-81-203-1743-2Khan & Jain.
- 3. Financial Management, Khan & Jain, McGrawHill, India.

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit. Note 2: Two assignments are evaluated for 5 marks.

Scheme of semester End Examination (SEE):

Units	its Unit-1			Unit-2			Unit-3						
Qno.	1.a	1.b	О	2.a	3.a	3.b	О	4.a	5.a	5.b	О	6.a	6.b
Marks	05	05	R	10	05	05	R	10	05	05	R	05	05

Units	Unit-4			Unit- 5						
Qno.	7.a	7.b	O	8.a	8.b	9.a	9.b	О	10.a	10.b
Marks	05	05	R	05	05	05	05	R	05	05

Sub Title : Project Work Phase II					
Sub Code: 18IMP82	No. of Credits: 10= 0: 0: 2 (L-T-P)	No. of lecture hours/week: 2			
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 32			

Sl. No.	Syllabus
1	Phase– 02: 10 Credits in VII Semester.
2	Student shall complete the project work well in time and shall be assessed by the guide and the
	departmental Project Review Committee for 50 marks (CIE). Later project viva-voce shall be
	conducted by the exam section and both internal and external examiners for 50 marks do
	evaluation.

Sub Title: Technical Seminar					
Sub Code: 18IMS83	No. of Credits: 2= 0 : 0 : 2(L-T-P)	No. of lecture hours/week: 2			
Exam Duration: 3 hr.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 32			

- 1. To equip students for making a subject presentation based on a thorough research review on any contemporary area of engineering and management fields.
- 2. Offering the student an opportunity to interact with faculty and peer group and to build the ability to making independent presentation.

Sl. No.	Syllabus
1	Procedure:
	1. A list of contemporary topics will be offered by the faculty of the department in the
	interlude period between 7 th and 8 th Semester.
	2. Students can opt for topic of their own choice and indicate their option to the department
	at the beginning of the 8 th semester.
	This component is also evaluated twice in the semester. The final marks shall be submitted to
	the exam section at the end of the semester.

Cos	Mapping with POs
CO1	PO2,PO8,PO12
CO2	PO3,PO5,PO11
CO3	PO2,PO8,PO12
CO4	PO3,PO5,PO11
CO5	PO2,PO8,PO11,PO12

Sub Title : Internship		
Sub Code: 18IMI84	No. of Credits: 2= 0 : 0 : 2(L-T-P)	No. of lecture hours/week: 2
Exam Duration: 3 hr.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 32

Sl.	Syllabus
No.	
1	Internship: All the students admitted to III year of BE shall undergo mandatory internship program for a duration for 4 weeks either during the vacation period of IV& V semester or during VI and VII. A SEE examination will be conducted during VIII semester and prescribed credits shall be added to VIII semester. Students who do not take-up/complete the internship will be declared as failed and have to complete during subsequent SEE examination after satisfying the internship requirements.

Sub Title: COST MANAGEMENT OF ENGINEEREINGT PROJECTS								
Sub Code: 18HS81	No. of Credits: 2	No. of lecture hours/week: 2						
Exam Duration: 2 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours : 26						

- 1. The objective of this course is to familiarize the student with the basic concepts, standards and practices of financial accounting.
- 2. The course is devoted to the basic financial statements, the analysis and recording of transactions, and the underlying concepts and procedures,
- 3. To carry out financial statement analysis and studying and preparation of cost sheet and budget.

Unit No.	Syllabus Content	No of Hours
1	COST CONCEPTS: Cost- meaning, Cost v/s Expense, meaning of loss, classification of cost, cost driver & cost unit. Overheads- Meaning and Classification of Overheads.	05
2	COMPONENTS OF COSTING: objectives of costing, elements of Costing. Preparation of Cost Sheet, Job Costing-Batch Costing, Process Costing and Activity Based Costing(Simple Problems on Activity Based Costing)	05
3	INTRODUCTION TO ECONOMICS: Meaning, Scope, Engineering Decision Makers, Nature and Significance of Economies, Laws of Demand - Concepts, Exceptions. Elasticity of Demand, Demand Forecasting - meaning, methods. Law of Supply - Concepts, Exception. Law of Diminishing Marginal Utility.	05
4	INDIAN AND GLOBAL BUSINESS ECONOMICS / MACRO ECONOMICS: National Income Concept, Per Capita Income (PCI), Gross Domestic Product (GDP) – Concept, Components. Business Cycles – Meaning, Phases. Inflation-Types, Causes and Measurements- Consumer Price Index (CPI) and Whole Sale Price Index (WSI). SWOT Analysis of Indian Economy.	05
5	FINANCIAL PLANNING: Income Statement and Balance Sheet (Proforma), Indian Financial System Components. Capital Budgetiing – Phases, Techniques- Pay Back Period (PBP), Net present Value (NPV), Internal Rate of Returns (IRR). Projecting the Cash Flows – Components.	06

Outcomes:

Upon completion of the course, you will be able to:

- 11. Understand and apply fundamental accounting concepts, principles and conventions and to carry out journal entries and adjustments.
- 12. Prepare financial statements in accordance with generally accepted accounting principles.
- 13. Prepare and analyze a trial balance, cash flow statement, cost sheet variance analysis.
- 14. To prepare and analyze different types of budget
- 15. To explain the concepts of financial management, working capital and their applications to industries.

Mapping with POs:

Cos	Mapping with POs
CO1	PO1, PO4, PO5, PO7, PO8, PO11, PO12
CO2	PO1, PO3, PO5, PO6, PO11, PO12
CO3	PO1,PO3, PO5, PO11, PO12
CO4	PO1,PO3,PO5,PO10,PO11,PO12
CO5	PO3,PO5,PO8,PO11,PO12

TEXT BOOKS:

1Cost Accouting- Principles and Practices, S P Jain K L Narang, Kalyani Publishers.

- **2 Enineering Economy,** Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5.
- **3. Financial Management-Theory and practices,** Shashi.K.Gupta, R K Sharma, Kalyani Publishers, ISBN 13, 978 9327235975.

REFERENCE BOOKS:

- 1 Cost Accounting, Khan M Y, 2nd Edition, 2000, Tata McGraw Hill, ISBN 007042248.
- **4 Engineering Economics,** R.Paneerselvam, Eastern Economy Edition 2001, PHI, ISBN-81-203-1743-2Khan & Jain.
- 3. Financial Management, Khan & Jain, McGrawHill, India.

Note 1: Each unit has internal choice. A total of 10 questions i.e. 2 full questions from each unit.

Note 2: Two assignments are evaluated for 5 marks.

Scheme of semester End Examination (SEE):

Units	Unit-1				Unit-2				Unit-3				
Qno.	1.a	1.b	О	2.a	3.a	3.b	О	4.a	5.a	5.b	О	6.a	6.b
Marks	05	05	R	10	05	05	R	10	05	05	R	05	05

Units	Unit-4					Unit- 5				
Qno.	7.a	7.b	О	8.a	8.b	9.a	9.b	О	10.a	10.b
Marks	05	05	R	05	05	05	05	R	05	05

Semester: VII / VIII			
Course Title: OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA)			
Course Code: 18HS82 Evaluation Procedure:			
Credits: 02	CIE + Assignment + Group Activity + SEE Marks = 40		
	+5+5+50=100		
Teaching Hours: 26 Hrs. (L:T:P:S) - 2:0:0:0	SEE Duration: 3 Hrs		

Co	Course Learning Objectives:			
1	To gain an historical, economic, and organizational perspective of occupational safety and health.			
2	To investigate current occupational safety and health problems and solutions.			
3	To identify the forces that influence occupational safety and health.			
4	To demonstrate the knowledge and skills needed to identify work place problems and safe work			
	practice.			

UNIT - I		
OCCUPATIONAL HAZARD AND CONTROL PRINCIPLES:	6 Hrs	
Safety, History and development, National Safety Policy. Occupational safety and Health Act		
(OSHA), Occupational Health and Safety administration - Laws governing OSHA and right to		
know. Accident - causation, investigation, investigation plan, Methods of acquiring accident		
facts, Supervisory role in accident investigation.		
UNIT - II		
ERGONOMICS AT WORK PLACE:	5 Hrs	
Ergonomics Task analysis, Preventing Ergonomic Hazards, Work space Envelops, Visual		
Ergonomics, Ergonomic Standards, Ergonomic Programs. Emergency Response - Decision for		
action – purpose and considerations.		
UNIT - III		
FIRE PREVENTION AND PROTECTION:	5 Hrs	
Fire Triangle, Fire Development and its severity, Effect of Enclosures, early detection of Fire,		
Classification of fire and Fire Extinguishers. Electrical Safety.		
UNIT – IV (Blended Learning)		
HEALTH CONSIDERATIONS AT WORK PLACE:	5 Hrs	
Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) –		
types and advantages, effects of exposure and treatment for engineering industries, municipal		
solid waste. Environment management plans (EMP) for safety and sustainability.		
UNIT - V		
OCCUPATIONAL HEALTH AND SAFETY CONSIDERATIONS:	5 Hrs	
Water and wastewater treatment plants, Handling of chemical and safety measures in water and		
wastewater treatment plants and labs, Construction material manufacturing industries like		
cement plants, RMC Plants, precast plants and construction sites. Policies, roles and		
responsibilities of workers, supervisors and managers.		

Co	Course Outcomes: The students will be able to		
1	Acquire knowledge on OSHA policies, Laws and regulations.		
2	Identify hazards in the workplace that pose a danger or threat to the safety or health, or that of others.		

- 3 Control unsafe or unhealthy hazards and propose methods to eliminate the hazards.
- 4 Discuss the role of health and safety in the workplace and effects of industries on environment.
- 5 Identify workplace hazards, safety considerations and roles and responsibilities of workers, supervisors and managers.

Question paper pattern:

The question paper will have ten full questions carrying equal marks.

Each full question will be for 20 marks.

There will be two full questions (with a maximum of four sub - questions) from each unit.

Each full question will have sub - question covering all the topics under a unit.

The students will have to answer five full questions, selecting one full question from each unit.

Text Books:

- Goetsch D. L., (1999), "Occupational Safety and Health for Technologists, Engineers and Managers", Prentice Hall.
- Heinrich H.W., (2007), "Industrial Accident Prevention- A Scientific Approach", McGraw-Hill Book Company National Safety Council and Associate (Data) Publishers Pvt. Ltd., (1991).
- 3 | Industrial Safety and Pollution Control Handbook.

Reference Books:

- 1 Colling D.A., (1990), "Industrial Safety Management and Technology", Prentice Hall, New Delhi.
- Della D.E., and Giustina, (1996), "Safety and Environmental Management", Van Nostr and Reinhold International Thomson Publishing Inc.

Additional Books:

- Industrial safety, health and environmental management. R K Jain, Sunil S Rao, Khanna Publications.
- 2 Safety, occupational health and environmental management in construction. S E Sharma, Vineeth Kumar, Khanna Publications.
- 3 Labour laws, Commercial law publishers India Pvt Ltd.
- 4 The occupational Safety, health & working conditions code. Commercial law publishers 2020.
- 5 Occupational health and safety management A practical approach by Charles-De-Reese.
- 6 Occupational ergonomics, theory and applications by Amith Battacharya & James D Mc Glotthin.
- 7 Occupational Safety and health law handbook. Mc Dermott will & Enercy LLP.
- 8 Occupational health and safety management. Lambert Academic Publishing.
- 9 Fundamentals of Industrial Ergonomics Babur Musthaffa (Google books).
- 10 Global occupational safety health and management handbook. Thomas Fuller, CAC press.
- 11 Introduction to Industrial Ergonomics.
- 12 Ergonomics and practical manual for beginners. Manjith Kaur Chauhan.

Sub Title : Project Work Phase II				
Sub Code: 18IMP82 No. of Credits: 10= 0: 0: 2 (L-T-P) No. of lecture hours/week: 2				
Exam Duration: 3 hrs	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 32		

Sl.	Syllabus		
No.			
1	Phase– 02: 10 Credits in VII Semester.		
2	Student shall complete the project work well in time and shall be assessed by the guide and the		
	departmental Project Review Committee for 50 marks (CIE). Later project viva-voce shall be		
	conducted by the exam section and both internal and external examiners for 50 marks do		
	evaluation.		

Sub Title : Technical Seminar			
Sub Code: 18IMS83 No. of Credits: 2= 0:0:2(L-T-P) No. of lecture hours/week: 2			
Exam Duration: 3 hr.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours: 32	

Objective:

- 3. To equip students for making a subject presentation based on a thorough research review on any contemporary area of engineering and management fields.
- 4. Offering the student an opportunity to interact with faculty and peer group and to build the ability to making independent presentation.

Sl. No.	Syllabus			
1	Procedure:			
	3. A list of contemporary topics will be offered by the faculty of the department in the			
	interlude period between 7 th and 8 th Semester.			
	4. Students can opt for topic of their own choice and indicate their option to the department			
	at the beginning of the 8 th semester.			
	This component is also evaluated twice in the semester. The final marks shall be submitted to			
	the exam section at the end of the semester.			

Cos	Mapping with POs
CO1	PO2,PO8,PO12
CO2	PO3,PO5,PO11
CO3	PO2,PO8,PO12
CO4	PO3,PO5,PO11
CO5	PO2,PO8,PO11,PO12

Sub Title : Internship			
Sub Code: 18IMI84 No. of Credits: 2= 0:0:2(L-T-P) No. of lecture hours/week: 2			
Exam Duration: 3 hr.	CIE + SEE = 50 + 50 = 100	Total No. of Contact Hours : 32	

Sl. No.	Syllabus
1	Internship: All the students admitted to III year of BE shall undergo mandatory internship program for a duration for 4 weeks either during the vacation period of IV& V semester or during VI and VII. A SEE examination will be conducted during VIII semester and prescribed credits shall be added to VIII semester. Students who do not take-up/complete the internship will be declared as failed and have to complete during subsequent SEE examination after satisfying the internship requirements.

DR. AMBEDKAR INSTITUTE OF TECHNOLOGY

SCHEME AND SYLLABUS Outcome Based Education (CBCS) (As per NEP 2020)

Scheme of Teaching and Examinations (Common to all B.E. Programmes) For I Year B.E. (I & II Semester)

Academic Year 2021-2022

Dr. Ambedkar Institute of Technology

Approved by AICTE, New Delhi, Aided by Government of Karnataka, Accreditated by NAAC, Accreditated by NBA, New Delhi (An Autonomous Institution, Affiliated to VTU, Belagavi)

Outer Ring Road, Near Jnanabharathi Campus

Mallathahalli, Bengaluru - 560 056

		INDEX SHEET	
SI.	Course Codes	Course Titles	Page
No.			Numbers
1	21MAT101	Calculus and Differential Equations	07
2	21PHT102/202	Engineering Physics	10
3	21CHT102/202	Engineering Chemistry	15
4	21EET103/203	Basic Electrical Engineering	19
5	21CST103/203	Problem solving through	23
		Programming	
6	21CVT104/204	Civil Engineering & Mechanics	26
7	21ECT104/204	Basic Electronics and	30
		Communication Engineering	
8	21MET105/205	Elements of Mechanical Engineering	34
9	21MEL105/205	Engineering Graphics	40
10	21PHL106/206	Engineering Physics Laboratory	45
11	21CHL106/206	Engineering Chemistry Laboratory	47
12	21EEL107/207	Basic Electrical Engineering	49
		Laboratory	
13	21CSL107/207	Computer Programming Laboratory	51
14	21HST108	Communicative English	55
15	21HST109/209	Health and Wellness	58
16	21CVT109/209	Rural Development Engineering	61
17	21HSN110	Career Development Skill-I	64
18	21MAT201	Advanced Calculus and Numerical	66
		Methods	
19	21HST208	Professional writing skills in English	69
20	21HSN210	Career Development Skill-II	72

			its															
	.52		Credits			4	3	3	3	က	-	-	_	1	0	20		
	ar:2021			Total	Marks	100	100	100	100	100	100	100	100	100	PP/NP	006		
	2020) mic Ye		ation	SEE	Marks Marks Marks	20	20	09	20	20	20	20	20	20		450	rse,	
	oer NEF Acade		Examination	SE	Marks	20	20	09	20	20	20	20	20	20	20	200	ce Cou	
056	CS) (As presonmes)			T P S Total Duration CIE	(Hrs)	3	3	3	3	က	က	3	2	2	:		ial Scien	
n-560	m (CE : Prog		Teaching Hours/	Total		2	3	4	3	4	2	2	2	2	2	29	& Soc	* No practical evaluation,
aff	stel B.E		를 기	S		0	0	0	0	0	0	0	0	0	0	Total	ties	/alu
ğ	Sy		hing H	<u>_</u>		0	0	0	0	2	2	2	4١	0 1 0	0 1 0	12	anit	<u>e</u>
, W	h 등 다		ac	—		7	0	2	0	0	0	0	0	0	0		m _l	<u><u> </u></u>
g	S E		<u> </u>		\Box	က	3	2	က	7	0	0	-	1	-		S: H	rac
ute of Techno	Choice Based ster B.E., (Cor		Teaching Department			Mathematics	Physics	Electrical	Civil	Mechanical	Physics	Electrical	Humanities	Humanities	Humanities		nce Course,	rse, *No
Dr. Ambedkar Institute of Technology, Bengaluru-560056	Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (As per NEP 2020) Scheme of Teaching and Examination for I Semester B.E., (Common to all B.E. Programmes) Academic Year:2021-22	er	Course Title			21MAT101 Calculus and Differential Equations Mathematics	Engineering Physics	21EET103 Basic Electrical Engineering Electrical	21CVT104 Civil Engineering & Mechanics	21MEL105 Engineering Graphics	21PHL106 Engineering Physics Lab	21EEL107 Basic Electrical Engineering Laboratory Electrical	21HST108 Communicative English	21HST109 Health and Wellness	21HSN110 Career Development skill-I		Note: BS: Basic Science Course, ES: Engineering Science Course,HS: Humanities & Social Science Course,	AE: Ability Enhancement Course, MC: Mandatory Course, * No practical evaluation,
	Outcome of Teaching	Physics Cycle: I Semester	Course			21MAT101	21PHT102	21EET103	21CVT104	21MEL105	21PHL106	21EEL107	21HST108	21HST109	21HSN110		ic Science	hancement
	Scheme	sics Cycle	Sl. Course			BS	BS	ES	ES	ES	BS	ES	HS	ΑE	MC		e: BS: Bas	Ability En
		Phy	S S			-	2	3	4	5	9	7	8	6	10		Note	ΑĒ

		1 2	Dr. Ambedkar Institute of Technology, Bengaluru-560056	schnology, Be	ngalı		5600	9, 00, 00,	000	6		
	Scheme	Outcome of Teaching	Outcome based Education (UBE) and Choice Based Credit System (UBCS) (As per NEP 2020) Scheme of Teaching and Examination for I Semester B.E., (Common to all B.E. Programmes) Academic Year:2021-22	Common to	Syst all B	E E	Progra	S) (As per immes) Ac	NEP 20 ademic	۷۷) Year:20	121-22	
Che	mistry Cy	Chemistry Cycle: I Semester	ster									
<u>જ</u>	Sl. Course No. Category	Course	Course Title	Teaching Department	Теа	اق 🔻	Teaching Hrs/ Week		Examination	ation		Cre dits
)				드	Д	STot	LTP S Total Duration CIE		SEE	Total	
								(Hrs)	Marks	Marks Marks Marks	Marks	
-	BS	21MAT101	21MAT101 Calculus and Differential Equations Mathematics 3 2 0	Mathematics	3 2	0	0	က	20	20	100	4
7	BS	21CHT102	21CHT102 Engineering Chemistry	Chemistry	3 0	0	0	က	20	20	100	က
က	ES	21CST103	21CST103 Problem solving through Programming	Computer Science	2 2	0	0	က	20	20	100	က
4	ES	21ECT104	21ECT104 Basic Electronics and Communication Engineering	Electronics	2 2 0		0	က	20	20	100	က
2	ES	21MET105	21MET105 Elements of Mechanical Engineering Mechanical	Mechanical	2 0	2	0 4	3	20	20	100	3
9	BS	21CHL106	21CHL106 Engineering Chemistry Laboratory	Chemistry	0 0 2	2	0 2	3	20	20	100	-
7	ES	21CSL107	21CSL107 Computer Programming Laboratory Computer Science	Computer Science	0 0 2	2	0 2	3	20	20	100	-
œ	HS	21HST108	21HST108 Communicative English	Humanities	1 0 1 0	*	0 2	2	20	20	100	-
ဝ	AE	21CVT109	21CVT109 Rural Development Engineering	Civil	1 0 1 0	*	0 2	2	20	20	100	-
10	MC	21HSN110	21HSN110 Career Development skill-I	Humanities	1 0 1 0	+	0 2		20		PP/NP	0
						Total	30 JE		200	450	006	20
Not	e: BS: Bas	sic Science	Note: BS: Basic Science Course, ES: Engineering Science Course, HS: Humanities & Social Science Course,	ırse,HS: Huma	nitie	တ	Socia	Science (Sourse,			
ΑĒ	Ability En	hancement	AE: Ability Enhancement Course, MC: Mandatory Course, * No practical evaluation.	No practical ev	/alua	恴	ئے					
<u>:</u>	ecture, T:	Titorial, P:F	L: Lecture, T:Titorial, P:Practical/drawing, S:Self study, CIE: Continuous Internal Evaluation, SEE: Semester End Examination	ontinuous Inte	rnal	Š	luatio	n, SEE: Se	mester	End Ex	aminati	o

Scheme of Teaching and Examination for II Semester B.E., (Common to all B.E. Programmes) Academic Year:2021-22 Physics Cycle: II Semester Course Cou	Sch Sics Co Cate	neme o		and Evamination for II Samester B E //	•	-	1		•	-	Vaar-20		
Course	Sics Co Cate			ally Evallillation for II Selliester D.E., (Common to al	8	<u></u>	rograr	nmes) Aca	demic	15al .20	121-22	
SEE Total SMarks Marks 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 450 900	Cate	Cycle		er									
Lange Advanced Calculus and Numerical Methods Mathematics State Chemistry		urse	Course	Course Title	Teaching Department	Tea	Shi We	ng Hrs		Examin	ation		Cre dits
50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 450 900						LT	۵	STota	I Duration			Total	
50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 450 990									(Hrs)	Marks	Marks	Marks	
50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 450 900			21MAT201	Advanced Calculus and Numerical Methods	Mathematics	3 2	0		3	20	20	100	4
50 100 50 100 50 100 50 100 50 100 50 100 50 100 450 900	_		21CHT202				0		3	20	20	100	က
50 100 50 100 50 100 50 100 50 100 PP/NP 450 900			21CST203			2 2	0		က	20	20	100	က
MET205 Elements of Mechanical Engineering Mechanical 2 2 4 3 50 50 100				Basic Electronics and Communication Engineering		2 2	0		3	20	20	100	က
50 100 50 100 50 100 50 100 PP/NP 450 900	E		21MET205			2 0	2		3	20	20	100	3
50 100 50 100 50 100 PP/NP 450 900	_		21CHL206			0 0	2		3	20	20	100	-
50 100 50 100 PP/NP 450 900			21CSL207			0 0	2		3	20	20	100	-
50 100 PP/NP 450 900	_		21HST208	Professional writing skills in English		1 0	*		2	20	20	100	-
PP/NP 450 900	_		21CVT209		Civil	1 0	+		2	20	20	100	-
450 900			21HSN210			1 0	*		-	20	-	PP/NP	0
te: BS: Basic Science Course, ES: Engineering Science Course,HS: Humanities & Social Science Course, : Ability Enhancement Course, MC: Mandatory Course, * No practical evaluation,						-	Ot			200	450		20
	te: BS	S: Basi	ic Science	Course, ES: Engineering Science Cours	se,HS: Human	ities	8	Social	Science C	ourse,			
	: Abil	lity En	hancement		practical eva	luat	io j	_					

		— ₁	a)	S								_				_			
			Cre	dits			4	3	3	3	3	-	-	-	-	0	20		
	021-22				Total	Marks Marks Marks	100	100	100	100	100	100	100	100	100	PP/NP	006		
6	Year:2		ation		SEE	Marks	20	20	20	09	20	20	20	20	20	•	450		
NEP202	ademic		Examination		SIE	Marks	20	20	20	20	20	20	20	20	20	20	200	ourse,	
(As per I	ımes) Aca		_		L T P S Total Duration CIE	(Hrs)	3	3	3	3	3	3	3	2	2			science C	
0056 (BCS)	ogran	Ì	g	Hours/ Week	otal		2	3	4	3	4	2	2	2	2	2	59	cial S	
မြင့် သ	P		Teaching	>	S		0	0	0	0	0	0	0	0	0	0	al	တိ	<u>ö</u>
2 %	щ	ı	eac	Irs/	Ь		0	3 0 0 0	2 2 0 0	3 0 0 0	2	0 0 2	0 0 2 0	1 0 1 1 0	1 0 1 1 0	1 0 1* 0	Total	တို	valuatior
lalı /st	<u>B</u>	ı	Ĕ	호	T		2	0	2	0	2 0	0	0	0	0	0	_	ţį	<u>a</u>
Sign	न	- }		_	_		က	3	2	3	2	0	0	1	1	1		ä	<u>6</u>
chnology, Be ased Credit	(Common to		Teaching	Department			Mathematics 3 2 0 0	Physics	Electrical	Civil	Mechanical	Physics	Electrical	Humanities	Humanities	Humanities		se,HS: Hum	* No practical evaluation,
Dr. Ambedkar Institute of Technology, Bengaluru-560056 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (As per NEP2020)	Scheme of Teaching and Examination for II Semester B.E., (Common to all B.E. Programmes) Academic Year:2021-22	nester	Course Title				21MAT201 Advanced Calculus and Numerical Methods	Engineering Physics	21EET203 Basic Electrical Engineering	21CVT204 Civil Engineering & Mechanics	21MEL205 Engineering Graphics	21PHL206 Engineering Physics Laboratory	21EEL207 Basic Electrical Laboratory	21HST208 Professional writing skills in English Humanities	21HST209 Health and Wellness	21HSN210 Career Development skill-II		Note: BS: Basic Science Course, ES: Engineering Science Course, HS: Humanities & Social Science Course,	AE: Ability Enhancement Course, MC: Mandatory Course, **
Outcome	of Teaching	Chemistry Cycle: Il Semester	Course	Code			21MAT201	21PHT202	21 EET203	21CVT204	21MEL205	21PHL206	21 EEL 207	21HST208	21HST209	21HSN210		ic Science	hancement
	Scheme	mistry Cy	SI. Course	No. Category			BS	BS	ES	ES	ES	BS	ES	HS	AE	MC		e: BS: Bas	Ability En
	;	Che	S.	Š.			-	2	3	4	2	9	7	8	6	10		Not	ΑE

L: Lecture, T:Titorial, P:Practical/drawing, S:Self study, CIE: Continuous Internal Evaluation, SEE: Semester End Examination

6

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Mathematics Scheme and Syllabus - CBCS – 2021 -2022

Course Title	CALC	ULUS	& DIFF	ERENT	IAL EQU	JATIONS	
Course Code	21MA	T101					
Category	Basic	Scienc	e Cours	e (BS)			
Scheme and		No. o	of Hours	/Week		Total	Credits
Credits	L	Т	Р	SS	Total	teaching hours	
	03	02	00	00	05	65	04
CIE	SEE		Total N	lax.	Durati	on of SEE: 03 Ho	urs
Marks: 50	Mark	s: 50	Marks:	=100			

COURSE OBJECTIVE: This course is intended to impart to the students the skills of employing the basic tools of differential and for solving basic and difficult engineering problems.

UNIT I 8+5 hours

Differential Calculus-1: Recapitulation of differentiation, Taylor's and Maclaurin's series for single variable (no proof). Introduction to polar curves, expression for angle between radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature-Cartesian, parametric, polar and pedal forms.

Self-study: Indeterminate forms, center and circle of curvature.

UNIT II 8+5 hours

Differential Calculus-2: Partial derivative of first and second order, total derivative, derivative of composite function. Euler's theorem for function of two variables. Jacobians and property JJ' = 1. Taylor's series for functions of two variables (no proof). Maxima and minima for function of two variables.

Self-Study: Errors and approximations, Extended Euler's theorem, Lagrange's undetermined multiplier method.

UNIT III 8+5 hours

Ordinary differential equations (ODE's) of first order: Linear differential equations. Reducible to linear differential equation, Bernoulli's equations. Exact and reducible to exact differential equations. Orthogonal trajectories in Cartesian and polar form. Introduction to general and singular solutions; solvable for *p* only and Clairaut's equations.

Self-study: Reducible to Clairaut's equations. Application to Newton's law of cooling.

UNIT IV 8+5 hours

Ordinary differential equations (ODE's) of higher order: Higher order linear ODE's with constant coefficients, Inverse differential operator method (no product of functions). Method of variation of parameter. Cauchy's and Legendre's homogenous linear differential equations. Applications: L-C-R circuits.

Self-study: Method of Undetermined co-efficients.

UNIT V 8+5 hours

Linear Algebra: Elementary row and column operations of a matrix, echelon form, Rank of matrix. Consistency of homogeneous and non-homogeneous equations. Gauss elimination, Gauss Jordan and Gauss-Seidel methods.

Self-study: Solution of system of linear equations by Jacobi method, eigenvalues and eigenvectors.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Determine the rate of changes, extreme values, Taylor's series for the function of two variables and rank of a matrix.

CO2: Solve ordinary differential equations and system of linear equations.

CO3: Test for angle of polar curves, consistency of linear equations, the independency of two functions of two identical independent variables and orthogonally of two polar curves.

CO4: DescribeMathematical procedures to find integrating factors, orthogonal trajectories, complementary functions, particular integrals and consistency of system of equations.

CO5: Apply the terminologies of calculus and linear algebra for approximations.

TEXT BOOKS

- B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- V. Ramana : Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed.,
- H. C. Taneja, Advanced Engineering Mathematics, Volume I& II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, 3. Laxmi Publications, Reprint, 2010.
- V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East-West press, Reprint 2005.
- D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/ 5. Cole, 2005.

ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

		(QUESTI	ON PA	PER PA	TTERN (SEE)			
Q. No.	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
UNIT	1	1	2	2		3	4	1	5	5

- 1. Two full questions (each of 20 Marks) are to be set from each unit.
- 2. Student shall answer five full questions selecting one full question from each unit.

MAPPING of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	3	3									
Stren	ath of a	correlat	ion: I	ow-1.	Mediu	m- 2. l	Hiah-3					

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Physics Scheme and Syllabus - CBCS - 2021 -2022

Scheme and S	yllabus -	CBCS –	2021	-2022
--------------	-----------	--------	------	-------

Course Title	ENGIN	IEERII	NG PHY	/SICS			
Course Code	21PH1	102/	202				
Category	Basic S	cienc	e Cours	e (BS)			
Scheme and		No. o	of Hours	s/Week		Total teaching	Credits
Credits	L	Т	Р	SS	Total	hours	
	03	00	00	00	03	40	03
CIE	SEE		Total	Max.	Duration	on of SEE: 03 Ho	urs
Marks: 50	Marks	: 50	Marks	=100			

COURSE OBJECTIVE: To introduce the Engineering students to the basics of elasticity, vibrations, quantum mechanics, electrical and dielectric properties of materials, laser and fiber optics, crystal structure and nanomaterials with an emphasis on inculcating strong analytical skills among them so that they can understand and analyze complex engineering problems with relative ease.

UNIT I 8 hours

Elasticity: Torsion: Expression for couple per unit twist of a solid cylinder (derivation). Torsional Pendulum: Expression for period of oscillation and Rigidity modulus (derivation). Bending of Beams: Definition of beam, neutral surface and neutral axis. Expression for bending moment of a beam (derivation). Expression for Young's modulus of the material of a single cantilever (derivation). Numerical problems.

Vibrations: Theory of free vibrations, theory of damped vibrations and discussion of three cases of damping. Theory of Forced vibrations. Resonance: Condition for resonance, sharpness of resonance. Numerical problems.

Self-study component: Types of beams and its engineering applications, application of damping in automobiles, LCR resonance.

UNIT II 8 hours

Modern Physics: de- Broglie hypothesis: de Broglie wavelength for free and accelerated electron. Concept of wave packet. Phase velocity, group velocity (no derivation), relation between phase velocity and group velocity, relation between group velocity and particle velocity, relation between phase velocity, group velocity and velocity of light. Numerical problems.

Quantum Mechanics: Heisenberg's uncertainty principle and its physical significance. Application of uncertainty principle: Non-confinement of electron in the nucleus. Wave function. Properties and Physical significance of a wave function. Probability density and Normalization of wave function. Setting up of one dimensional time independent Schrödinger's wave equation. Eigen values and Eigen functions. Application of Schrödinger wave equation to a particle in a box: Expression for energy Eigen values and Eigen functions for a particle in one-dimensional potential well of infinite height and finite width, discussion of wave functions and probability density for a particle in a box for ground and first excited state. Numerical problems.

Self-study component: Davisson and Germer experiment, Matter waves and their properties. Discussion of wave functions and probability density for a particle in a box for n=3, Quantum tunneling.

UNITIII 8 hours

Electrical properties: Assumptions of quantum free electron theory, Fermi level, Fermi energy, Fermi velocity and Fermi temperature. Fermi factor f(E) and its dependence on temperature. Expression for density of states (qualitative), expression for Fermi energy at absolute temperature (derivation). Electrical conductivity using effective mass and Fermi velocity (derivation). Merits of quantum free electron theory. Numerical problems. **Dielectric properties:** Introduction to dielectrics: types of dielectrics, polarization, polarizability, dielectric constant, relation between dielectric constant and polarizability. Polarization mechanism and types of polarization. Derivation of equation for internal field in liquids and solids (1-Dimensional). Expression for Classius-Mossotti equation (Derivation). Numerical problems.

Self-study component:Distinguish between CFET and QFET, applications of dielectric materials in engineering (Mica, glass, rubber, and porcelain), Piezo-electricity.

UNIT IV 8 hours

Lasers: Interaction of radiation with matter: Induced absorption, spontaneous emission and stimulated emission of radiation. Expression for energy density in terms of Einstein's coefficients (derivation). Requisites of a laser system. Condition for laser action. Principle, construction and working of He-Ne laser. Application of laser: Holography, principle, recording (wave front division technique) and reconstruction of 3-D images. Mention of applications of holography. Numerical problems.

Optical fibers: Propagation mechanism in optical fibers. Expression for angle of acceptance and numerical

aperture (derivation). Fractional index change, V- number and modes of propagation (N). Types of optical fibers. Attenuation: expression for attenuation coefficient (derivation). Application of optical fibers: Point to point communication with block diagram. Advantages and limitations of fiber optic communication over conventional communication system. Numerical problems.

Self-study component: Applications of laser in medical and industry. Discuss the causes for attenuation in optical fibers.

UNIT V 8 hours

Crystal Structure: Seven crystal systems, Miller indices, Interplanar spacing in terms of miller indices. X-ray diffraction, Bragg's law (derivation), Bragg's X-ray spectrometer (construction and working) and determination of crystal structure by Bragg's X-ray spectrometer, Numerical Problems.

Nanomaterials: Nano Scale, Surface to Volume Ratio, Quantum Confinement, types of nanomaterials, Synthesis of nanomaterials: Topdown approach: High energy Ball-milling method and Bottom-Up approach: Sol-Gel method. Characterization Technique: Scanning Electron Microscope (SEM), Properties of nanomaterials: Mechanical, electrical, magnetic and optical.

Self-study component: Co-ordination number, Atomic packing factor (APF) for simple cubic, body centered and face centered cubic structure. Applications of nanomaterials: Medical and Electronics.

TEACHING and LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1:Apply the knowledge of elasticity and vibrations to engineering.

CO2:Apply the knowledge of basic quantum mechanics, to set up onedimensional Schrodinger's wave equation and its application to a matter wave system. **CO3:Summarize** the importance of free electrons in determining the properties of metals; understand the concept of Fermi energy. Gain the knowledge of the electrical and dielectric properties of a materials.

CO4:Describe the basics of laser Physics, working of lasers, holography and principle of propagation of light in optical fibers.

CO5:Recognize various planes in a crystal and describe the structure determination using X-rays.

TEXT BOOKS

- 1. P. S. Aithal, H. J. Ravindra, Textbook of Engineering Physics, Acme Learning Pvt. Limited, New Delhi, 1st edition, (2017).
- 2. Dr. Amit Sarin, Anil Rewal, Engineering Physics Books, Wiley India Private Ltd., New Delhi 9th Edition (2014).
- 3. Avadhanulu M. N. and P.G. Kshirsagar, A text Book of Engineering Physics, 10th Edition (2014).
- 4. Engineering Physics by Gaur and Gupta, DhanpatRai Publications (P) Ltd.
- 5. Dr. K. Vijayakumar, Dr. S. Chandralingum, Modern Engineering Physics, S. Chand and Company Limited, 1st edition 2010
- 6. K. K. Chattopadhyay, Introduction to Nanoscience and Nanotechnology, PHI India, (2009).
- 7. Sulabha Kulkarni, Introduction to Nanoscience and Nanotechnology 2nd Edition (2012)

REFERENCE BOOKS

- 1. S. O. Pillai, Solid State Physics, New Age International. Sixth Edition.
- A Marikani, Engineering Physics, PHI Learning Private Limited, Delhi -2013
- 3. Prof. S. P. Basavaraju, Engineering Physics, Subhas Stores, Bangalore.
- 4. V. Rajendran , Engineering Physics, Tata McGraw Hill Company Ltd., New Delhi -2012
- 5. S. Mani Naidu, Engineering Physics, Pearson India Limited 2014
- 6. AjoyGhatak, Optics, Tata McGraw Hill, 2005.
- 7. Arthur Beiser, Concepts of Modern Physics, McGraw Hill,7th edition 2017.

ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org
- 3. https://physicsworld.com/

Note: Questions from Self-study component will not be asked for CIE and SEE.

			QUES1	ION PA	APER P	ATTERN	(SEE)			
Q. No.	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
UNIT		1		2		3		4		5
1 Two	full a	ıoction	c (oach	of 20 N	Aarke)	ro to bo	cot fro	m oac	hunit	

^{1.} Two full questions (each of 20 Marks) are to be set from each unit.

MAPPING of COs with POs

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\vee	√										
CO2												
CO3		V										
CO4		V										
CO5	√	V										
Stren	igth o	f corre	elatio	n: Lov	v-1, Λ	/lediur	n- 2, H	igh-3				

^{2.} Student shall answer five full questions selecting one full question from each unit.

Dr Ambedkar Institute of Technology, Bengaluru-56 **Department of Chemistry** Scheme and Syllabus - CBCS - 2021 -2022

Course Title	ENGIN	EERII	NG CHEN	MISTRY								
Course Code	21CH1	102/2	202									
Category	Basic S	cienc	e Course	(BS)								
Scheme and		No. of Hours/Week Total Credits										
Credits	L	Т	Р	SS	Total	teaching hours						
	03	00	00	00	03	40	03					
CIE Marks: 50	SEE Marks	: 50	Total M Marks=		Durat Hours	ion of SEE	: 03					

COURSE OBJECTIVE: To expose first year engineering students to various physicochemical aspects of engineering materials such as metals, alloys, plastics, conducting polymers etc. with a view to highlight their significance and importance in application oriented systems.

8 hours **UNIT I**

Electrochemical energy sources:

Electrochemical cells

Introduction to electro chemical cells, origin of single electrode potential, sign convention and cell notation, standard electrode potential, derivation of Nernst equation for single electrode potential, numerical problems.

Types of electrodes- Classification of reference electrodes, calomel electrode - construction, working and applications, Measurement of single electrode potential using calomel electrode, Electrochemical series. Concentration cells-Derivation of Emf of a concentration cell - numerical Problems. Ion selective electrodes - Glass electrode construction and working, Determination of pH of a solution using glass electrode.

Batteries and fuel cells

Basic concepts – principal components of a battery, operation of a battery during charging and discharging, Battery characteristics - voltage, capacity, energy efficiency, cycle life and shelf life. Classifications of batteries, Construction, working and applications of Lead acid, Ni-metal hydride and Li-ion battery, significance of Lithium.

Fuel cells – Construction, working and applications of CH3OH-O, fuel cell using H2SO4 electrolyte.

Self-study: Introduction to Refrence electrode, Ag-AgCl electrode, Introduction to fuel cells & battery, H2-O2 Fuel cell.

UNIT II 8 hours

Corrosion and Metal finishing

Corrosion science

Corrosion – Introduction, electrochemical theory of corrosion, galvanic series: Types of corrosion – Differential metal corrosion –Differential aeration corrosion, Stress corrosion. Factors– Related to nature of metal: electrode potential, relative sizes of anode and cathode, nature of the corrosion product. Related to environment: pH of the medium, temperature, humidity and presence of impurities in the atmosphere.

Corrosion control: Inorganic coatings; Anodizing – anodized coating of aluminium. Phosphating. Metallic coatings – Anodic metallic coating ex : Galvanizing, Cathodic metallic coating ex : Tinning .Organic coatings – examples, Corrosion inhibitors – definition, anodic and cathodic inhibitors, Cathodic protection – definition, sacrificial anode method.

Metal finishing

Technological importance, Electroplating – pre-treatment, process.

Significance of Polarization, Decomposition potential and Overvoltage in electroplating and their applications. Effect of plating variables on the nature of electrodeposit – metal ion concentration, organic additives (Complexing agents, brighteners, levelers, structure modifiers and wetting agents), current density, pH, temperature and throwing power of the plating bath, Electroplating of chromium.

Electroless plating: difference between electroplating and electroless plating. Pre-treatment and activation of the surface, electroless plating of copper in the manufacture of PCBs.

Self-study: Metallic coating: Anodic metallic coating- Galvanization, Cathodic metallic coating-Tinning, Organic coating

UNIT III 8 hours

Energy: Sources & Conversion

Chemical fuels: Hydrocarbon fuels, classification. Calorific value –GCV and NCV. Bomb calorimeter, numerical problems.

Petroleum cracking – Fluidized catalytic cracking process, Knocking – mechanism and harmful effects, Octane and Cetane numbers, Reforming of petrol. Unleaded petrol, power alcohol, Biodiesel, Catalytic converters – construction and working.

Solar energy: Photovoltaic cells – Introduction, definition, production of solar grade silicon, purification of silicon by zone refining process, construction and working of silicon-photovoltaic cell, advantages and disadvantages.

Self-study: Determination of GCV & NCV of gaseous fuel by Buoys calorimeter and numerical problems.

UNIT IV 8 hours

Polymer science and Environmental Pollution Polymer science

Polymerization – Classification-addition and condensation polymerization with examples: Techniques of polymerization- bulk, solution, emulsion and suspension polymerization. Free radical mechanism taking ethylene as an example, Glass transition temperature (Tg) –significance and factors affecting Tg, compounding of resins into plastics. Synthesis and applications- PMMA, Polyurethane, phenol-formaldehyde resin. Elastomers: Introduction, vulcanization of rubber. Synthesis and applications of neoprene and butyl rubber; adhesives: synthesis of epoxy resins. Conducting polymers: mechanism of conduction in polyacetylene and its applications.

Environmental Pollution: Introduction, Air pollutants: Sources and effects of primary& Secondary air Pollutants, Ozone depletion, greenhouse effect - global warming. Sources of water pollution, Determination of BOD and COD

Self-study: Characterization of nanomaterials-FT-IR, XRD, SEM, TGA, BET-surface area analysis.

UNIT V 8 hours

Instrumental methods of chemical analysis: theory, instrumentation and applications-Colorimetric estimation of Cu, Potentiometric estimation of FAS, Conductometric estimation of acid mixture.

Water technology

Impurities in water –water analysis: Hardness – types, determination by EDTA method, dissolved oxygen by Winkler's method.

Potable water- desalination of water by electrodialysis method.

Green chemistry: Introduction, Principles, green synthesis – Aspirin and ibuprofen

Green catalyst – Zeolite and Silica. Microwave assisted reaction in water – Methyl benzoate to Benzoic acid, oxidation of toluene, Ultrasound assisted reaction – Sonochemicalsimmons-smith reaction

Self –study: Importance of green chemistry in industry, environment related issues.

TEACHING AND LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

Course Outcomes:

- CO1: At the end of the first unit the student will be able to understand the basic concepts electrochemistry and its applications, in the construction of electrochemical energy sources.
- 2. CO2: At the end of the second unit the student will be able to understand concepts of corrosion and its control in the fabrication and design of structural materials and importance of metal finishing in

- enhancing physicochemical properties.
- 3. CO3: At the end of the third unit the student will be able to understand concepts of renewable and non-renewable energy sources.
- 4. CO4: At the end of the fourth unit the student will be able to understand the application of polymeric materials for different applications.
- 5. CO5: At the end of the fifth unit the student will be able to understand the instrumental techniques and water quality parameters.

REFERENCE:

- 1. Principles of Physical Chemistry B.R.Puri, L.R.Sharma&M.S.Pathania, S.Nagin Chand &Co.
- 2. Text Book of Polymer Science by F.W.Billmeyer, John Wiley & Sons
- 3. Corrosion Engineering by M.G.Fontana, Mc Graw Hill Publications.
- 4. Environmental Chemistry by Stanley E. Manahan, 7th Edition, lewis Publishers, 2000
- Engineering Chemistry by DrRenubapna, Macmilan publisher India limited
- Engineering Chemistry by Jayaprakash and VenugopalSubhash Publications.
- 7. Nano Metal Oxides For Environmental Remediation. United Publications Dr. Jahagirdar A.A and Dr. Nagaswarupa H P

Note: Questions from Self-study component will not be asked for CIE and SEE.

	QUESTION PAPER PATTERN (SEE)													
Q. No.	Q. No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10													
UNIT	UNIT 1 2 3 4 5													

- 1. Two full questions (each of 20 Marks) are to be set from each unit.
- 2. Student shall answer five full questions selecting one full question from each unit.

MAPPING of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V	\checkmark										
CO2	V	\checkmark										
CO3	V	V										
CO4	V	V										
CO5	V	V										
_		_										

Strength of correlation: Low-1, Medium- 2, High-3

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Electrical and Electronics Engineering Scheme and Syllabus - CBCS -2021 -2022

Course Title	BASIC	ELEC	TRICAL	ENGI	NEERIN	IG						
Course Code	21EET	103/2	21EET2	03								
Category	Engine	ering	Science	e (ES)								
Scheme and		No. of Hours/Week Total teaching Credits										
Credits	L	Т	Р	SS	Total	hours						
	02	02	00	00	04	52	03					
CIE Marks: 50	SEE Marks	EE Total Max. Duration of SEE: 03 Hours arks: 50 Marks=100										

COURSE OBJECTIVE:

- 1. Understand the basic laws of electrical engineering and energy billing.
- 2. Explain the working of basic electrical parameters under sinusoidal excitation.
- 3. Analyze the series and parallel electrical circuits for voltage, current, power, and energy.
- 4. Describe the construction and working principles of electrical machines.
- 5. Explain electric power generation, transmission and distribution, wiring schemes and equipment and personal safety measures.

UNIT I 6+6 hours

DC circuits: Ohm's law and Kirchhoff's laws, analysis of series, parallel, and series-parallel circuits excited by independent voltage sources. Power and energy, maximum power transfer theorem applied to the series circuit and its applications.

Electromagnetism and AC Fundamentals: Faraday's laws, Lenz's law. Fleming's rules & dynamically induced e.m.f. Statically induced e.m.f.s., the concept of self and mutual inductance & coefficient of coupling, force on the current-carrying conductor. Generation of sinusoidal voltage, average and RMS value, form factor, and peak factor.

Self-Study: Basics of lead acid batteries, nickel - iron batteries, lithium – ion batteries, advantages and disadvantages of batteries, rating of batteries in ampere - hour.

UNIT II 5+5 hours

Single-phase circuits: Voltage, current, and power waveforms with phasor diagram, in R, L, and C circuits. Analysis of R-L, R-C, R-L-C Series and Parallel circuits, Real, reactive and apparent powers, power triangle, and Power factor.

Three-phase circuits: advantages of three-phase systems, generation of three-phase power, representation of the balanced star (3 wire and 4 wire system) and delta connected loads, phase and line relations of voltages and currents from phasor diagrams. Measurement of three-phase power by the two-wattmeter method.

Self-Study: Electric Wiring: Casing and cap wiring, Open conduit and closed conduit systems. Advantages and disadvantages. Types of wires used for lighting and heating (power) circuits.

UNIT III 5+5 hours

DC Machines: (a) Principle of operation, constructional details, induced emf equation, types of generators, and the relation between induced emf and terminal voltage.

(b) Principle of operation, back emf and torque equations, types of motors, characteristics (shunt and series only), and applications.

Transformers: Necessity of transformer, the principle of operation, Types, and construction of single-phase transformers, emf equation, losses, efficiency, and condition for maximum efficiency.

Self-Study: DC compound generators, compound motors, three phase transformers – types and constructions.

UNIT IV 5+5 hours

Three-phase induction Motors: Concept of rotating magnetic field, the principle of operation, constructional features of motor, types – squirrel cage and wound rotor and their applications., slip, the significance of slip, and problems on slip calculations.

Three-phase synchronous generators: Principle of operation, constructional features of salient and non-salient pole generators, synchronous speed, frequency of generated voltage, emf equation, with the concept of winding factor (excluding the derivation and calculation of winding factors)

Self-Study: Single phase induction motors: Double field revolving theory. Types, Working principle and constructions.

UNIT V 5+5 hours

Power transmission and distribution- Concept of electric power transmission and distribution. Low voltage distribution system (400 V and 230 V) for domestic, commercial, and small scale industry through block diagram/single line diagrams only

Electricity bill: Power rating of household appliances including air conditioners, PCs, laptops, printers, etc. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill.

Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCB)merits and demerits.

Personal safety measures: Electric Shock, Safety Precautions, Earthing, and its types.

Self-Study: Electrical Power Generation: Sources of energy – renewable and non-renewable, working principle of hydel, thermal, nuclear, wind and solar power plants through block diagrams, environmental effects and advantages and disadvantages.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Describe the basic concepts in electrical engineering.

CO2: Analyze-dc circuits, single-phase, and three-phase ac circuits.

CO3: Explain the construction and operation principle of electrical machines.

CO4: Solve basic problems on electrical machines.

CO5: Explain the concept of electric power transmission, distribution, electricity billing, equipment, and personal safety measures.

TEXT BOOKS

- Basic Electrical Engineering, D. C. Kulshreshtha, McGraw-Hill Education, Revised first edition, 2019
- 2. Electrical and Electronic Technology, Edward Hughes, Pearson, 12th edition, 2016
- 3. Lecture Notes (for module 5), Dr. AIT.

REFERENCE BOOKS

- Basic Electrical Engineering, D.P. Kothari I.J.Nagrath, McGraw-Hill Education, 4th Edition, 2019.
- Fundamentals of Electrical Engineering and Electronics, B.L. Theraja, S 2. Chand and Company, Reprint Edition 2013.
- Principles Electrical Engineering and Electronics, V.K Mehata, Rohit Mehta, S Chand and Company, 2nd edition, 2015.

ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://www.youtube.com/watch?v=IZA bJiGiJc&list=PL mruqjnuVd8LP2z0c4yBwKAGEiEW Si9&index=1
- 3. https://www.youtube.com/watch?v=3TR DS 7z2w&list=PLbRMhDVUMngfdEXVcdf ijj2Eub-UHs y

Note: Questions from Self-study component will not be asked for CIE and SEE.

	QUESTION PAPER PATTERN (SEE)												
Q. No.	Q. No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10												
UNIT	UNIT 1 2 3 4 5												
1 Two full questions (each of 20 Marks) are to be set from each unit													

- of 20 Marks) are to be set from eac
- 2. Student shall answer five full questions selecting one full question from each unit.

MAPPING of COs with POs and PSOs

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PS011	PSO2	PSO3
CO1	3	3						1		1		1	3	1	1
CO2	3	3						1		1		1	3	1	1
CO3	3	3						1		1		1	3	1	1
CO4	CO4 3 3 1 1 1 1 2 1 1														
CO5 3 3 1 1 1 1 1 3 1 1															
Stren	gth o	f cor	relatio	n: Lo	w-1,	Med	ium- 2	, Hi	gh-3						

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Computer Science & Engineering Scheme and Syllabus - CBCS – 2021 -2022

Course Title	PROBL	EM S	OLVIN	G THRO	OUGH P	ROGRAMMING						
Course Code	21CST	103/2	203									
Category	Engine	ering	Science	e Cours	e(ES)							
Scheme and		No. of Hours/Week Total teaching Credits										
Credits	L	Т	Р	SS	Total	hours						
	02	02	00	00	03	52	03					
CIE	SEE											
Marks: 50	Marks	arks: 50 Marks=100										

COURSE OBJECTIVES:

- 1. Elucidate the basic architecture and functionalities of a Computer.
- 2. Apply programming constructs of C language to solve the real-world problems.
- 3. Explore user-defined data structures like arrays, structures and pointers in implementing solutions to problems.
- 4. Design and Develop Solutions to problems using modular programming constructs such as functions and procedures.

UNIT I 8+3 hours

Fundamentals of Problem Solving:

Art of programming through Algorithm and Flowchart, Designing solutions to various problems.

Overview of C: Basic structure of C program, executing a C program. Constant, variable and data types, Operators and expressions

Self Study Component:Introduction to Computer: Computer generations, computer types, CPU, Primary memory, Secondary memory, input devices, output devices.

UNIT II 8+3 hours

Managing Input and output operations:Conditional Branching and Loops: Example programs, finding roots of a quadratic equation, computation of binomial coefficients, plotting of Pascal's triangle.

Self Study Component: Hardware and Software: Computers in a network, Network hardware, Software basics, software types.

UNIT III 8+2 hours

Arrays: Arrays (1-D, 2-D), Character arrays and Strings, Basic Algorithms: Searching and Sorting Algorithms(Linear search, Binary search, Bubble sort and Selection sort).

Self Study Component:Programming Examples

UNIT IV 8+2 hours

User Defined Functions and Recursion.

Example programs: Finding Factorial of a positive integer, GCD of two numbers and Fibonacci sequence.

Self Study Component: Storage classes: auto, extern, static, register.

UNIT V 8+2 hours

Structures, Unions and Pointers, Programs like Addition of two complex numbers using structures, compute the sum, mean and standard deviation of all elements stored in an array of N real numbers using pointers.

Self Study Component: Case Study related to Functions and Structures:

<u>Example:</u> Implement structures to read, write and compute average marks and the students scoring above and below average marks for a class of 'N' students with the structure definition as

```
struct student
{
char name[20];
introllno;
int m1, m2, m3;
intavg;
```

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to: At the end of the course the student will be able to:

CO1:Elucidate the basic architecture and functionalities of a computer and also recognize the hardwareparts.

CO2:Apply programming constructs of C language to solve the real worldproblem

CO3:Explore user-defined data structures like arrays in implementing solutions to problems like searching andsorting

CO4:Explore user-defined data structures like structures, unions and pointers in implementing solutions

CO5: Design and Develop Solutions to problems using modular programmingconstruct Using functions

TEXT BOOKS

- E. Balaguruswamy, "Programming in ANSI C", 7th Edition, TataMcGraw-Hill
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The 'C' Programming Language", Prentice Hall ofIndia.

REFERENCE BOOKS

- 1. "Programming in C"by ReemaThereja, , Cengage publication.
- "C- Programming Techniques" by A.M. Padma Reddy, Sri Nandi Publications

ONLINE RESOURCES

- 1. elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html
- 2. https://nptel.ac.in/courses/106/105/106105171/

MOOC courses can be adopted for more clarity in understanding the topics and varieties of problem solving methods.

Note: Questions from Self-study component will not be asked for CIE and SEE.

		(QUEST	ON PA	PER PA	TTERN (SEE)						
Q. No.	Q. No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10												
UNIT	UNIT 1 2 3 4 5												

- 1. Two full questions (each of 20 Marks) are to be set from each unit.
- 2. Student shall answer five full questions selecting one full question from each unit.

MAPPING of COs with POs

	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2		2	-	-	-	-	-	-	-
CO2	3	3	3	2	3	-	-	-	-	-	-	-
CO3	3	2	2	3	3	-	-	-	-	-	-	-
CO4	3	2	2	3	-	-	-	-	-	-	-	-
CO5	3	3	3	2	3	-	-	-	-	-	-	-
Stren	gth o	f cor	relatio	n: Lo	w-1,	Med	lium-	2, Hig	h-3			

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Civil Engineering Scheme and Syllabus – OBE - CBCS – 2021 -2022

Marks:50	Marks	larks: 50 Marks: 100										
CIE	SEE	EE Total Max. Duration of SEE: 03 Hours										
	3	0	0	0	3	40	3					
Credits	L	Т	P	SS	Total	Hours						
Scheme and		No. of Hours/Week Total Teaching Credits										
Category	Engin	eerin	g Sciene	ce Cou	se (ES	C)						
Course Code	21CV	Γ104	204									
Course Title	Civil E	ngine	ering a	nd Me	chanic	s						

Course Objectives: Students will be revealed to

- Apply the various lawsand principles of mechanics in various fields of engineering curricula and develop analytical ability and powers of reasoning.
- Become conversant with basics of force systems to analyze various conditions developed in supports, static, relative motions and surfaces of the bodies in various planes.
- To understand the significance of the area concentrated at one point in the planes and bodies, determine its coordinate's for simple and composite sections and its higher properties like Moment of Inertia.
- 4. To familiarize with laws of rectilinear motion, kinematics of motion and their inter relationships.

UNIT I: 7 Hours

Basics of Civil Engineering: Introduction to Civil engineering: Scope of different fields of civil engineering – Surveying, Building materials, Construction technology, Geotechnical engineering, Structural engineering, Hydraulics, Water resource engineering and Irrigation engineering, Transportation engineering, Environmental engineering. Infrastructure: Types of infrastructure, role of civil engineer in the infrastructure development, Effect of the infrastructure facilities on socioeconomic development of a country.

Self-study: -Roads, Bridgesand Dams; Types of roads, bridges and Dams, components and their function with simple sketches.

UNIT II: 10 Hours

Fundamental principles of mechanics: Introduction, basic principles and concepts of mechanics, Laws of mechanics, Idealization of mechanics. **Basic principles of statics:**Introduction to Force and its characteristics, equivalent system of forces, principles of transmissibility of a force, systems of forces, resultant of coplanar concurrent forces, component of a force, moment of a force with respect to a point, principles of moments (Varignon's theorem), Couples, effects of a force at another point, equations of static equilibrium, free body diagram.

Co-planar forces (forces in a plane):Resultant of co-planar concurrent forces, equilibrium of co-planar concurrent forces and Numerical problems. **Co-planar non concurrent force system:**Resultant of co-planar nonconcurrent forces, equilibrium of coplanar non concurrent forces and Numerical problems.

UNIT III: 8 Hours

Support Reactions:Introduction, Beam, Classification of beams, types of loads and supports, support reactions in statically determinate beams - Numerical problems.

Friction:Introduction, laws of dry friction, limiting friction, co-efficient of friction, angle of friction, angle of repose and cone of friction. Numerical problems on Blocks (horizontal and inclined plane), Ladder friction and Wedge friction.

UNIT IV: 8 Hours

Centroid:Introduction, centroid and center of gravity. Derivations of simple geometrical sections – rectangle, triangle, semicircle and quarter circle. Numerical problems on composite sections.

Moment of Inertia:Introduction, Moment of Inertia of an area, Parallel axis theorem, Perpendicular axis theorem, Radius of gyration, Polar moments of inertia. Derivations of simple geometrical sections – Rectangle, Triangle, Circle, Semicircle and Quarter circle. Numerical problems on composite sections.

UNIT V: 7 Hours

Basic Principles of Dynamics: Introduction, kinematics and kinetics, Definitions of Displacement, Speed, Velocity and Acceleration. D'Alembert's principlewith numerical problems. Newton's Laws of motion, Concept of Rectilinear motion: with simple-numerical problems. Differential relationship between displacement, velocity and accelerations. Principles of projectile with numerical problems.

COURSE OUTCOMES: The students will be able to

CO1: Discuss the basics of Civil Engineering, Concept of Engineering Mechanics, Forces and ForceSystems to determine the resultant

CO2: Define the effect of forces on the bodies in respect of its contact surfaces and the reactions developed in the system

CO3: Identify the geometrical properties like, centroid and Moment of Inertia of regular, composite and built-up sections.

CO4: Illustrate the concept of rectilinear motion, kinetics and kinematics of bodies with numerical approach.

TEXT BOOKS:

- 1. Irving H Shames, Engineering Mechanics, Prentice Hall.
- 2. F P Beer and E R Johnson, Vector Mechanics for Engineers, Vol-II-Dynamics, Tata McGraw Hill.
- 3. Engineering Mechanics by Timoshenko-Young and J V Rao, Mc Graw-Hills Book Company, New, Delhi
- 4. Elements of Civil Engineering (IV Edition) by S S Bhavikatti, Vikas Publishing House Pvt. Ltd. New, Delhi.
- 5. Elements of Civil Engineering and Engineering Mechanics, by M N Shesha Prakash and G VMogaveer, PHI Learning 2009.
 - 1 R C Hibler, Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press.
 - 2 Endy Ruina and Rudraprathap, Introduction to Statics and Dynamics, Oxford University Press.
 - 3 Shanes and Rao, Engineering Mechanics, Pearson Education.
 - 4 Bansal R J, Text Book of Engineering Mechanics, Likshmi Publications.
 - 5 Engineering Mechanics by M V S Rao and D R Durgaiah, University Press 2005.

REFERENCE BOOKS:

ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

SCHEME FOR EXAMINATION

		(QUEST	ΙΟΝΙ	PAPER	PATTE	RN FO	R SEE					
Q. No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10													
UNIT	UNIT 01 02 03 04 05												

- 1. Two full questions (each of 20 Marks) are to be set from each unit.
- 2. Student shall answer five full questions selecting one full question from each unit.

MAPPING OF Cos WITH POs

	CO & PO Mapping													
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12		
CO1	✓	√		√								✓		
CO2	✓	√										✓		
CO3	√	√										✓		
CO4	✓	√		✓								✓		

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Electronics and Communication Engineering Scheme and Syllabus - CBCS – 2021 -2022

Course Title	BASIC ELECTRONICS AND COMMUNICATION ENGINEERING						
Course Code	21ECT104/204						
Category	Engineering Science Course (ES)						
Scheme and	No. of Hours/Week					Total teaching	Credits
Credits	L	Т	Р	SS	Total	hours	
	02	02	00	00	03	52	03
CIE Marks: 50	SEE Marks: 50		Total Max. Marks=100		Duration of SEE: 03 Hours		

COURSE OBJECTIVES:

- Preparation:To prepare students with fundamental knowledge/ overview in the field of Electronics and Communication Engineering.
- Core Competence: To equip students with a basic foundation in electronic engineering fundamentals required for comprehending the operation and application of electronic circuits, logic design, embedded systems and communication systems.
- Professionalism & Learning Environment: To inculcate in first year engineering students an ethical and a professional attitude by providing an academic environment inclusive of effective communication, teamwork, ability to relate engineering issues to a broader social context and life- long learning needed for a successful professional career.

UNITI 8+3 hours

Electronic Circuits: Rectifiers, Reservoir and smoothing circuits, Full-wave rectifiers, Bi-phase rectifier circuits, Bridge rectifier circuits, Voltage regulators, Output resistance and voltage regulation, Voltage multipliers, Power Supplies–Block diagram, (No Derivations, Numericals on Rectifiers included).

Amplifiers: Types of amplifiers, Class of operation, Input and output resistance, Frequency response, Bandwidth, Phase shift, Negative feedback.

Operational amplifiers: Operational amplifier parameters, Operational amplifier characteristics, Operational amplifier configurations, Operational amplifier circuits, Multi-stage amplifiers.

Oscillators: Positive feedback, Conditions for oscillation, Ladder network oscillator, Wein bridge oscillator. (No Derivations, Numericals on Op-amp included). **Text 1**

Self-study component: BJT types, comparison of BJT, FET &FinFET.

UNITII 8+3 hours

Logic Circuits: Boolean Algebra, Logic gates, Realization of Boolean Expressions using basic gates and their truth table.

Half Adder and Full Adder, Multiplexer and decoder. Shift registers and its types – operation and truth table, Counters and asynchronous counters. Bistables, R-S Bistables, D-type Bistables, J-K Bistables. **Text 4**

Data representation, Data types, Data storage, A microcontroller system.

Sensors and Interfacing: Instrumentation and control systems, Transducers, Sensors. **Text 1**

Actuators, LED, 7-Segment LED Display, Optocoupler, Stepper Motor, Relay, Piezo Buzzer, PushButton Switch, Keyboard. **Text 2**

Self-study component: Actuator types, LCD, Touch screen displays

UNITIII 8+2 hours

Embedded Systems: Definition, Embedded systems vs general computing systems, Classification of Embedded Systems, Major application areas of Embedded Systems, Elements of an Embedded System, Core of the Embedded System, Microprocessor vs Microcontroller, RISC vs CISC, Harvardvs Von-Neumann, Big-EndianvsLittle-Endian, Memory, Program storage memory (ROM), RAM, Embedded firm ware, other system components. **Text 2**

Communication Interface: UART, Parallel Interface, USB, Bluetooth, Wi-Fi, GPRS. **Text 2**

Self-study component: Block diagrams of the architectures of RISC, CISC, Harvard and Von-Neumann. UNITIV 8+2 hours

Analog and Digital Communication: Modern communication system scheme, Information source and input transducer, Transmitter, Channel

– Hardware and Software, Noise, Receiver, Multiplexing, Types of communication systems. **Text 3**

Types of modulation (only concepts)-

AM,FM,PhaseModulation,PulseModulation,PAM,PWM,PPM,PCM. Concept of Radio wave propagation. Concepts of Sampling theorem, Nyquist rate, Digital Modulation Schemes– ASK, FSK,PSK

Self-study component: Evolution of Wireless Network Communication Technologies (1G, 2G, 3G and 4G, 5G).

UNITV 8+2 hours

Data Transmission: Asynchronous Transmission, Synchronous Communication, Data Compression, Encryption.

Radio Waves, Antennas, Satellite Communication, Microwave Communication, Optical Fiber Communication (OFC): Block diagram of OFC, Advantages of OFC, Applications of OFC. **Text 4**

Cellular Wireless Networks - Introduction, cellular telephone system, cellular concept and frequency reuse.

Text 3

Self-study component: Co-ordination number, Atomic packing factor (APF) for simple cubic, body centered and face centered cubic structure. Applications of nanomaterials: Medical and Electronics.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Describe the concepts of electronic circuits encompassing power supplies, amplifiers and oscillators.

CO2: Explain the concepts of digital logic circuits, sensors, actuators and I/O subsystems.

CO3: Discuss the characteristics of embedded systems and types of communication interface.

CO4: Describe the fundamental concepts of analog communication, digital communication and radio wave propagation.

CO5: discuss the techniques of data transmission, different modes of communication, wired and wireless communication systems.

TEXT BOOKS

- MikeTooley, 'Electronic Circuits, Fundamentals & Applications', 4th Edition, Elsevier, 2015. DO Ihttps://doi.org/10.4324/9781315737980. eBook ISBN 9781315737980
- 2. KVShibu, 'Introduction to Embedded Systems', 2nd Edition, McGraw Hill Education (India), Private Limited, 2016.
- 3. SLKakaniand Priyanka Punglia, 'Communication Systems', New Age International Publisher, 2017. https://elib4u.ipublishcentral.com/pdfreader/communication-systems
- 4. DPKothari, IJNagrath, 'BasicElectronics', 2ndedition, McGraw Hill Education (India), Private Limited, 2018.

REFERENCE BOOK

1. Mitchel E. Schultz, 'Grob's Basic Electronics', 11th Edition, McGraw-Hill, 2011.

ONLINE RESOURCES

1. https://onlinecourses.nptel.ac.in/noc21_ee55/preview

MODERN TOOLS:

PSPICE

Note: Questions from Self-study component will not be asked for CIE and SEE.

	QUESTION PAPER PATTERN (SEE)											
Q. No.	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10		
UNIT	1 2 3 4 5								5			
1. Two	full qu	estions	(each	of 20 M	arks) ar	e to be s	et fror	n eacl	unit.			
2. Stud		all ansv	ver five	full qu	estions	selecting	g one	full qu	estion	from		

	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12
CO1	3	2	1		1			2	1	1		3
CO2	3	2	1					2	1	1		3
CO3	3							2	1	1		3
CO4	3							2	1	1		3
CO5	3							2	1	1		3
Stren	Strength ofcorrelation:Low-1,						Med	dium-2,		High-	3	

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Mechanical Engineering Scheme and Syllabus - CBCS – 2021 -2022

CIE Marks: 50	SEE									
	02	00	02	00	04	52	03			
Credits	L	Т	Р	SS	Total	hours				
Scheme and		No. of Hours/Week Total teach								
Category	Engine	ngineering Science Course (EC)								
Course Code	21MET	105/2	205							
Course Title	ELEME	ELEMENTS OF MECHANICAL ENGINEERING								

COURSE OBJECTIVE:

- 1. Acquire a basic understanding role of Mechanical Engineering in the industry and society, formation of steam and its industrial application, renewable energy resources and basic concepts of Hydraulic turbines.
- 2. Acquire knowledge on automobile technology in transport application and basics of Refrigeration and Air-Conditioning.
- 3. Acquire knowledge of various engineering materials, and metal joining techniques.
- Acquire essential experience on basic Power transmission systems and Robotics.
- 5. Acquire knowledge of basic concepts on manufacturing principles and machine tools and their advancement.

UNIT 1 8+3 hours

Introduction to Mechanical Engineering (Overview only):

Role of Mechanical Engineering in Industries and Society

Sources of energy: Classification, renewable and non-renewable sources of energy and comparison.

Steam: Steam formation at a constant pressure: properties of steam, simple numerical problems to understand the use of steam tables. Applications of steam in industries.

Power generating systems: Introduction, construction and working of: Steam turbines – Impulse and reaction turbine, Gas turbines – Open and closed cycle, Hydraulic turbines – Pelton wheel, Francis and Kaplan turbine. **Power absorbing systems:** Introduction, classification of pumps and compressors.

Self-study:

Harnessing of renewable energy sources: Wind energy, Solar energy, Bio-mass and their applications

Boilers- Introduction, classification of boilers, difference between fire tube and water tube boilers.

Laboratory Components:

- 1. Study/Visit any one Conventional or Renewable Energy Power Plant and prepare a comprehensive report.
- **2.** Demonstration of Components of any one Turbo-machine.
- **3.** Study/Visit to an Industry using steam for their process and prepare a comprehensive report.

UNIT 2 8+3 hours

Internal combustion engines: Introduction, classification, parts and terminology of I C engines, working of 4-stroke petrol & diesel engines, simple numerical problems on four stroke engines. Applications of IC engines.

Hybrid and Electrical vehicles: Introduction, basic working principle ofelectrical and hybrid vehicles.

Refrigeration and Air conditioning- Introduction, definition and unit of refrigeration. Refrigerants and their properties. Types of refrigeration systems- Vapour absorption and Vapour compression refrigeration systems and their comparison. Principle & working of room air conditioner. Applications of Refrigerators and Air conditioning system.

Self-study:

Engines: Two stroke petrol and diesel engines, emission norms. Laboratory Components:

- 1. Study of Engine Components through Cut Sections
- 2. Demonstrate Components and Working principles of Domestic Refrigerator and prepare a comprehensive report **OR** Study/visit any commercial centralized Air-Conditioning unit, understand various components and operations, and prepare a comprehensive report.

UNITIII 8+2 hours

Engineering Materials: Types and applications of ferrous, nonferrous metals and alloys. Composite Materials: Introduction, classification and applications.

Heat treatment: Introduction to heat treatment, Types of Heat Treatment: Annealing, quenching, carburizing, and hardening.

Metal Joining Processes:

Soldering and brazing: Definition, types, advantages, limitations and applications of soldering and brazing. Working principle of soldering iron and torch brazing methods.

Welding: Introduction, classification and applications of welding. Working principle of electric arc welding and oxy-acetylene gas welding. Introduction to TIG and MIG welding.

Self-study:

Engineering materials: Polymers, Ceramics, Bio materials, Smart materials and its engineering applications.

Laboratory Components

- 1. One exercise each involving Welding, Soldering, and Brazing.
- 2. Study oxy-acetylene gas flame structure and its application to gas welding
- 3. Demonstration of **anyone** Heat transfer application device and prepare a comprehensive report

UNIT IV 8+2 hours

Power transmission:

Belt drives – Introduction, types of belts and belt drive. Terminology - velocity ratio, creep and slip.

Gear drives - Introduction, classification; Gear trains – types of gear train. Simple numerical problems on gear drives.

Robotics: Robot anatomy, Joints & links, common Robot configurations. Applications of Robotics in Material Handling, Processing, Assembly, and Inspection.

<u>Self-study</u>:

Power transmission: Rope drives, Chain drives and Pulleys. Laboratory Components:

- 1. Demonstration of the machine consists of Gear Trains
- 2. Demonstration of various elementary mechanisms and their motion.
- 3. Demonstration of any one model of Robot

UNIT V 8+2 hours

Manufacturing process: Introduction and classification of manufacturing process.

Machine tools: Lathe -Working principle and specification of center lathe. Sketch and description of operations performed – turning, facing, knurling, thread cutting, drilling, taper turning. Construction and Working of Milling Machines and applications.

Introduction to Mechatronics: Concept of open-loop and closed-loop systems, Examples of Mechatronic systems and their working principle.

Rapid prototyping (3D printing) - Definition, Classifications, Advantages, Disadvantages, Applications, Brief introduction of 3D Printers-SLA, SLS, FDM.

Self-study:

Introduction to Modern Manufacturing Tools and Techniques:

CNC: Introduction, components of CNC, advantages and applications of CNC, CNC Machining centres and Turning Centers.

Laboratory Components:

- 1. Demonstration of developing one model involving Lathe, Milling and Drilling
- 2. Study/Visit an Industry using CNC/ modern techniques and submit a report

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1:Demonstrate the working of various power generation devices such as steam, gas, hydraulic turbines and power absorbing devices like air compressors.

CO2: **Analyze** about the various IC engines, and power absorbing devices such as refrigerators and air conditioning.

CO3:Describe the engineering materials, heat treatment, joining processes for various applications.

CO4: **Describe** power transmission methods for various applications.

CO5:Demonstrate the principle, application of various basic and advanced manufacturing processes.

TEXT BOOKS

- 1. Elements of Mechanical Engineering K.R. Gopalkrishna, Subhash publishers, Bangalore.
- 2. A Text Book of Elements of Mechanical Engineering S. Trymbaka Murthy I. K. International Pvt Ltd, 2010 Mechanical engineering
- 3. Elements of Mechanical Engineering Dr. A.S. Ravindra, Best Publications, 7th edition, 2009.
- 4. Robotics, AppuKuttan KK K. International Pvt Ltd, volume 1.
- 5. Material Science, by Raghavan, Fifth Edition, PHI(P)LTD.

REFERENCE BOOKS

- Elements of Workshop Technology. Vol 1 & 2, S.K.H. Chowdhary, A.K.H. Chowdhary and Nirjhar Roy, 11th edition 2001, Media Promoters and Publishers, Mumbai.
- 2. Hand books of Mechanical Engineering.
- 3. Material science, by Callister, Reprint 2008, Wiley India(P) LTD

ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org
- 3. https://mechanicalengineeringworld.com/

Assessment Details both (CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) and Semester End Exam (SEE) is 50% each. The students have to obtain a minimum of 40% marks individually both in CIE and SEE to pass.

Student has to score a minimum of 40% marks individual in thoery and laboratory test components to quality to take up SEE.

Student has to score a minimum of 40% marks in SEE to pass.

	S INTERNAL EVALUATION (CIE)	Ma Mai	rks	Minimum Marks to be scored in CIE, to qualify to take SEE (40% individually)
Theory	Weightage of Tests (Test1, Test2)	30	<u> </u>	12
Laboratory components	Lab demonstration components: Rubrics for each lab component are added, then taken average (more emphasized on demonstrationtopics)	10	20	08
	Lab Test	10		
TOTAL		50	0	20

Note: Questions from Self-study component will not be asked for CIE and SEE.

	QUESTION PAPER PATTERN (SEE)											
Q. No.	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10		
UNIT		l	2	2 3 4				1	5			
1. Two	1. Two full questions (each of 20 Marks) are to be set from each unit.											
2. Stud	ent sh	all ansv	ver five	full au	estions	selecting	one i	full au	estion	from		

^{2.} Student shall answer five full questions selecting one full question from each unit.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	2	2	1	1	1	1	3
CO2	3	2	2	1	1	2	2	1	1	1	1	3
CO3	2	1	1	1	2	2	2	1	1	1	1	3
CO4	3	1	2	1	2	2	2	1	1	1	1	3
CO5	3	1	1	1	1	2	2	1	1	1	1	3
Stren	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Mechanical Engineering Scheme and Syllabus - CBCS – 2021 -2022

Course Title	ENGIN	EERIN	G GRA	PHICS					
Course Code	21MEL	.105/2	.05						
Category	Engine	ngineering Science Course (EC)							
Scheme and		No. of Hours/Week Total teaching Credit							
Credits	L	Т	Р	SS	Total	hours			
	02	00	02	00	04	52	03		
CIE Marks: 50	SEE Marks:	: 50	Total I Marks		Durati	on of SEE: 03 H	ours		

Course Objectives:

- To understand the basic principles and conventions of engineering drawing
- 2. To use drawing as a communication mode
- 3. To generate pictorial views using CAD software
- 4. To understand the development of surfaces
- 5. To visualise engineering components

Teaching-Learning (General Instructions):

- Students should be made to aware of powerful communication tool – Drawing.
- Simple Case studies can be suitably selected by the teacher for hands on practice to induce the feel of fruitfulness of learning.
- Appropriate Models, Power Point Presentation, Charts, Videos, shall be used to enhance visualization before hands on practice.
- For application problems use very generally available actual objects. (Example: For rectangular prism / object; matchbox, carton boxes, book, etc can be used. Similarly for other shapes).
- Use any CAD software for generating orthographic and pictorial views.
- Make use of sketch book with graph sheets for manual / preparatory sketching.

UNIT I 12 hours

Introduction: (Not for SEE)

Significance of Engineering drawing, Lettering, BIS Conventions of Engineering Drawing, Freehand sketching of engineering drawing, Introduction to Scales and its types.

Introduction to Computer Aided Drafting software, Co-ordinate system and reference planes HP, VP, RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet and curves.

Orthographic Projections of Points, Lines and Planes:

Introduction to Orthographic projections, Orthographic projections of points in all the quadrants. Orthographic projections of lines placed in first quadrant only; Inclined to HP,toVP and to both the planes.

Orthographic projections of planes placed in first quadrant only; resting on HP and on VP, inclined to HP, to VP and toboth the planes viz. triangle, square, rectangle, pentagon, hexagon and circular laminae.

Application on projections of Lines & Planes (Not for SEE)

UNIT II 12 hours

Orthographic Projection of Solids:

Orthographic projection of right regular solids resting on HP, inclined to HP and to VP only.

Prisms and Pyramids (triangle, square, rectangle, pentagon, hexagon), Cylinders, Cones, Cubes, Tetrahedron. Applications problems on projections of Solids (Not for SEE)

Projections of Frustum of cone, pyramid & truncated sphere (Not for SEE)

UNIT III 10 hours

Isometric Projections:

Isometric scale, Isometric projection of hexahedron (cube), right regular prisms, pyramids, cylinders, cones and spheres. Isometric projection of combination of two simplesolids.

Conversion of simple isometric drawings into orthographic views.

Problems on applications of Isometric projections of simple objects / engineering components (Not for SEE)

Introduction to drawing views using 3D environment (Not for SEE)

UNIT IV 10 hours

Development of Lateral Surfaces of Solids:

Development of lateral surfaces of right regular prisms, cylinders, pyramids, and cones resting with baseonHPonly.

Development of their frustums and truncations.

Problems on applications of development of lateral surfaces like funnels, trays (**Not for SEE**)

Problems on applications of development of lateral surfaces of transition pieces connecting circular duct and rectangular duct (Not for SEE)

UNIT V 08 hours

Multidisciplinary Applications & Practice (Not for SEE):

Free hand Sketching; True free hand, Guided Free hand, Roads,

Buildings, Utensils, Hand tools & Furniture's etc.

Drawing Simple Mechanisms; Gear trains, Ratchets, two wheeler cart & Four wheeler carts to dimensions etc.

Electric Wiring and lighting diagrams; Like, Automatic fire alarm, Call bell system, UPS system, Basic power distribution system using suitable software

Basic Building Drawing; Like, Architectural floor plan, basic foundation drawing, steel structures- Frames, bridges, trusses using Auto CAD or suitable software,

Electronics Engineering Drawings- Like, Simple Electronics Circuit Drawings.

Graphs & Charts: Like, Column chart, Pie chart, Line charts, Gantt charts, etc. using Microsoft Excel or any suitable software.

COURSE OUTCOMES: On completion of the course, student should be able to:

- **CO1. Understand** and visualize the objects with definite shape and dimensions
- CO2. Analyse the shape and size of objects through different views
- CO3.Develop the lateral surfaces of the object
- **CO4.Create** a 3D view using CAD software
- **CO5. Identify** the interdisciplinary engineering components or systems through its graphical representation

TEXT BOOKS:

- Bhatt, N.D., Engineering Drawing: Plane and Solid Geometry, 53rd edition, Charotar Publishing House Pvt. Limited, 2019.
- 2. K.R Gopalakrishna & Sudhir GopalakrishnaTextbook of Computer Aided Engineering Drawing, 39th Edition, Subash Stores, Bangalore, 2017.
- 3. S. N. Lal: Engineering Drawing with an Introduction to Auto CAD: First-angle Projection 1st Edition, Cengage, Publication, 2018.
- 4. S.N. Lal, & T Madhusudhan:, Engineering Visulisation, 1st Edition, Cengage, Publication.
- LuzadderWarrenJ., DuffJohnM., Fundamentals of Engineering Drawing: with an Introduction to Interactive Computer Graphics for Design and Production, Prentice-Hall of India Pvt. Ltd., New Delhi, Eastern Economy Edition, 2005.

REFERENCE BOOKS:

- 1. Parthasarathy N. S., Vela Murali, Engineering Drawing, Oxford University Press, 2015.
- 2. Dhawan R. K., A Textbook of Engineering Drawing, 3/e, S. Chand Publishing, 2019.
- 3. Venugopal K., Engineering Drawing and Graphics, New Age International publishers, 2014.
- 4. Bhattacharya S. K., Electrical Engineering Drawing, New Age International publishers, second edition 1998, reprint2005.
- 5. Chris Schroder, Printed Circuit Board Design using AutoCAD, Newnes,1997.
- 6. K S Sai Ram Design of steel structures, Third Edition by Pearson.
- 7. Nainan p kurianDesign of foundation systems, Narosa publications.
- 8. A S Pabla, Electrical power distribution, 6th edition, Tata Mcgraw hill.

SCHE	SCHEME FOR CIE								
	DETAILS	MAX. MARKS							
Manual Sketching (25)	Classwork	15							
	Assignment	10							
Computer Printout (15)	Classwork	15							
	Test Marks*	10							
	TOTAL CIE MARKS	50							

* Test marks is based on the average of two tests conducted in the mid-semester and end-semester.

QUESTION PAPER PATTERN FOR SEMESTER END EXAMINAITON (SEE)											
UNIT 1 2 3 4											
Max. Marks	Max. Marks 15			5	1	0	10				
Q. No.	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8			

NOTE:

- 1. Two Full Questions to be set from each Unit with internal choice.
- 2. Each Full question shall cover all the topics of the Unit.
- 3. Model question paper may be referred for distribution of topics in each Full Question.

	SCHEME OF EVALUATION FOR SEE										
Unit	Maximum Marks	Manual Sketching	Computer display and print out								
1	15	08	07								
2	15	07	08								
3	10	05	05								
4	10	05	05								
Total 50 25 25											
NO	NOTE: Evaluation shall be carried out jointly by both the examiners.										

	MAPPING OF COs WITH POs												
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	2	1	2	0	1	1	2	2	0	2	
CO2	3	2	2	1	2	0	1	1	2	2	0	2	
CO3	3	2	2	1	2	0	1	1	2	2	0	2	
CO4	3	2	2	1	2	0	1	1	2	2	0	2	
CO5	3	2	2	1	2	0	1	1	2	2	0	2	

Strength of correlation: Strongly related-3, Moderately related-2, Weakly related-1, Not related-0

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Physics Scheme and Syllabus - CBCS - 2021 -2022

Course Title	ENGINE	ENGINEERING PHYSICS LABORATORY								
Course Code	21PHL1	21PHL106/206								
Category	Basic Sc	asic Science Course (BS)								
Scheme and	1	No. of Hours/Week Total teaching Credits								
Credits	L	Т	Р	SS	Total	hours				
	00	00	02	00	02	26	01			
CIE	SEE		Total N	lax.	Dura	tion of SEE: 03 l	Hours			
Marks: 50	Marks:	Marks: 50 Marks=100								

Course objective: To make Engineering students to understand basic concepts and principles of Physics. Gain the practical knowledge of elasticity, vibrations, Laser and optical fibers.

SI.	Title of the Experiment	Compatibility with the theory course
1.	Determination of Young's Modulus of a material by single cantilever.	Unit I
2.	Determination of Rigidity modulus of a material by torsional pendulum.	Unit I
3.	Determination of acceleration due to gravity by using bar pendulum.	Unit I
4.	Determination of resonant frequency & quality factor in Series & Parallel LCR Circuits	Unit I
5.	Determination of Planck's constant using LED's	Unit II
6.	Determination of knee voltage and resistance from I-V characteristics of Zener Diode.	Unit III
7.	Measurement of dielectric constant.	Unit III
8.	Determination of Fermi energy of copper.	Unit III
9.	Determination of wavelength of Semiconductor Laser by diffraction method.	Unit IV
10.	Determination of Acceptance angle and numerical aperture of an optical fiber.	Unit IV
11.	Radius of curvature of Plano convex lens using Newton's rings	Unit IV
12.	Energy gap of a given semiconductor	Unit III

COURSE OUTCOMES: At the end of the course the students will be able to:

CO1: Apply the Physics concepts relevantly and appropriately where ever required.

CO2: The mechanical properties of solids will be understood by carrying out experiments of Young's Modulus, rigidity modulus and bar pendulum.

CO3: The optics experiments such as wavelength of laser by diffraction and numerical aperture of an Optical fiber will help the students to understand the significance of Physics in various fields of Science and Technology.

CO4: Understand the importance of Physics in electronics.

REFERENCE BOOKS:

- Laboratory Manual in Applied Physics -- H. Sathyaseelan. New Age International.
- 2. An Advanced Course in Practical Physics -- D. Chattopadhyay and P.C. Rakshit, New Central Book Agency (p) Ltd, Kolkata.

Web link for Physics virtual lab: https://www.vlab.co.in/broad-area-physical-sciences

- The maximum Marks prescribed for SEE is 50.
- Students shall perform one or two experiments (50 Marks) for the duration of 3 hours.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V	V										
CO2	V	√										
CO3	V	V										
CO4	V	V										
Stren	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Humanities & Social Sciences Scheme and Syllabus – OBE - CBCS – 2021 -2022

Course Title	ENGIN	ENGINEERING CHEMISTRY LABORATORY							
Course Code	21CHL	106/2	206						
Category	Basic S	Basic Science Course (BS)							
Scheme and		No. o	f Hours/	Total teaching	Credits				
Credits	L	Т	Р	SS	Total	hours			
	00	00	02	00	02	12	01		
CIE	SEE		Total N	lax.	Durat	tion of SEE: 03 Hours			
Marks: 50	Marks: 50 Marks=100								

COURSE OBJECTIVE: To expose first year engineering students to various experimental technique related to potentiometric, conductometric, colourimetric and PKa with a view to highlight their significance and importance in application oriented systems. Students will be able to analyze hardness of water, COD of waste water.

SI. No.	Syllabus content
1101	PART-A
1	Potentiometric estimation of FAS using standard K ₂ Cr ₂ O ₇ solution.
2	Colorimetric determination of Copper.
3	Conductometric estimation of acid mixture using standard NaOH solution.
4	Determination of pKa of a weak acid using pH meter.
5	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.
6	Flame photometric estimation of Sodium and Potassium in the given sample of water. (Demonstration)
	PART-B
7	Determination of Total Hardness of water using disodium salt of EDTA.
8	Determination of Calcium Oxide in the given cement by Rapid EDTA method.
9	Determination of percentage of Copper in the given brass solution using standard Sodium thiosulphate solution.
10	Determination of Iron in Hematite ore solution using Potassium dichromate crystals by external indicator method.

Determination of Chemical Oxygen Demand of the given industrial waste water sample.
 Determination of Total Alkalinity of given water sample using standard Hydrochloric acid.(Demonstration)

Course Outcomes:

- 1. Students will be able to apply the basic concepts electrochemistry in experiments such as potentiometry and determination of PKa of weak acid, conductometry experimentsetc
- 2. Students will be able to understand concepts of electromagnetic radiation and perform coulorimetric experiments.
- Students will be able to analyze the total hardness of water sample and COD of the wastewater
- 4. Students will be able to analyze the hematite ore in the given sample.

References Books:

- 1. Laboratory manual in Engineering Chemistry Sudharani, Dhanpatrai Publishing Company.
- 2. Vogel's Text Book of Quantitative Chemical Analysis revised by G.H.Jeffery, J.Bassett, J.Mendham and R.C Denney.

VIRTUAL LAB LINK DETAILS:

- https://www.labster.com/chemistry-virtual-labs/
- https://youtu.be/OwZbw6Mhrqc
- https://youtu.be/UOLOsKZxi6Y
- The maximum Marks prescribed for SEE is 50.
- Students shall perform one or two experiments (50 Marks) for the duration of 3 hours.

	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	√	V										
CO2	√	V										
CO3	√	√										
CO4		√										
Stren	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Electrical and Electronics Engineering Scheme and Syllabus - CBCS – 2021 -2022

Course Title	BASIC	BASIC ELECTRICAL ENGINEERING LABORATORY							
Course Code	21EEL	21EEL107/207							
Category	Engin	Engineering Science (ES)							
Scheme and		No.	of Hour	s/Week		Total teaching	Credits		
Credits	L	Т	Р	SS	Total	hours			
	00	00	02	00	02	26	01		
CIE Marks: 50	SEE Marks	s: 50	Total N Marks:		Duration of SEE: 03 Hours				

COURSE OBJECTIVE:

- 1. To understand and measure electrical quantities and parameters.
- 2. To verify the relation between line and phase quantities, measure power and power factor in three-phase circuits.
- 3. To demonstrate fundamental laws of electrical engineering.
- 4. To determine the efficiency of single-phase transformers
- 5. To understand the significance of power, power factor, and control electrical Lamps from different places.

Expt No	Syllabus Contents	No.of Hours	Blooms Taxonomy level.
1	Measurement of Resistance using Voltmeter- Ammeter method and verification using Wheatstone bridge.	2	L1
2	Measurement of Inductance in single-phase circuit by the three-voltmeter method.	2	L2
3	Measurement of voltage, current, power, and power factor and verify line and phase relationship in the three-phase star-connected circuit.	2	L3
4	Verification of Kirchhoff's Laws in DC circuits	2	L2
5	Verification of maximum power theorem in DC circuits.	2	L2
6	Comparison of domestic lamps against their power consumption.	2	L3
7	Improvement of power factor in inductive circuits.	2	L3
8	Control of electrical Lamp from one, two and three points.	2	L2
9	Load test on a single-phase transformer.	2	L3

10	Demonstration of FUSE and MCB by creating overload and fault.	2	L1
	EXPERIMENTS BEYOND SYLLABUS		
1	Speed load characteristics of a three-phase induction motor.	2	L2
2	Voltage regulators to control electrical output.	2	L3

Course Outcomes:

CO1: Verify basic laws and theorem of electrical circuits.

CO2: Understand the power consumption of different types of lamps and control of lamps

from different points.

CO3: Determine the impedance of an electrical circuit and power consumption by a 3-phase

CO4: Evaluate the performance of single-phase transformers.

CO5: Demonstrate the effects of fault and protection of electrical circuits.

References.

load.

1. Dr. Eranna Dr. S. Vasudevamurthy, "Department manual.

Web Links.

- 1. http://vlab.amrita.edu/?sub=1&brch=75&sim=217&cnt=1/
- $2. \quad \underline{http://vlab.amrita.edu/?sub=1\&brch=75\&sim=322\&cnt=1}$
- The maximum Marks prescribed for SEE is 50.
- Students shall perform one or two experiments (50 Marks) for the duration of 3 hours.

MAPPING of COs with POs and PSOs

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3				1		1	1	1		1	3		1
CO2	3	3				1		1	1	1		1	3		1
CO3	3	3				1		1	1	1		1	3		1
CO4	3	3				1		1	1	1		1	3		1
CO5	3	3				1		1	1	1		1	3		1
Strength of correlation: Low-1, Medium-2, High-3															

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Computer Science and Engineering Scheme and Syllabus – OBE - CBCS – 2021 -2022

	COMPU	COMPUTER PROGRAMMING LABORATORY								
Course Code	21CSL1	21CSL107/207								
Category	Enginee	ring S	cience (Course	(ES)					
Scheme and	No. of Hours/Week Total Hrs./ Credits									
Credits	L	Т	Р	SS	Total	semester				
	0	0	2	0	2	26	1			
CIE	SEE Total Max. D			Duratio	ration of SEE: 03 Hours					
Marks: 50	Marks: 50 Mai			: 100						

Course objectives to:

- Explain problem statements and identify appropriate solutions
- Demonstrate the use of IDE, C Compiler, and identify and rectify the syntax and syntactic errors during programming.
- Development of algorithms and programs using constructs of C programming language
- Reporting the observations

	Practice Programs
1.	To calculate simple interest (SI) for a given principal (P), time (T), and rate of interest (R) (SI = $P*T*R/100$).
2.	To print the ASCII value of the given input.
3.	To findlargest of three numbers.
4.	To perform simple calculator using switch case statement.
5.	To find factorial of a number.
6.	To print even and odd numbers using looping Construct.
7.	To find sum of N natural Numbers
8.	Write a C Program to search for the given key element with the help of Linear search technique.
9.	Develop a c program to implement selection sort technique.
10.	Develop a C program to swap two numbers using pointers (Call by Reference).

		Lab Programs
1	а	Write a C program to find the roots of a quadratic equation.
	b	Write a C program to print the numbers in triangular form
		12
		123
2	а	Write a C program to check whether the given four digit number is palindrome or not.
	b	Write a C program using function to sort the given array elements using bubble sort technique.
3	а	Develop a C program to Store age of n students and perform the following operations i. Find minimum age of student in the list ii. Find maximum age of a student in the list
	b	Develop a C Program to compute Sin(x) using Taylor series approximation. Compare your resultWith the built- in Library function. Print both the results with appropriate messages.
4	a	If cost price and selling price of an item is input through the keyboard, write a program to determine whether the seller has made profit or incurred loss and determine how much profit or loss incurred in percentage.
	b.	Write a C program to implement Recursive functions for Binary to Decimal Conversion.
5	а	Write a C program to generate N Fibonacci series.
	b	Develop a C program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of N real numbers.
6	a	Write a C program to check whether the given number is prime or not.
	b	Write a C program to
		i. read N Bank Employees name
		ii. Search for an employee in the list using Binary Search Technique.
		Note: Use 2-D character array to store Bank employees names

7	а	salary and tax percentages. Rea as an input from the user.	ulate tax based on given yearly id monthly salary of an employed e tax, if yearly salary is:
		Income Range	Tax Charges
		<=1,50,000	No tax
		1,50,001 to 3,00,000	10%
		3,00,001 to 5,00,000	20%
		5,00,001 and above	30%
	b	Write a menu driven C Program matrix Using Functions.	to compute Trace and Norm of a
8			nent string operations such as String length. Convince the
9		buns, cakes and bread. Each of in differing amounts and can Which shop is the best for ever as possible? The individual pric commodities are given in the formanded quantity of foodstuff: Toll bun cake bread P_1 6 5 3 1 P_2 3 6 2 2 P_3 3 4 3 1 1	P2, P3 intend to buy some rolls them needs these commodities buy them in two shops S1, S2 y person P1, P2, P3 to pay as little test and desired quantities of the following tables: Prices in shops S_1 and S_2 : Prices in shops S_1 and S_2 :
		MATRIX MULTIPLICATION	
		(P x Q) that uses functions to p	ering 2 matrices A (M x N) and B perform the following: i. Reading ii. Reading data to s1, s2 (Matrix atrices(C=AXB)
10			

Note: In the practical examination the student need to select one question and both a, b (if present) should be executed. All the questions listed in the syllabus have to be included in the lots. The change of question has to be considered by deducting marks (20% of execution), provided the request is made for the same, within half an hour from the start of the examination.

Course Outcomes:

At the end of the course the student will be able to:

CO1:Define the problem statement and identify the need for computer programming

CO2:Make use of C compiler, IDE for programming, identify and correct the syntax and syntactic errors in programming

CO3:Develop algorithm, flowchart and write programs to solve the given problem

CO4:Demonstrate use of functions, recursive functions, arrays, strings, structures and pointers in problem solving.

Suggested Learning Resources:

- 1. Yashavanth Kanetkar, Let us C, Authentic Guide to C Programming Langauge, bpb publisher, 17th Edition, 2020.
- 2. Herbert Schildt, C: The complete reference, Mc Graw Hill, 4th Edition, 2017 Programming in C, Reema Theraja, Cengage publication.

Weblinks and Video Lectures (e-Resources):

- 1. http://elearning.vtu.ac.in/econtent/courses/video/BS/14CPL16.html
- 2. https://nptel.ac.in/courses/106/105/106105171/
- The maximum Marks prescribed for SEE is 50.
- Students shall perform one or two experiments (50 Marks) for the duration of 3 hours.

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2		3	-	-	-	-	-	-	-
CO3	3	3	3	2	3	-	-	-	-	-	-	-
CO	3	3	3	2	3	-	-	-	-	-	-	-

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Humanities & Social Sciences Scheme and Syllabus – OBE - CBCS – 2021 -2022

Course Title	COMM	IUNI	CATIVE	ENGL	SH						
Course Code	21HST	21HST108									
Category	Huma	nitie	s & Soc	ial Scie	ences (H	IS)					
Scheme and		No. of Hours/Week Total Hrs./ Credits									
Credits	L	Т	Р	SS	Total	semester					
	1	0	1*	-	02	26	01				
CIE	SEE	SEE Total Max. Duration of SEE: 02 Hours									
Marks: 50	Marks	Marks: 50 Marks: 100									

COURSE OBJECTIVE: To enable the students to assimilate the correct patterns of the language, & to develop students insight into the structure of English language. To enrich vocabulary bank, to communicate more effectively in English, to express opinions including facts & ideas & maintain conversation in everyday situations. To use digital literacy tools their LSRW skills can be enhanced and to master good speaking skills with different strategies.

UNIT I 4 hours

Introduction to Communicative English, Fundamentals of Communicative English, Barriers to Effective Communicative English, Different styles in Communicative English, Interpersonal Communication Skills, How to improve Interpersonal Communication Skills, Developing Interpersonal Skills. Grammar: Basic English Grammar and Parts of Speech - Nouns, Pronouns, Adjectives, Verbs, Adverbs, Preposition, Articles, Conjunctions.

UNIT II 6 hours

Grammar: Preposition, kinds of Preposition and Prepositions often confused / used in different situations. Word Accent – Rules for Word Accent, Stress Shift, Question Tags, Question Tags for Assertive Sentences (Statements) – Some Exceptions in Question Tags and Exercises, Vocabulary: One Word Substitutes and Exercises, Synonyms and Antonyms, Exercises on it. Idioms & Phrases, Words often confused, Homophones, homonyms

UNIT III 6 hours

Grammar: Articles – Definite & Indefinite articles, Spelling Rules and Words often Misspelt, Word Pairs (Minimal Pairs), Sequence of Tenses (Rules in use of Tenses), Situational dialogues: Self-introduction, greeting, thanking, accepting thanks, apologizing, invitations, making complaints, Wh-questions/yes-no questions, Vocabulary: Contractions/Abbreviations, strong and Weak forms of verbs, Words Formation-Prefixes and Suffixes.

UNIT IV 5 hours

Communication Skills: LSRW Skills

UNIT V 5 hours

Speaking Skills: Extempore / Public Speaking, Difference between Extempore / Public Speaking, and Guidelines for Practice. Listening Comprehension. Oral Presentation, Role Plays Just a minute (JAM), Group Discussion, Persuasion Speech, Description.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, videos

COURSE OUTCOMES: On completion of the course, student will be able to:

CO1: Learn basic grammar rules, developed the mastery of language.

CO2: Enhance vocabulary and fluency will be increased.

CO3: Gain the ability to communicate confidently in various situations.

CO4: improve listening, speaking, reading and writing skills.

CO5: Overcome their stage freight and express their views freely without hesitation.

TEXT BOOKS

- 1. Workbook
- 2. English Grammar and composition by WREN AND MARTIN
- 3. Contemporary English Grammar by JAYANTHI DAKSHINAMURTHY
- 4. English for Technical Communication by LAKSHMINARAYANA K.R
- 5. Effective English for Technical Communication by FARATULLAH T.M

REFERENCE BOOKS

- 1. Objective English (Multiple choice questions with answers for competitive examinations) by Dr.B.James
- 2. The English Errors of Indian Students by T.L.H Smith Pearse.

- 3. Communication Skills by Sanjay Kumar and Pushp Lata, Oxford University Press 2018.
- 4. A Textbook of English Language Communication Skills, Infinite Learning Solutions (Revised Edition) 2020.
- 5. English for Engineers by N.P.Sudharshana and C.Savitha, Cambridge University Press 2018.
- 6. Technical Communication by Gajendra Singh Chauhan and Et al, Cengage learning India Pvt Limited [Latest Revised Edition] 2019.
- 7. English Language Communication Skills Lab Manual cum Workbook, Cengage learning India Pvt Limited [Latest Revised Edition] 2019.
- 8. Practical English Usage by Michael Swan, Oxford University Press 2016.
- 9. Technical Communication Principles and Practice, Third Edition by Meenakshi Raman and Sangeetha Sharma, Oxford University Press 2017.
- 10. Effective Technical Communication Second Edition by M. Ashraf Rizvi, McGraw Hill Education (India) Private Limited 2018.

SCHEME FOR EXAMINATIONS

Theory Question Paper Pattern: CIE- Objective type (Max. marks: 30 marks)

- The Pattern of question paper is MCQ (1 mark each).
- Theory SEE paper will be set for 50 questions.
- The time allotted for SEE is 02 hour.

Ss	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1										3		
CO2										3		
CO3										3		
CO4										3		
CO5										3		
Stren	Strength of correlation: Low-1, Medium-2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Humanities & Social Sciences Scheme and Syllabus – OBE - CBCS – 2021 -2022

Course Title	HEAL	ГН &	WELLNE	ESS						
Course Code	21HS1	109								
Category	Ability	/ Enh	anceme	ent Cou	rse (AE)					
Scheme and		No. of Hours/Week Total Hrs./ Credits								
Credits	L	Т	Р	SS	Total	semester				
	1	0	1*	0	02	26	01			
CIE	SEE	SEE Total Max. Duration of SEE: 02 Hours								
Marks: 50	Marks	: 50	Marks:	100						

Course objective:

The definition of Health and quality of life will teach the learner the necessity for a balanced strength and well-being. The Determinants of Health and Wellness topics like Diet, Food & Nutrition, life style, bring the points of understanding. Physical health, mental health, Social Health, Spiritual health, etc is a point to learn. The adolescent chooses the food as per the taste rather than the usefulness. Warming up exercises, physical exercises, yogasanas, pranayama and certain aspects of personality development may help in going a long way to improve the health and personality of the youth.

UNIT I 5 hours

Fundamentals of Balanced Health: Health and quality of life, Definition of Health (WHO), Five Pillars of Balanced Health, Body and Mind concepts, Disease and Healing, Genetics & Environment.

UNIT II 4 hours

Determinants of Health and Wellness: Lifestyle and Health, Sleep and health, Relaxation and Meditation, Physical Fitness and Stamina, Reproductive health and hygiene.

UNIT III 7 hours

Seven dimensions of Health & Wellness: Physical health, Mental health, Social Health, Spiritual health, Cultural health, Moral health, Economical health.

UNIT IV 5 hours

Healthy Eating- Diet and Nutrition: Food and Diet – Difference, Concept of DIET. Nutrition.

UNIT V 5 hours

Physical activity and personality Development: Warming up exercise, Physical exercise, Yogasanas, Pranayama etc. Special training for the challenged students A few words on personality development (personal quality).

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, videos

COURSE OUTCOMES: On completion of the course, student will be able to:

CO1: Understand the necessity for a balanced health and well-being.

CO2: Know one's life style, physical fitness and stamina.

CO3: Differentiate types of health.

CO4: understand 'Food is medicine' or 'Medicine is food' concept.

CO5: Have the knowledge of yogasanas & pranayama for an overall personality.

TEXT BOOKS

- 1. Dixit Suresh (2006) Swasthya Shiksha Sports Publications, Delhi.
- 2. Pinto John and Ramachandra K (2021) Kannada version " Daihika Shikshanada Parichaya", Louis Publications, Mangalore.

REFERENCE BOOKS

- Simplified Physical Exercises, Thathvagnani, The World Community Service Center, Vethathiri Maharshi, Vethathiri Publications, Erode, SKY Yoga.
- 2. Puri K. & Chandra S.S (2005) "Health & Physical Education', Surject Publication, New Delhi.
- 3. Shanti K.Y (1987) "The Science of Yogic Breathier" Pranayama D B Bombay.S.

SCHEME FOR EXAMINATIONS

Theory Question Paper Pattern:

CIE- Objective type (Max. marks: 30 marks)

- The Pattern of question paper is MCQ (1 mark each).
- Theory SEE paper will be set for 50 questions.
- The time allotted for SEE is 02 hour.

	P01	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1						3						
CO2						3						
CO3						3						
CO4						3						
CO5						3						
Stren	gth o	f corre	lation	: Lov	v-1,	Medi	um- 2,	High	า-3			•

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Civil Engineering Scheme and Syllabus – OBE - CBCS – 2021 -2022

Marks: 50	Mark	Marks: 50 Marks: 100									
CIE	SEE										
	1	0	1*	0	2	26	1				
						Hours					
Credits	L	Т	Р	SS	Total	Teaching					
Scheme and		No. of Hours/Week Total Credits									
Category	Abilit	Ability Enhancement Course (AE)									
Course Code	21CV	21CVT109/209									
Course Title	RURA	AL DEV	ELOPME	NT EN	GINEER	ING					

Course Objectives:

- Describe the scope of Rural Development Planning and Concept of Appropriate Technology and implementation of various national policies.
- 2. Understand the need and concept of low-cost construction materials for individual and group housing;
- 3. Illustrate the concept of Water Supply and Rural Sanitation.
- 4. Interpret the concept of rural transport system and issues related to it.
- 5. Summarize the need of effective Watershed and catchments area development methods and problems relating to watershed management, watershed structures.

UNIT I 3 Hours Rural Development Planning and Concept of Appropriate

Technology:

Scope; development plans; various approaches to rural development planning; concept of appropriate technology. Rural development program / projects.

UNIT II 3 Hours

Rural Housing:

Low-cost construction materials for housing; Composite material - ferrocement & fly ash, soil-stabilized un-burnt brick; Water-proof and fire-retardant roof treatment for thatch roofs. Pre-cast stone masonry; rat-trap bond for walls; Panels for roof, ferro-cement flooring / roofing units.

UNIT III 3 Hours

Rural Water Supply and Sanitation:

Sources of water. BIS & WHO water standards. Quality, Storage and distribution for rural water supply works; low-cost water treatment technologies; conservation of water; rainwater harvesting; drainage in rural areas, septic tank; low-cost community & individual Garbage disposal systems

UNIT IV 3 Hours

Rural Transportation System:

Categories of Pavement Layers, Types of roads, Surface Treatments for roads in rural areas. Soil Stabilization, Lime, Lime Fly ash and Cement Treated Course.

UNIT V 3 Hours

Irrigation Techniques: Consideration of low-cost irrigation techniques, drip & sprinkler irrigation systems. Watershed and catchments area development - problems and features of watershed management, watershed structures

COURSE OUTCOMES: The students will be able to,

CO1: Understand the concepts and relative Technology for implementation of various National Policies relating to Rural Development in the Country

CO2: Apply the knowledge for Designing and selection of the Construction Materials for Rural Housing

CO3: Analyze and Conceptualize Rural Water Supply and Rural Sanitation.

CO4: Evaluate and interpret the aspects of Rural Transport System

CO5: Appraise and Evaluate the effectiveness of Watershed and Catchment Management for Modern Irrigation System

TEXT BOOKS:

- Rural Development by Katar Singh, SAGE Publication
- 2. A.G.Madhov Rao, D.S.Ramachandra Murthy, Appropriate Technologies for low cost Housing Oxfordand IBH Publishing Co. Pvt .Ltd.

REFERENCE BOOK(S):

- 1 Rural Infrastructure by P.Nair, SBS Publication
- 2 Rural Infrastructure by Samalia Bihari Verma, Gyaneshwar Prasad & Sahib Kumari Singh, Sarup & Sons.

- 3 C. Satyanarayana Murthy, Design of Minor Irrigation and Canal Structures. Wiley Eastern Ltd.,
- 4 Document on Rural Road Development in India Volume1& 2; Central Road Research Institute, New Delhi.

ONLINE RESOURCE:

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org
- The Pattern of question paper is MCQ (1 mark each).
- Theory SEE paper will be set for 50 questions.
- The time allotted for SFF is 02 hour.

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PO												
CO1	√	√				√	√					
CO2							√					
CO3			√				√					√
CO4							√					
CO5					√		√					√

Dr Ambedkar Institute of Technology, Bengaluru-56 Career Guidance and Placement Cell Scheme and Syllabus - CBCS – 2021 -2022

Course Title	Caree	r Dev	elopme	ent Sk	cills - I						
Course Code	21HSI	21HSN110									
Category	HSS (F	lumar	nities)								
Scheme and		No. of Hours/Week Total teaching Credits									
Credits	L	Т	Р	SS	Total	hours					
	01	00	01*	00	02	26	00				
CIE Marks: 50	SEE Marks	;: -	Total Marks		Durat	ion of SEE: NIL					

COURSE OBJECTIVE:

- The lessons under this unit are designed to enable the students to plan their career on correct measures and motivate them to set their goals on prior basis.
- 2. This unit aims to develop the personality skills of the students and teach them to lead a corporate discipline nurture. It also helps them to get groomed with professional ethics.
- This unit is designed to give the awareness to the students about the job market to prepare themselves at their own pace and potential. It also teaches them about the self-developing attitude through their emotions and intelligence.
- 4. This unit complies with the overcoming ability of students dealt in stress and it also teaches the punctuality and time managing.
- 5. This lesson will help students make inferences and predictions about spoken, writing & listening discourse. And by utilizing digital literacy tools, their LCRW skills can be enhanced.

Unit no	Syllabus content	Hours/COs
1	 Career Planning 	5
	2. Goal Settings	CO1
2	 Personality Effectiveness 	6
	2. Building Personality and Discipline	CO2
	3. Grooming, hygiene and Cleanliness	

3	1. Self- Awareness & Self Confidence	6
	2. Attitudes	CO3
	3. Emotional & Intelligent Quotient	
4		4
	1. Time Management	CO4
	2. Stress Management	
5	1. LICRW Skills (Listening, Interpersonal,	5
	Conversation, Reading & Writing skills)	
		CO5

COURSE OUTCOME:

- 1. The students will be able to learn about the overview of their goals and also gets to know diversities in the field of their career planning.
- 2. The student will develop and improve their personal and professional effectiveness. At the end of this unit, students will have deploy themselves about the corporate culture.
- 3. At the completion of this unit, students will develop the self-confidence and emerge as the confident person.
- 4. After the completion of this unit students will understand the stress, time and emotional management. Also they will learn about the overcoming the fear and uncomfortable situations such as Public speaking.
- 5. After the completion of this unit, students will gain knowledge about the assertiveness of Listening, Reading, Writing& Interpersonal segments.

REFERENCE:

- 1. Soft skills for Managers by Dr. T. KALYANA CHAKRAVATHI
- 2. Personal Development and Soft Skills by BARUN K MITRA, Oxford Higher Education
- 3. The Emotionally Intelligent Workplace by DANIEL GOLEMAN.
- 4. Communication skills and soft skills an integrated approach by E. SURESH KUMAR, P. SREEHARI, J SAVITHRI.
- 5. Top Talking in English (international communication skills) by CHARLES T. RAJENDRA
- 6. Soft skills by RAJ LAKSHMI SURYAVANSHI, Gurucool Publishing
- The Pattern of question paper for test is MCQ (1 mark each).

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Mathematics Scheme and Syllabus - CBCS – 2021 -2022

Course Title	ADVA	NCED	CALCU	ILUS A	ND NU	MERICAL METH	ODS				
Course Code	21M	21MAT201									
Category	Basic	asic Science Course (BS)									
Scheme and		No. of Hours/Week Total teaching Credits									
Credits	L	Т	Р	SS	Total	hours					
	03	02	00	00	05	65	04				
CIE Marks: 50	SEE Mark	SEE Total Max. Duration of SEE: 03 Hours Marks: 50 Marks=100									

COURSE OBJECTIVE: This course is intended to impart to the students the skills of employing the basic tools of Calculus and Numerical methods for solving basic and difficult engineering problems.

UNIT I 8+5 hours

Multiple Integrals: Evaluation of double and triple Integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find area as double integral and volume as triple integral.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions.

Self-Study: Centre of gravity, Moment of inertia.

UNIT II 8+5 hours

Vector Differentiation: Scalar and vector point functions, gradient, directional derivative, divergence, curl and Laplacian of a vector field. Solenoidal and irrotational vector fields. Vector identities (without proof). **Vector Integration:** Line integrals, Applications to work done by a force. Green's theorem in a plane and Gauss Divergence theorem (without proof) involving cubes and rectangular parallelepiped.

Self-Study: Surface integrals and Stoke's theorem.

UNIT III 8+5 hours

Partial Differential Equations (PDE's): Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDE's involving derivative with respect to the one independent variable only. Solution of one- dimensional heat equation and wave equation by the method of separation of variables.

Self- Study: Solution of Lagrange's linear PDE. Derivation of onedimensional heat equation and wave equation. UNIT IV 8+5 hours

Numerical Methods-1: Solution of polynomials and transcendental equations: Regula–Falsi and Newton–Raphson method (without proof). Interpolation-Newton's forward and backward difference formulae, Newton's divided difference formula, Lagrange's interpolation formula and its inverse interpolation formula (without proof).

Numerical differentiation and Integration: Approximation of derivatives using Newton's forward and backward interpolation polynomials. Numerical integration using Simpson's (1/3)rd and Simpson's (3/8)th rules (without proof).

Self-Study: Newton-Raphson method for repeated roots, Weddle's rule.

UNIT V 8+5 hours Numerical Methods-2: Numerical solutions of Ordinary Differential Equations of first order and first degree: Taylor's series method, Modified

Euler's method, Fourth order Rungekutta method (without proof). Multi steps methods-Milne's predictor- corrector formula (No derivation).

Self-Study: Euler's method, Picard's method, Adam-Bashforth method.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:At the end of the course the students are able to:

CO1: Show the equivalences of mathematical expressions involving differentiation and integration.

CO2: Find divergence, directional derivatives, area bounded, flux and work done.

CO3: Illustrate mathematical procedures to change the order of integration, method of separation, predictor and corrector.

CO4: Identify the mathematical tool for solving flow models, improper integrals, interpolation and quadrature.

CO5: Apply the integral operator and vector differential operator for mensuration and measurements in complex engineering field.

TEXT BOOKS

- B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- V. Ramana: Higher Engineering Mathematics, McGraw –Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I& II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 4. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

Note: Questions from Self-study component will not be asked for CIE and SEE.

QUESTION PAPER PATTERN (SEE)										
Q. No.	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
UNIT		1	2		3		4		5	
1. Two full questions (each of 20 Marks) are to be set from each unit.										
2. Stud	lent sh	all ansv	ver five	full au	estions	selecting	one i	full au	estion	from

Student shall answer five full questions selecting one full question from each unit.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	3	3									
Stren	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Humanities & Social Sciences Scheme and Syllabus – OBE - CBCS – 2021 -2022

Marks: 50	Marks:	50	Marks:			0 0. 0				
CIE	SEE		Total N	Durati	on of SEE: 0	2 Hours				
	1	0	1	-	02	26	01			
Credits	L	Т	Р	SS	Total	semester				
Scheme and	No. of Hours/Week Total Hrs./ Cr									
Category	Humar	Humanities & Social Sciences (HS)								
Course Code	21HST	208								
Course Title	PROFE	SSION	IAL WRI	TING SK	(ILLS IN	ENGLISH				

Course objective:

To implement English vocabulary at command and ensure language proficiency, to achieve better Technical writing and Presentation skills, identify the common errors in speaking and writing English. Learn better sentence structures, acquire Employment and Workplace communication skills, to learn about Techniques of Information Transfer through presentation in different levels.

UNIT I 4 hours

Identifying Common Errors in Writing and Speaking English, Subject Verb Agreement (Concord Rules with Exercises), Common errors in Subject-verb agreement, Noun-pronoun agreement, Adjective, Adverb, Verb, Sequence of Tenses, Misplaced modifiers, Common errors in Conjunctions, Common errors in the use of Idioms and phrases.

UNIT II 6 hours

Nature and Style of sensible writing, organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Redundancies & Clichés.

UNIT III 6 hours

Technical Reading and Writing Practices, Effective Technical Reading and Writing Practices, technical Reports writing and Technical Proposals Writing, Grammar – Voice (Active and Passive Voices), Reported Speech, Vocabulary – Analogies, Words Confused/Misused, Collocations

UNIT IV 5 hours

Communication for Employment, Components of a formal letter, Formats and types of business letters, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing and other recent communication types, Reading Skills and Reading Comprehension.

UNIT V 5 hours

Communication at Workplace, Interpersonal Communication Skills, Non-Verbal Communication Skills (Body Language), Group Discussion and Employment Interviews, Presentation skills and Formal Presentations by Students, Dialogues in Various Situations (Practical Sessions by Students).

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student will be able to:

CO1: Identify common errors in spoken and written communication.

CO2: Get familiarized with English vocabulary and language proficiency.

CO3: Improve nature and style of sensible writing & acquire employment and workplace skills.

CO4: Improve their Technical Communication Skills through Technical Reading and Writing practices.

CO5: Perform well in campus recruitment, engineering and all other general competitive examinations.

TEXT BOOKS:

- 1. Workbook
- 2. Functional English, Cengage learning India Pvt Limited [Latest Revised Edition] 2020.
- Communication Skills by Sanjay Kumar and Pushp Lata, Oxford University Press - 2018. Refer it's workbook for activities and exercises – "Communication Skills – I (A Workbook)" published by Oxford University Press – 2018.
- 4. A Course in Technical English, Cambridge University Press 2020.

REFERENCE BOOKS

- Professional Writing Skills in English, Infinite Learning Solutions (Revised Edition) 2021.
- Technical Communication Principles and Practice, Third Edition by Meenakshi Raman and Sangeetha Sharma, Oxford University Press 2017.
- 3. High School English Grammar & Composition by Wren and Martin, S Chandh & Company Ltd 2015.
- 4. Effective Technical Communication Second Edition by M Ashraf Rizvi, McGraw Hill Education (India) Private Limited 2018.
- 5. Intermediate Grammar, Usage and Composition by M.L.Tichoo, A.L.Subramanian, P.R.Subramanian, Orient Black Swan 2016.

SCHEME FOR EXAMINATIONS

Theory Question Paper Pattern:

CIE- Objective type (Max. marks: 30 marks)

- The Pattern of question paper is MCQ (1 mark each).
- Theory SEE paper will be set for 50 questions.
- The time allotted for SEE is 02 hour.

	P01	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	P011	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
Strength of correlation: Low-1, Medium-2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 Career Guidance and Placement Cell Scheme and Syllabus - CBCS – 2021 -2022

CIE Marks: 50	SEE Marks:	_	Total M Marks=		Duration of SEE: NIL					
	01	00	01*	00	02	26	00			
Credits	L	Т	Р	SS	Total	teaching hours				
Scheme and	No. of Hours/Week Total Credit									
Category	HSS (Hu	ımani	ties)							
Course Code	21HSN	210								
Course Title	Career	Career Development Skills - II								

COURSE OBJECTIVE:

- The main goal of this unit is to help students to overcome the fear of speaking in both personal and professional culture and it also focuses on the presenting the topics with confidence. This unit also teaches the students about the team building activities
- This unit depicts the easier decision making and problem solving techniques for overcoming the hardships of interview process. It also teaches on behavior & mannerism that should be maintained during the interview.
- 3. The lessons under this unit help students' to learn to business communication activities which sought to help them to become an entrepreneur.
- 4. This unit deals with the preparation of Interview skill and also teaches the students about the various interview structures like Resume Building, GD etc..
- 5. This unit is completely an activity session, constructed to overcome the stage presence or fear.

Unit no	Syllabus content	Hours/COs
1	1. Presentation Speaking skills	5
	2. Public Speaking skills	CO1
	3. Team Building	

2	1. Decision Making & Problem Solving	5
	2. Mannerism & Behavior	CO2
	3. Reaching your potential	
3	1. Business Communication	5
	2. Sales & Negotiations	CO3
	3. Customer Service	
4	1. Interview Skills	6
	2. Resume Building	CO4
	3. Group Discussion (Each student will be assessed based on their body language, voice modulation,	
	content & Creativity	
5	1. Activity Sessions	5
	> Debate	CO5
	> Picture Connector	
	2. Mock Interview	

COURSE OUTCOME:

- The students will have learnt about the way of quality communication with the co-workers and it will also help to build a strong social relationship with outside society. And students will also learn to deliver the presentation in a more powerful and persuasive way.
- At the end of this unit, students will have deploy themselves in the active thinking and also learns about the effective usage of words. And students will learn about the synchronization with the workmate and also gives them an opportunity to unlock their individual potentials.
- 3. After the completion of this unit, student will have learnt how to undergo business etiquettes with proper negotiations and customization.
- 4. After the completion of this unit student have learnt about the interview standards that being asked during the recruitment process. It also improves the clarity and confidence of the students.
- 5. At the end of this sessions, students will be confident on their speech and will be exposed to interview standards that being asked during the recruitment process.

REFERENCE:

- 1. Soft skills for Managers by Dr. T. KALYANA CHAKRAVATHI
- Personal Development and Soft Skills by BARUN K MITRA, Oxford Higher Education
- 3. The Emotionally Intelligent Workplace by DANIEL GOLEMAN.
- 4. Communication skills and soft skills an integrated approach by E. SURESH KUMAR, P. SREEHARI, J SAVITHRI.
- Top Talking in English (international communication skills) by CHARLES T. RAJENDRA
- 6. Soft skills by RAJ LAKSHMI SURYAVANSHI, Gurucool Publishing
- 7. Enhancing English and Employability Skills by State Board of Technical.
- 8. Soft skills an integrated approach to maximize personality by SANGEETHA SHARMA, GAJENDRA SINGH CHAUHAN, and Wiley Publishing.
- The Pattern of question paper for test is MCQ (1 mark each).