Chaotic based Grain 128-bit stream cipher for image encryption

Meghana S Ramesh^a, Dr. Shivaputra^b*

^aM. Tech Student, Bengaluru-560056, India ^bAssistant Professor, Bengaluru-560056, India

ABSTRACT: Secure transmission and storage of data are most important for a successful communication system. Cryptography protects the information so that the intruder cannot have access to the data of interest. There are various algorithms implemented to transform the information to be transmitted into cipher form so that it does not have any traces of its original form and can be protected from trespasser. Chaotic based Grain 128-bit is a stream cipher made up of a linear and a non-linear feedback shift registers, which is fed by a chaotic logistic map and a Boolean non-linear filter, which is fed by both LFSR and NLFSR. Key is generated using Chaotic based Grain 128-bit stream cipher and is used in the application for image encryption. The generation of the key is implemented on Xilinx ISE xc7a100t-3csg324 using Verilog code is also discussed. Analysis of the work is done by plotting a histogram of input, encrypted, and decrypted images.

Keywords: Cryptography, Linear feedback shift register (LFSR), Non-linear feedback shift register (NLFSR), Cipher, Encryption, and decryption.

1. Introduction

Different forms of contents such as text, audio, image, video, etc are transmitted from one point to another in various ways. To have successful communication, the information at the receiver end should not be corrupted. This is achieved by providing security to the data to be transmitted. One of the popular methods is to convert the original data into cipher form so that the trespasser cannot have access to it. Cryptography deals with protecting the data using codes so that the data can be accessed only by the intended users.

Stream and block ciphers are the two types of ciphers used in a symmetric key cryptographic system. The key generation using stream ciphers in software is much faster than in block cipher. Stream ciphers are also resistive against various statistical attacks and are made up of LFSRs and NLFSRs. The properties of the sequence generated using LFSRs coincide with that of truly random sequences [1]. Global Positioning System (GPS) uses sequences generated by LFSRs. L2 frequency band Civil Moderate signal also uses sequences generated by LFSRs as the sequences generated by LFSRs have properties similar to pseudo random sequence. But, the order of the sequence is less comparatively and hence the cycle repeats after certain number of bits. Thus, they result in poor correlation properties [2]. The non-linearity increases the randomness properties in the sequence generated, thus increasing the security of transmission of information through the unprotected medium. The encryption process in stream cipher is bit by bit XOR operation between key stream and the input stream of bits.

The security of the cryptographic system depends upon the strength of the key generated using cryptographic algorithm. Hence, the strength of the key decides the strength of the security system. More random the key generated, more secure the system. Hence, the random number generator is the basic and important block in a cryptographic system. Lots of research are going on regarding design of an efficient random number generators. It is a challenge to generate a true pseudorandom sequence having desired statistical properties necessary for cryptographic systems [3]

Satellite applications require binary sequences having good correlation properties. They also require sequences having suitable linear complexity [4]. A survey on chaotic encryption algorithms of the speech signal and cryptographic requirements is discussed in [5]. Cryptographic applications require random binary sequences having large linear complexity properties. In [6], random binary number is generated using matrix recurrence relation which is defined over Z4. The sequence generated has larger linear complexity properties. Water Marked Image Encryption Using Logistic Map

Search Q 📮 Log in

Analysis and Design of an Optical Biosensor Using Mathematical Modeling

<u>G. Sowmya Padukone</u> [⊡], <u>H. Uma Devi</u>, <u>Shivaputra</u> & Meenakshi L. Rathod

Conference paper First Online: 27 September 2020

575 Accesses

Part of the <u>Lecture Notes in Mechanical Engineering</u> book series (LNME)

Abstract

Photonics is a branch of science which deals with creation, perception, and arrangement of light in a suitable form. The waves are electromagnetic waves (EM waves) where electric and magnetic waves are perpendicular to each other. These sensors are used to detect diseases like cancer, forensic analysis, pattern, parental recognition, pattern recognition, etc. But, photonic biosensors are first designed so as to get the optical-designed simulation pattern using MEEP and opti-FDTD algorithms. The patterns are

Springer Professional

2021 | OriginalPaper | Chapter

Modified E-Shaped Resonator-Based Microstrip Dual-Mode Bandpass Filter

Authors: Shobha I. Hugar, Vaishali Mungurwadi, J. S. Baligar

Published in: International Conference on Communication, Computing and Electronics Systems

Publisher: Springer Singapore

Login to get access

Show more

Please log in to get access to this content

Log in

Register for free

previous chapter	next chapter
Literature	

Metadata

Available online at www.sciencedirect.com

Procedia Computer Science 171 (2020) 2067-2072

Procedia Computer Science

www.elsevier.com/locate/procedia

Third International Conference on Computing and Network Communications (CoCoNet'19)

Novel Approach For Center Frequency And Bandwidth Tuning In Multimode Resonator Based Microstrip Dual-Mode Bandpass Filter

Shobha I Hugar^a, Vaishali Mungurwadi^b, J S Baligar^c

^aSapthagiri College of Engineering,Bangalore57,India ^bSarvajanik College Of Engineering,Surat,India

^cDr Ambedkar Institute f Technology, Bangalor, India

Abstract

This paper demonstrates a novel approach for both center frequency and bandwidth tuning in dual mode Bandpass filter. The proposed filter is configured from a half wavelength multimode resonator structure. The Ultra-wide bandpass response of multimode resonator is extracted using an inter-digital feed structure which provides good input/output coupling. By deploying stepped admittance structure perturbation element in to the symmetrical plane of multimode resonator, dual-mode response is achieved with three upper stop band transmission zeros(TZs). The coupling between two degenerative mode frequencies is controlled by admittance ratio Y of stepped admittance structure. Changing admittance ratio(Y) of stepped admittance structure, results in change in even mode resonance frequency and location of three upper stop band transmission zeros while keeping odd mode frequency fixed. Proposed filter has size of 14mm*30mm.

© 2020 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the scientific committee of the Third International Conference on Computing and Network Communications (CoCoNet'19).

Keywords: Multi-mode resonator(MMR); Ultra-wideband(UWB); Transmission Zeros(TZ).

1.Introduction

Modern wireless communication system needs compact, high frequency selective, wide stopband tunable bandpass filters. In literature many tunable filters have been reported using dual mode resonators[1]-[12]. Tuning is achieved in 3 ways i) Fixed center frequency and tunable bandwidth ii) Fixed bandwidth and tunable center frequency iii)

 $1877\text{-}0509 \ \mathbb{O}$ 2020 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the scientific committee of the Third International Conference on Computing and Network Communications (CoCoNet'19). 10.1016/j.procs.2020.04.222

Search Q 📮 Log in

An Insight into the Existing Reversible Arithmetic and Logic Unit Designs

<u>S. Girija</u> [⊡] & <u>B. G. Sangeetha</u>

Conference paper | First Online: 10 September 2021

379 Accesses

Part of the <u>Lecture Notes in Electrical Engineering</u> book series (LNEE,volume 748)

Abstract

International Technology Roadmap for Semiconductors-ITRS2.0 predicts an end to traditional scaling and shrinking of chips by 2028. The future depends on the alternative technology to fill the gap and perform better than the existing technology. There are numerous technologies emerging, one among them being the reversible logic is fast gaining the importance due to the quantum technology for minimal dissipation of energy whose operation is reversible in nature. Arithmetic and logic operations are the core of any processing system and its importance is found in all

Search Q 📮 Log in

Proceedings of the International Conference on Computational Intelligence and Sustainable Technologies pp 349–360

Optimized 64-bit Reversible BCD Adder for Low-power Applications and Its Comparative Study

K. N. Hemalatha, S. Girija & B. G. Sangeetha

Conference paper | First Online: 12 February 2022

177 Accesses

Part of the <u>Algorithms for Intelligent Systems</u> book series (AIS)

Abstract

Reversible logic has emerged its importance in the framework of recent technology as such optical computing and quantum computation. Reversible logic does not loose bits of information during computation. In the proposed work, a class of new design for reversible 4-bit and 64-bit BCD adder circuits is designed. Design of 64-bit BCD adder is first of its kind when related with the present reversible BCD adder in the literature. Proposed design uses 11 constant inputs, 22 garbage outputs, and the quantum cost are 72. Quantum cost of the https://link.springer.com/chapter/10.1007/978-981-16-6893-7_32 SEMANTIC SCHOLAR

Search 204,892,746 papers Seamchal Of elds of Science

Create Free Account

DOI: 10.1109/RTEICT49044.2020.9315649 · Corpus ID: 231616715

An Efficient High-Speed Lifting Based 1D/2D-DWT VLSI Architecture Using CDF-5/3 Wavelet Transform For Image Processing Applications

<u>M. Sushmitha, S. Chetan, Sayantam Sarkar</u> • Published 12 November 2020 • Computer Science • 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)

There are various Discrete Wavelet Transform architectures that are designed to fulfil certain requirements and criteria's. The convolution method which is an old traditional method which requires more multipliers, hardware resources and huge memory storage which is not apt to yield high speed and efficient image processing, signal processing application designs when compared to lifting method. In this paper, we have proposed an architecture for lifting scheme based CDF-5/3 2D-DWT, which... Expand

Abstract

Figures and Tables

18 References

Related Papers

By clicking accept or continuing to use the site, you agree to the terms outlined in our Privacy Policy, Terms of Service, and Dataset License

ACCEPT & CONTINUE

	Energy Enleter	it offeedy ochedu	ing of tasks for i	JVFS Enable	d Heterogeneous N	Aulticore Processo	rs IEE	E Conferer	nce Publica
IEEE.org IEEE X	plore IEEE SA	IEEE Spectrum	More Sites				Cart ≜⁺ ♣	Create Account	Personal Sign In
		Browse 🗸	My Settings 🗸	Help 🗸	Access provided by: Dr. Ambedkar Institu Technology	Sign Out	t		
Access provided by: Dr. Ambedkar Institur Technology	Sign Out								
,	All	•						۹	
						ADVA	NCED SE	ARCH	
Conferences > 2021	International Conference	e 😮							
Energy Eff	ficient Gre	edy Scheo ous Multio	duling of	Tasks fo	or DVFS				
	eterogene			632012					
Publisher: IEEE	Cite This	J PDF							
K Siddesha ; G V Ja	ayaramaiah All A	uthors							
				© <\$ ©⊳≜					
36 Full Text Views				A	Alerts	More Like This	5		
IGAL VIEWS				M	anage Content Alerts	An incremental	genetic	algorithm	approach
Text views						to multiprocess	or sche	aunng	
				Ac	dd to Citation Alerts	IEEE Transactic Systems Published: 2004	or scne ons on F 4	Parallel and	Distribute
Abstract				Ac	dd to Citation Alerts	IEEE Transactic Systems Published: 2004	or sone ons on F 4	Parallel and	Distribute
Abstract	Downl			Ac	dd to Citation Alerts	Published: 2004 Deadline-Based Preemption Sup	or sone ons on F 4 d Sched oport	Parallel and	Distribute
Abstract Document Sections	Downl PDF			Ac	dd to Citation Alerts	Deadline-Based Preemption Sup 2018 IEEE Real (RTSS)	or sone ons on F 4 d Sched oport -Time S	Parallel and Parallel and Juling for G	Distribute PU with
Abstract Document Sections I. Introduction	Downl PDF Abstract:Nowa	adays the demand	l for high perform	Ad	ing systems like	Published: 2018 Preemption Sup 2018 IEEE Real (RTSS) Published: 2018	or scne ons on F 4 d Sched oport -Time S 8	Parallel and Juling for G Systems Sy	PU with
Abstract Document Sections I. Introduction II. Literature Review	Downl PDF Abstract:Nowa servers, increas with the help of	adays the demand sing since these s	l for high perform ystems, process View more	Ad nance computi many real-tim	ing systems like ne applications	EEE Transactic Systems Published: 2004 Deadline-Based Preemption Sup 2018 IEEE Real (RTSS) Published: 2018	or scne ons on F 4 d Sched oport -Time S 8	Parallel and Juling for G Systems Sy	Distribute PU with mposium Show Mor
Abstract Document Sections I. Introduction II. Literature Review III. System Model	Downl PDF Abstract:Nowa servers, increas with the help of Metadata	adays the demand sing since these s	l for high perform ystems, process View more	Ad nance computi many real-tim	ing systems like ne applications	IEEE Transactic Systems Published: 2004 Deadline-Based Preemption Sup 2018 IEEE Real (RTSS) Published: 2018	or scne ons on F 4 d Sched oport -Time S 8	Parallel and Juling for G Systems Sy	PU with mposium Show Mor
Abstract Document Sections I. Introduction II. Literature Review III. System Model IV. Results and	Downl PDF Abstract:Nowa servers, increas with the help of Metadata Abstract: Nowadays the	adays the demand sing since these s heterogeneou' demand for high p	I for high perform ystems, process View more performance com	Ad nance computi many real-tim puting system	dd to Citation Alerts ing systems like ne applications ns like servers,	IEEE Transactic Systems Published: 2004 Deadline-Based Preemption Sup 2018 IEEE Real (RTSS) Published: 2018	or scne ons on F 4 d Sched oport -Time S 8	Parallel and Juling for G Systems Sy	PU with mposium Show Mor
Abstract Document Sections I. Introduction II. Literature Review III. System Model IV. Results and Discusion V. Conclusion	Downl PDF Abstract:Nowa servers, increativity the help of Metadata Abstract: Nowadays the increasing sincu- help of heterog consumption is	adays the demand sing since these s theterogeneou demand for high p e these systems, eneous processon always a concerr	I for high perform ystems, process View more performance com process many re rs. However, in m n. In most of the p	Ad nance computi many real-tim puting system al-time applica nulticore syste processor bas	ing systems like ne applications ns like servers, ations with the ms power ed systems	IEEE Transactic Systems Published: 2004 Deadline-Based Preemption Sup 2018 IEEE Real (RTSS) Published: 2018	or sche ons on F 4 d Sched oport -Time S 8	Parallel and Juling for G Systems Sy	PU with mposium
Abstract Document Sections I. Introduction II. Literature Review III. System Model IV. Results and Discusion V. Conclusion Authors	Downl PDF Abstract:Nowa servers, increas with the help of Metadata Abstract: Nowadays the increasing sinc help of heterog consumption is dynamic voltag energy. In proc	adays the demand sing since these s heterogeneou' demand for high p e these systems, eneous processor always a concerr e and frequency s essing many hete	I for high perform ystems, process View more performance com process many re rs. However, in m n. In most of the p scaling is a comm rogeneous tasks	Ad nance computi many real-tim puting system al-time applica nulticore syste processor bas non method ad , it is appropri	ing systems like ne applications ns like servers, ations with the ms power ed systems dopted to save ate to propose a	IEEE Transactic Systems Published: 2004 Deadline-Based Preemption Sup 2018 IEEE Real (RTSS) Published: 2018	or scne ons on F 4 d Sched oport -Time S 8	Parallel and Iuling for G Systems Sy	PU with mposium

yok agreed to the placement of these cookies. To learn more, read our Privacy Policy.

Search Q 🚊 Log in

Expert Clouds and Applications pp 647-663

Smart Driving Assistance Using Arduino and Proteus Design Tool

N. Shwetha, L. Niranjan, V. Chidanandan & N. Sangeetha

Conference paper | First Online: 16 July 2021

310 Accesses

Part of the <u>Lecture Notes in Networks and Systems</u> book series (LNNS,volume 209)

Abstract

In the modern era, the automobile trading has enhanced a lot by adding more safety features to protect the driver and vehicle on the road. Majorly, the accident occurs due to the fault in the system or ignorance of the driver. This paper demonstrates the digital framework, wherein the sensors are connected to the centralized system through the CAN bus with the main controller for leveraging proper alert information to the driver. The primary goal of the proposed system is to make the driver more comfortable to drive by providing the real-time data like status of the traffic signal, vehicle headlight

IEEE websites place conking mattern the major advantage of this system is to provide the user with Figures you agree to the placement of these cookies. To learn more, read our Privacy Policy.

Search Q 📜 Log in

Real Conversation with Human-Machine 24/7 COVID-19 Chatbot Based on Knowledge Graph Contextual Search

Tanuja Patgar, Ripal Patel & S. Girija

Conference paper | First Online: 01 January 2022

212 Accesses

Part of the <u>Communications in Computer and Information</u> <u>Science</u> book series (CCIS,volume 1483)

Abstract

The outbreak of the COVID-19 pandemic has changed the whole world scenario and made researchers innovate on the corona virus. Researchers are working on information that includes symptoms, Infection spreading, preventive measures, health and travel advisories, and help lines for further assistance. During this pandemic scenario, the health assistant Chatbot is a very useful conversation tool for COVID-19, which provides preliminary medical advice and preventive measure suggestions. The paper proposes an Artificial Intelligence-based Re-Co Chatbot to

Search Q 📜 Log in

International Conference on Computer Networks and Inventive Communication Technologies

ICCNCT 2019: Second International Conference on Computer Networks and Communication Technologies pp 152–161

A Novel Security Scheme of Temporal-Key Based Encryption Policy in Sensor Applications

<u>M. N. Premakumar</u> [⊡] & <u>S. Ramesh</u>

Conference paper | First Online: 22 January 2020

853 Accesses

Part of the <u>Lecture Notes on Data Engineering and</u> <u>Communications Technologies</u> book series (LNDECT,volume 44)

Abstract

The contribution of Wireless Sensor Network (WSN) towards commercial sensing application is tremendously progressing day-by-day. However, it is still shrouded by security problems owing to less practical applicability of existing research solutions as well as inherent nature of resource constrained nodes. Key management in encryption technique is one of the most frequently exercised techniques; however, it lacks the robustness against various

your agree to the placement of these cookies. To learn more, read our Privacy Policy.

IEEE websites place GROKIAS (P. VOUL OANIE to give to give ty out the above the place of the pla

Search Q 📜 Log in

Dual-Mode Wide Band Microstrip Bandpass Filter with Tunable Bandwidth and Controlled Center Frequency for C-Band Applications

Shobha I. Hugar 🖾, Vaishali Mungurwadi & J. S. Baligar

Conference paper | First Online: 11 September 2019

545 Accesses

Part of the <u>Advances in Intelligent Systems and Computing</u> book series (AISC,volume 906)

Abstract

This paper presents a unique approach for designing dual-mode wide band BPF with tunable bandwidth and controlled center frequency for C-band (4– 8 GHz) applications. The proposed filter is designed using radial stub-loaded dual-mode $\lambda_g/2$ resonator to get wide passband. The dual-mode behavior of the resonator, i.e., odd- and even-mode resonance frequencies are realized by inserting a radial stub at the center of the resonator and further the size of filter is reduced by folding the resonator. A modified

Citations. IEEE websites place conckies on your device to the place pass of the second kies. Jor learning the basis and the place pass of the place pass of the second kies. Jor learning the basis and the place pass of the place pass of the second kies. Jor learning the basis of the place pass of the

Search Q 🚊 Log in

Optimal Resource Allocation and Binding in High-Level Synthesis Using Nature-Inspired Computation

K. C. Shilpa 🖂, C. LakshmiNarayana & Manoj Kumar Singh

Conference paper | First Online: 24 April 2019

1563 Accesses

Part of the <u>Lecture Notes in Electrical Engineering</u> book series (LNEE,volume 545)

Abstract

Allocation of resource and binding it to functional unit at high-level synthesis an optimal problem to minimize the area and performance in terms of resource sharing and binding is presented in this paper. The paper presents the comparative analysis of nature-inspired computation techniques for resource allocation and binding: 1. Evolutionary-based computation: genetic algorithm. 2. Swarm intelligence-based computation: particle swarm optimization. The comparative analysis of the results shows genetic algorithm surpasses particle swarm

IEEE websites place moved to on a point of the second the original size of face image by around 97% i.e., the covariance reduces the original size of face image by around 97% i.e., the placement of these cookies. To learn more, read our Privacy Policy. number of co-efficients in the final feature set is only around 3% of the original

Search Q 📜 Log in

Automatic Fire Detection Using Combination of Color Cue and Flame Flicker

<u>Ripal Patel</u> [⊡], <u>Kashyap Mandaliya</u>, <u>Pushkar Shelar</u>, <u>Rushi</u> <u>Savani & Chirag I. Patel</u>

Conference paper | First Online: 19 January 2018

650 Accesses 1 <u>Citations</u>

Part of the <u>Advances in Intelligent Systems and Computing</u> book series (AISC,volume 671)

Abstract

This paper presents the novel algorithm for automatic fire detection from still images and video sequences. Proposed technique has been using the color cue and flame flicker for detecting fire. This paper proposes a combination of two algorithms to detect fire from video clips. Firstly, the algorithm defines the method to detect fire in static images which can be called as color feature technique. Secondly, the algorithm defines to detect the fire in video sequences, which can be called as flicker

IEEE.org		Linearity enhancement of 0.5µm E/D pHEMT class E power amplifier for PCS applications IEEE Conference Publication IEEE								
	Xplore IEEE SA	IEEE Spectrum	More Sites				Cart ≜+ ✦	Create Account	Persona Sign In	
		Browse 🗸	My Settings 🗸	Help 🗸	Access provided by: Dr. Ambedkar Instit Technology	ute of	Sign Out			
Access provided by: Dr. Ambedkar Institu Technology	Sign Out									
	All	•					(م		
						ADVANCED SEARCH				
Conferences > 2016 Linearity (international Conference enhanceme plifier for F	∞ ଡ ∋nt of 0.5µ PCS applic	m E/D pF	IEMT c	lass E					
Publisher: IEEE	Cite This	De apprie								
P. Shanthi; J. S. B	aligar All Authors	5								
				8 <\$ © ≥ 4	L					
176 Full				1	Alerts	More L	ike This			
Text Views				M	Manage Content Alerts	0.1- μr Passiva Transis	n Atomic Layer ated InAIN/GaN tors for E-Band ectron Device L	Deposition High Electr Power Am _l etters	Al2O3 ron-Mobil plifiers	
						Publish	ed: 2015			
Abstract	Downl					0.1- μr Transis	n InAIN/GaN Hig tors for Power A	gh Electron mplifiers C	n-Mobility Derating	
Abstract Document Sections	Downl PDF					0.1- μr Transis 71–76 a and Ga	n InAIN/GaN Hig tors for Power A and 81–86 GHz: te Recess	gh Electron mplifiers C Impact of	n-Mobility Operating Passivati	
Abstract Document Sections I. Introduction	Downl PDF Abstract:This enhancement	paper presents a r sseudomorphic hig	nonolithic power ıh-electron mobil	[·] amplifier (PA lity transistor	λ) using 0.5μm (E/D pHEMT)	0.1- μr Transis 71–76 a and Ga IEEE Tr Publish	n InAIN/GaN Hig tors for Power A and 81–86 GHz: te Recess ansactions on E led: 2016	gh Electron mplifiers C Impact of lectron De	n-Mobility Operating Passivatio vices	
Abstract Document Sections I. Introduction II. Class E Amplifier with Diode	Downl PDF Abstract:This enhancement technology with	paper presents a r ວseudomorphic hic າ builtin lineariz ໂ	nonolithic power Jh-electron mobil /iew more	[·] amplifier (PA lity transistor	λ) using 0.5μm (E/D pHEMT)	0.1- μr Transis 71–76 a and Ga IEEE Tr Publish	n InAIN/GaN Hig tors for Power A and 81–86 GHz: te Recess ansactions on E ed: 2016	gh Electron amplifiers C Impact of Electron Dev	n-Mobility Operating Passivati vices Show Mo	
Abstract Document Sections I. Introduction II. Class E Amplifier with Diode Linearizer	Downl PDF Abstract:This enhancement technology with Metadata Abstract:	paper presents a เ วseudomorphic hig า builtin lineariz โ	nonolithic power Jh-electron mobil /iew more	⁻ amplifier (PA lity transistor	A) using 0.5μm (E/D pHEMT)	0.1- µr Transis 71–76 a and Ga IEEE Tr Publish	n InAIN/GaN Hig tors for Power A and 81–86 GHz: te Recess ansactions on E red: 2016	gh Electron Implifiers C Impact of Ilectron De	n-Mobility Operating Passivati vices Show Mo	
Abstract Document Sections I. Introduction II. Class E Amplifier with Diode Linearizer III. Class E Amplifier with Transistor Linearizer	 Downl PDF Abstract: This enhancement is technology with Metadata Abstract: This paper preenhancement is technology with switch linearized 	paper presents a i oseudomorphic hig n builtin lineariz sents a monolithic oseudomorphic hig n builtin linearizer o r with classE PA is	nonolithic power h-electron mobil /iew more power amplifier h-electron mobil circuit. Integrated s designed. Two	⁻ amplifier (PA lity transistor (PA) using 0. lity transistor J series diode tone analysis	A) using 0.5µm (E/D pHEMT) 5µm (E/D pHEMT) e and pHEMT s and Envelope	0.1- μr Transis 71–76 a and Ga IEEE Tr Publish	n InAIN/GaN Hig tors for Power A and 81–86 GHz: te Recess ansactions on E red: 2016	gh Electron Implifiers C Impact of Electron Dev	n-Mobility Operating Passivati vices Show Mc	
Abstract Document Sections I. Introduction II. Class E Amplifier with Diode Linearizer III. Class E Amplifier with Transistor Linearizer IV. Class E Amplifier Design with Linearizer	 Downl PDF Abstract: This enhancement is technology with Metadata Abstract: This paper preenhancement is technology with switch linearize analysis are do modulated sout transmission simulated signilinearizes are investigated and the sector of the	paper presents a i pseudomorphic hig n builtin lineariz 1 sents a monolithic pseudomorphic hig n builtin linearizer o r with classE PA is one to find the IMD rce. As the modula andards, distortion ial (NB-CDMA). Th	nonolithic power h-electron mobil Jiew more power amplifier h-electron mobil circuit. Integrated s designed. Two 3 and ACPR for ation becomes co n measurement r the simulated resid	PA) using 0.1 (PA) using 0.1 lity transistor d series diode tone analysis the circuit wit omplex for the replaces two fults for a diod	A) using 0.5µm (E/D pHEMT) 5µm (E/D pHEMT) e and pHEMT s and Envelope th CDMA IS-95 e future tone signals with le and transistor	0.1- μπ Transis 71–76 a and Ga IEEE Tr Publish	n InAIN/GaN Hig tors for Power A and 81–86 GHz: te Recess ansactions on E red: 2016	gh Electron implifiers C Impact of ilectron De	n-Mobility Operating Passivati vices Show Mo	
Abstract Document Sections I. Introduction II. Class E Amplifier with Diode Linearizer III. Class E Amplifier with Transistor Linearizer IV. Class E Amplifier Design with Linearizer V. Simulated	Downl PDF Abstract:This enhancement technology with Metadata Abstract: This paper pre enhancement technology with switch linearize analysis are do modulated sou transmission si modulated sign linearizer circu to 5dBc and 14	paper presents a i pseudomorphic hig n builtin lineariz i sents a monolithic pseudomorphic hig n builtin linearizer of r with classE PA is one to find the IMD rce. As the modula andards, distortion ial (NB-CDMA). The t with two stage of dBc. The AM-AM	nonolithic power ph-electron mobil /iew more power amplifier ph-electron mobil circuit. Integrated s designed. Two 3 and ACPR for ation becomes co n measurement r he simulated resu ass E PA has im simulation for lin	PA) using 0.1 (PA) using 0.1 lity transistor d series diode tone analysis the circuit wit omplex for the replaces two f ults for a diod provement in earizer with o	A) using 0.5µm (E/D pHEMT) 5µm (E/D pHEMT) e and pHEMT s and Envelope th CDMA IS-95 e future tone signals with le and transistor	0.1- μr Transis 71–76 a and Ga IEEE Tr Publish	n InAIN/GaN Hig tors for Power A and 81–86 GHz: te Recess ansactions on E red: 2016	gh Electron umplifiers C Impact of Electron De	n-Mobility Operating Passivativ vices Show Mc	

https://ieeexplore.ieee.org/document/7754167

1/3

Available online at www.sciencedirect.com

Procedia Computer Science 46 (2015) 167 – 175

International Conference on Information and Communication Technologies (ICICT 2014)

Natural Computation for Optimal Scheduling with ILP Modeling in High Level Synthesis

Shilpa K. C^a, LakshmiNarayana.C^{b,*}

^{a,b} BMSCE, Department of Electrical Engineering Science, Visvesvaraya Technological University, Bangalore, 560019, India.

Abstract

The concept of the natural computation for optimal scheduling in high level synthesis, for resource constraint and time constraint scheduling problem in automated integrated circuit synthesis using Integer Linear Programming (ILP) modeling is presented in this paper. This paper compares three natural computations paradigms: (i) evolution optimizer technique genetic algorithm, (ii) evolutionary programming, and (iii) swarm intelligence based particle swarm optimization. Experimental results indicate that evolution based Genetic Algorithm search is more powerful search compared to Evolutionary Programming and Particle Swam Optimization.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of organizing committee of the International Conference on Information and Communication Technologies (ICICT 2014)

Keywords: High Level Synthesis ; Data Flow Graph; Evolutionary Programming ; Genetic Algorithm ; Particle Swarm Optimization ; Very Large Scale Integration ; Integer Linear Programming

1. Introduction

Very Large Scale Integration (VLSI) circuits built with hundreds and thousands of transistors on a single chip, the design complexity of the chip increases in terms of number of gates, transistors and functionality.

* Corresponding author. Tel.: + 91-974-3300352. *E-mail address:* shilpa.kc2@gmail.com