Dr. Ambedkar Institute of Technology, Bengaluru-56 (An Autonomous Institute, Affiliated to VTU, Belagavi)

Master of Computer Applications Program (Accredited by National Board of Accreditation)

MCA I – IV semester Syllabus Two years Duration (2020 – 2022)

Dr. Ambedkar Institute of Technology, Bengaluru – 560056 Master of Computer Applications

Institute - Vision and Mission

Vision

To create Dynamic, Resourceful, Adept and Innovative Technical professionals to meet global challenges.

Mission

- To offer state-of-the-art under graduate, post graduate and doctoral programs in the fields of Engineering, Technology and Management
- To generate new knowledge by engaging faculty and students in research, development and innovation.
- To provide strong theoretical foundation to the students, supported by extensive practical training to meet the industrial requirements.
- To instil moral and ethical values with social and professional commitment.

DEPARTMENT - VISION AND MISSION

VISION

To create a quality human resource with good technical competence to face the global challenges.

MISSION

- To create a Centre of Excellence through industry institute interaction.
- To prepare students for utilizing more creativity, innovativeness and leadership Qualities.
- To inculcate a sense of commitment to the students towards socio-economic development of the nation

Program Educational Objectives

- **PEO 1:** Graduates are prepared to be employed in IT industries and be engaged in learning, understanding, and applying new ideas.
- **PEO 2:** To prepare students for utilizing more creativity, innovativeness and leadership Qualities.

PEO 3: To provide an opportunity to students to learn the latest trends in computer technology and make them ready for life-long learning process with leadership skills and corporate social responsibilities.

Program Outcomes:

- **PO 1**: Ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modelling and design of computer based systems.
- **PO 2**: Graduates will be able to demonstrate with excellent programming, analytical, logical and problem solving skills.
- **PO 3**: Graduates will be able to design a computing system to meet desired needs within realistic constraints such as safety, security and applicability.
- **PO 4**: An ability to devise and conduct experiments, interpret data and provide well informed conclusions.
- **PO 5**: An ability to select modern computing tools and techniques and use them with dexterity.
- **PO 6**: An ability to function professionally with ethical responsibility as an individual as well as in multidisciplinary teams with positive attitude.
- **PO 7**: An ability to appreciate the importance of goal setting and to recognize the need for life-long learning.
- **PO 8**: Develop and maintain medium to large scale application software using theoretical and applied knowledge of software engineering and project management.
- **PO 9**: An ability to communicate effectively.
- **PO 10**: An ability to understand the impact of system solutions in a contemporary, global, economical, environmental, and societal context for sustainable development.
- **PO 11:** An ability to execute the project either individually or in a group.
- **PO 12**: An ability to become an Entrepreneur in the field of information technology to create a value and wealth for the betterment of the individual and society at large.

Dr. Ambedkar Institute of Technology (An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade) Department of Master of Computer Applications
SCHEME OF TEACHING AND EXAMINATION OF MCA FIRST SEMESTER (AUTONOMOUS) 2020-2022

			Teac	hing hours p	er week	Ex	aminatio	on		Credits
Sl. No.	Course Code	Course Title	Lecture	Tutorial/ Seminar/ Assignment	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks	
1	20MCA11	Object Oriented Programming using Java	4	-	-	3	50	50	100	4
2	20MCA12	Data Structures and Algorithms	4	-	•	3	50	50	100	4
3	20MCA13	Web Technologies	4	•	ı	3	50	50	100	4
4	20MCA14	RDBMS	3	-	2	3	50	50	100	4
5	20MCA15	Mathematical and Statistical modelling for Computer Applications	4	-	-	3	50	50	100	4
6	20MCAL16	Object Oriented Programming using Java Lab	-	-	2	3	50	50	100	1
7	20MCAL17	Data Structures and Algorithms Lab	-		2	3	50	50	100	1
8	20MCAM18	Mini Project in Web Technologies	ı	2	2	3	50	50	100	2
9	20MCAB19	Principles of Programming (Bridge Course – Non-credit)	3	-		3	50	50	100	0
		Total	22	02	08	27	450	450	900	24

Dr. Ambedkar Institute of Technology (An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade) Department of Master of Computer Applications
SCHEME OF TEACHING AND EXAMINATION OF MCA SECOND SEMESTER (AUTONOMOUS) 2020-2022

		Teachi	ng hours per	week		Credits				
Sl. No.	Course Code	Course Title	Lecture	Tutorial/ Seminar/ Assignment	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks	
1	20MCA21	Python Programming	4	-	-	3	50	50	100	4
2	20MCA22	Internet of Things	4	-	-	3	50	50	100	4
3	20MCA23	Software Engineering and Project Management	4	-	-	3	50	50	100	4
3	20MCA24	Research Methodology	3	-	-	3	50	50	100	3
5	20MCA25	Elective – 1	3		2	3	50	50	100	4
6	20MCA26	Elective - 2	3	-	-	3	50	50	100	3
7	20MCAL27	Python Programming Lab	-	-	2	3	50	50	100	1
8	20MCAL28	Internet of Things Lab	-		2	3	50	50	100	1
09	20MCAM29	Mini Project in Mobile Application Development	-	2	2	3	50	50	100	2
Total		21	02	08	27	450	450	900	26	

Dr. Ambedkar Institute of Technology (An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade) Department of Master of Computer Applications
MCA SECOND SEMESTER ELECTIVE COURSES

Elective – 1

S.No	Course Code	Course Title
1.	20MCA251	Cyber Security
2.	20MCA252	Software Testing and Automation
3.	20MCA253	Data Science using R
4.	20MCA254	Programming using C#
5.	20MCA255	Ethical Hacking

Elective-2

S.No	Course Code	Course Title
1.	20MCA261	Data Mining and Business Intelligence
2.	20MCA262	Enterprise Resource Planning
3.	20MCA263	Supply Chain Management
4.	20MCA264	Storage Area Networks
5.	20MCA265	Distributed Operating Systems

Dr. Ambedkar Institute of Technology (An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade) Department of Master of Computer Applications
SCHEME OF TEACHING AND EXAMINATION OF MCA THIRD SEMESTER (AUTONOMOUS) 2020-2022

			Tead	ching hours week	s per		Exami	nation		
Sl. No.	Course Code	Course Title	Lecture	Tutorial/ Seminar/ Assignme	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credits
1	20MCA31	Machine Learning using Python	4	-		3	50	50	100	4
2	20MCA32	Advances in Java Programming	4	-	-	3	50	50	100	4
3.	20MCA33	Network Architecture and Programming	3	-	2	3	50	50	100	4
4	20MCA34	Elective – 3	3		2	3	50	50	100	4
5	20MCA35	Elective - 4	3			3	50	50	100	3
6	20MCAL36	Machine Learning using Python Lab	-	-	2	3	50	50	100	1
7	20MCAL37	Advances in Java Programming Lab	-	-	2	3	50	50	100	1
8	20MCAM38	Mini Project	-	-	4	3	50	50	100	2
9.	20MCAS39	Technical Seminar	-	-	2	•	-	50	50	2
	Total		17	00	12	27	400	450	850	25

Dr. Ambedkar Institute of Technology
(An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade)
Department of Master of Computer Applications
MCA THIRD SEMESTER ELECTIVE COURSES

Elective – 3

S.No	Course Code	Course Title
1.	20MCA341	Digital Marketing
2.	20MCA342	Cloud Computing
3.	20MCA343	Big Data Analytics
4.	20MCA344	Programming using GOLang
5.	20MCA345	Full stack Web Development

Elective-4

S.No	Course Code	Course Title
1.	20MCA351	Block Chain Technology
2.	20MCA352	5G Wireless Technologies
3	20MCA353	Artificial Intelligence
4.	20MCA354	Software Architecture and Design Patterns
5.	20MCA355	Graph Theory

Dr. Ambedkar Institute of Technology (An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade) Department of Master of Computer Applications
SCHEME OF TEACHING AND EXAMINATION OF MCA FOURTH SEMESTER (AUTONOMOUS) 2020-2022

			Teaching hours per week			Examination				
Sl. No.	Course Code	Course Title	Lecture	Tutorial	Practical / Seminar	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credits
1.	20MCAI41	MOOC Course and Industry Internship	-	-	2	3	50	50	100	5
2.	20MCAP42	Project Work	-	-	4	3	150	100	250	20
Total 6					6	200	150	350	25	
Grand Total				350				3000		

Dr. Ambedkar Institute of Technology
(An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade)
Department of Master of Computer Applications
(AUTONOMOUS) 2020-2022

MCA Course Matrix

Components	Semester 1	Semester 2	Semester 3	Semester 4	Total
Components	(Credits)	(Credits)	(Credits)	(Credits)	(Credits)
Core Courses	20	15	12	-	47
Elective Courses	-	07	07	-	14
Lab Courses	04	04	02	-	10
Mini Project	-	-	02	-	02
Seminar	-	-	02	-	02
Internship	-	-	-	05	05
Project	-	-	-	20	20
Non-Credit Course	1 course	-	-		1 course
Total Credits	24	26	25	25	100
Total Marks	900	900	850	350	3000

	I SEMESTER									
OBJECT ORIENT	ED I	PROGRAMMIN	IG U	SING JAVA						
Course Code:		20MCA11	(CIE Marks:	50					
Number of Lecture Hours per wee	k:	4	S	SEE Marks:	50					
Total number of Lecture Hours:		52	52 SEE Hours:							
Lecture (L): 4 Practicals(P):	0	Tutorial (T):	0	Total Credits	4					
COURSE LEARNING OBJECTIVE	VES	(CLO)								
 Understand the different of 	ject	oriented concepts a	nd in	nplement basic	programs					
•	De	evelop applications	using	g inheritance a	nd interface					
concepts										
Apply multithreading programming concepts and handling errors efficiently										
Able to Design client server	app	lication in java								

MODULES	TEACHING
	HOURS
MODULE 1: Java Programming Fundamentals	11 Hrs
The Java Language, The Key Attributes of Object-Oriented	
Programming, The Java Development Kit, A First Simple Program,	
Handling Syntax Errors, The Java Keywords, Identifies in Java, The Java	
Class Libraries.	
Introducing Data Types and Operators: Java's Primitive Types, Literals,	
A Closer Look at Variables, The Scope and Lifetime of Variables,	
operators, Shorthand Assignments, Type conversion in Assignments, Using	
Cast, Operator Precedence, Expressions.	
Program Control Statement: Input characters from the Keyword, if	
statement, Nested ifs, if-else-if Ladder, Switch Statement, Nested switch	
statements, for Loop, Enhanced for Loop, While Loop, do-while Loop, Use	
break, Use continue, Nested Loops.	
More Data Types and Operators: Arrays, Multidimensional Arrays,	
Alternative Array Declaration Syntax, Assigning Array References, Using	
the Length Member, The For-Each Style for Loop, Strings, The Bitwise	
operators.	
String Handling: String Fundamentals, The String Constructors, Three	
String-Related Language Features, The Length () Method, Obtaining the	
characters within a string, String comparison	
MODULE 2:Introducing Classes, Objects and Methods	11 Hrs
Class Fundamentals, How Objects are Created, Reference Variables and	
Assignment, Methods, Returning from a Method, Returning Value, Using	

Parameters, Constructors, Parameterized Constructors, The new operator	
Revisited, Garbage Collection and Finalizers, The this Keyword.	
A Closer Look at Methods and Classes: Controlling Access to Class	
Members, Pass Objects to Methods, How Arguments are passed, Returning	
Objects, Method Overloading, Overloading Constructors, Recursion,	
Understanding Static, Introducing Nested and Inner Classes, Varargs:	
Variable-Length Arguments.	
Inheritance: Inheritance Basics, Member Access and Inheritance,	
Constructors and Inheritance, Using super to Call Superclass constructors,	
Using super to Access Superclass Members, Creating a Multilevel	
Hierarchy, When are Constructors Executed, Superclass References and	
Subclass Objects, Method Overriding, Overridden Methods support	
polymorphism, Why Overridden Methods, Using Abstract Classes, Using	
final, The Object Class.	
MODULE 3: Interfaces	11 Hrs
Interface Fundamentals, Creating an Interface, Implementing an Interface,	~
Using Interface References, Implementing Multiple Interfaces, Constants	
in Interfaces, Interfaces can be extended, Nested Interfaces, Final Thoughts	
on Interfaces.	
Packages :Package Fundamentals, Packages and Member Access,	
Importing Packages, Static Import	
Exception Handling: The Exception Hierarchy, Exception Handling	
fundamentals, The Consequences of an Uncaught Exception, Exceptions	
Enable you to handle errors gracefully, using Multiple catch clauses,	
Catching subclass Exceptions, try blocks can be nested, Throwing an	
Exception, A Closer look at Throwable, using finally, using throws, Java's	
Built-in Exceptions, New Exception features added by JDK 7, Creating	
Exception Subclasses.	
MODULE4:Multithreaded Programming	11 Hrs
Multithreading fundamentals, The Thread Class and Runnable Interface,	
Creating Thread, Creating Multiple Threads, Determining When a Thread	
Ends, Thread Priorities, Synchronization, using Synchronization Methods,	
The Synchronized Statement, Thread Communication using notify(), wait()	
and notify All(), suspending, Resuming and stopping Threads.	
Enumerations, Auto boxing and Annotations :Enumerations, Java	
Enumeration are class types, The Values () and Valueof() Methods,	
Constructors, methods, instance variables and enumerations, Auto boxing,	
Annotations (metadata), Generics	
Applets: Applet basics, A complete Applet Skeleton, Applet Initialization	
and Termination, A key Aspect of an Applet Architecture, Requesting	
Repainting, using the status window, Passing parameters to Applets	
MODULE 5: Networking with Java.net	08 Hrs

Networking fundamentals, The Networking classes and Interfaces, The InetAddress class, The Socket Class, The URL class, The URLConnection Class, The HttpURL Connection Class.

Exploring Collection Framework: Collections Overview, The Collection Interfaces, The collection Classes. The Arrays Class

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Textbooks

- 1. Java Fundamentals, A comprehensive Introduction by Herbert Schildt, Dale Skrien. Tata McGraw Hill Edition 2013.
- 2. Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007. (Chapter17)

Reference Books

- 1. Java 6 Programming, Black Book, KoGenT ,Dreamtech Press, 2012
- 2. Java 2 Essentials, Cay Hortsmann, second edition, Wiley

COURSE OUTCOMES (CO):

CO1: Demonstrate the basic object oriented concepts & apply them to create java applications

CO2:Apply inheritance and interface concepts to design java applications

CO3: Design java applications with multithreading concepts and demonstrate the error handling concepts

CO4: Design client server applications.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO 1	PO1,PO2,PO3,PO4,PO5
CO 2	PO1,PO2,PO3,PO4
CO 3	PO2,PO3,PO4.PO5
CO 4	PO2,PO3,PO4,PO5,PO8,PO10,PO11

LEVEL OF CO-PO MAPPING TABLE

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	Н	H	Н	Н							
CO2	M	Н	M	Н	H							
CO3		H	M	H	H							
CO4		Н	M	M	H			M		L	L	

I SEMESTER
DATA STRUCTURES AND ALGORITHMS

Course Code:	20MCA12	CIE Marks:	50
Number of Lecture Hours per week:	4	SEE Marks:	50
Total number of Lecture Hours	52	SEE Hours:	3
Lecture (L): 4 Practical (P): 0	Tutorial (T): 0	Total Credits:	4

- Formulate and apply object-oriented programming using C++ to solve the engineering problems.
- Analyse data structures and algorithms to solve the problems and evaluate their solutions.
- Demonstrate different Applications of data structures.
- Study the algorithms or program code segments that contains iterative constructs
- Analyse the asymptotic time complexity of the algorithm or code segments.

MODULES	TEACHING
	HOURS
MODULE 1: Introduction To Data Structures And Algorithms	12 Hrs
Introduction to stacks, Applications of Stack. Queues and linked lists:	
Basic Operations, Implementation, List ADT, Applications, Complex	
Implementations. Singly Linked List. Linked list as a data Structure,	
Inserting and removing nodes from a list, Linked implementations of	
stacks, Example of list operations such as insert and delete an element	
before a key element, Header nodes, Array implementation of lists.:	
Circular Linked List: Inserting, deleting and searching elements in a lists,	
Double Linked List: Inserting and Deleting Nodes, Queue as doubly	
linked lists, such as insert into position, Delete an specified element	
MODULE 2: Trees	10 Hrs
Basic concepts, Binary trees and its properties, operations on binary trees,	
Binary tree traversals, Binary Search Tree: insertions, deletions, B-Tree,	
red-black trees, AVL Tree.	
MODULE 3: Algorithm AnalysisAnd Algorithmic Paradigms	10 Hrs
Introduction, Fundamentals of the Analysis of Algorithm Efficiency	
Notion of Algorithm, Asymptotic Notations and Basic efficiency classes,	
Mathematical analysis of Recursive and Non-recursive	
algorithms, Selection Sort and Bubble Sort. Brute Force: String Matching	
Divide-and-Conquer: Merge sort, Quicksort, Binary Search.	
MODULE 4: Algorithm Design Techniques	10 Hrs

The	General	method,	Prim's	Algorithm,	Kruskal's	Algorithm,					
Dijks	stra'sAlgori	thm, Huffr	man Tree	s. Dynamic P	rogramming:	Computing					
a bin	a binomialcoefficient, Warshall's and Floyd's Algorithms.										
MOI	DULE 5: G	raph Algo	rithms				10Hrs				
		1 0		se-and-Conq	uer: Depth	First and					

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Textbooks:

- 3. Richard F Gilberg and BehrouzAForouzan: Data Structures A Pseudocode Approach with C,Cengage Learning, 6 the Indian Reprint 2009.
- 4. Anany Levitin: Introduction to the Design and Analysis of Algorithms, Pearson Education, 2nd Edition

Reference Books

- 3. YedidyahLangsam and Moshe J. Augenstein and Aaron M Tenenbaum: Data Structures using C and C++, 2ndEdition, Pearson Education Asia, 2002.
- 4. NanjeshBennur, Dr.Manjaiaha DH, Dr. C.K. Subbaraya: C programming skills and Data Structures primer, First Edition, IPH Publication, 2017.
- 5. Coremen T.H., Leiserson C.E., and Rivest R.L.: Introduction to Algorithms, PHI 1998.
- 6. Horowitz E., Sahani S., Rajasekharan S.: Computer Algorithms, Galgotia Publication 2001.

COURSE OUTCOMES (CO):

CO1: Demonstrate the implementation of Stack, Queue and List for real world applications.

CO2: Analyze algorithms and solve real time problems using various algorithm design techniques.

CO3:Apply the asymptotic notations to show the performance of the algorithm or code segments.

CO4:Solve the optimization problems by recommending an efficient algorithm.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(COs)	Mapping with Program Outcomes(POs)
CO1	PO1, PO2, PO5
CO2	PO1,PO2
CO3	PO1,PO4,PO5
CO4	PO1, PO2, PO5

LEVEL OF CO-PO MAPPING TABLE												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	H	Н			M							
CO2	H	M										
CO3	H			M	L							
CO4	H	M			M							

		IS	EMI	ESTER		
		WEB TI	ECH	NOLOGIES		
Sub Code				20MCA13	CIE Marks	50
Number of Lectur	re Hou	rs per week		4	SEE Marks	50
Total number of l	Lecture	Hours		52	SEE Hours	3
Lecture (L): 4		Practicals (P):	0	Tutorial (T): 0	Total Credits	4
COURSE LEARN		`				
		ges using Bootstrap				
• To develop	differe	nt approaches of S	erver	side scripts using P	HP and NodeJs	
• To design S	Single p	page web application	ons us	sing Angular		
To design a	synchr	onous web applica	tions	using Ajax and Ang	gular.	

MODULES	TEACHING
	HOURS
MODULE 1: Bootstrap	10 Hrs
Introduction, Layout: Container, Grid, Components: Alerts, Badge, Card,	
Jumbotron, Buttons/Buttons group, Navs/Navbar, Pagination, Modal, Carousel,	
Collapse, Form, Input group, Progress bar	
MODULE 2: Introduction to PHP	11 Hrs
Overview of PHP, Primitives, operations and expressions, Output, Control	
statements, Arrays, Functions, Pattern matching, Form handling, Files handlers.	
Building Web applications with PHP- Using databases, tracking users-	
cookies, sessions.	
MODULE 3: jQuery & Ajax	10 Hrs
jQuery: Basics, Selecting elements, Handling Events, jQuery effects Animation-	
show/hide, fade, animate, stop, Sending data with AJAX-load(), \$.get() and \$.post()	
methods	
AJAX principles, Creating Ajax applications, Adding Server-side programming,	
Sending data to the server using GET and POST.Connecting to Google suggest.	
MODULE 4: Angular	11 Hrs
Single Page Applications, Angular Introduction, MVC Architecture, Getting	
Started-How Angular Works, Writing Your First Angular Web Application, Data	
binding, Angular Directives, Forms, Services & Dependencies, and Routing.	
MODULE 5: NodeJs	10 Hrs
Introduction, NPM, REPL, Global objects, Developing Node.js web application,	
Call back concept, Node Modules-Local Module, HTTP Module, file system	
modules, ExpressJS.	
Question Paper Pattern:	

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 1. "Bootstrap Essentials", SnigBhaumik, PACKT publishing
- 2. Robert W. Sebesta: Programming the World Wide Web, 7th Edition, Pearson Education.2012.
- 3. Steven Holzner: Ajax: A Beginner's Guide, Tata McGraw Hill, 2011
- 4. "ng-book -The Complete Guide to Angular", Nate Murray, Felipe Coury, Ari Lerner, and Carlos Taborda, Fullstack.io

Reference Books

- 1. Amos Q. Haviv," MEAN Web Development", Packt Publishing, 2014.
- 2. Nicholas C Zakas et al: Professional AJAX, Wiley India, publications

COURSE OUTCOMES (CO)

CO1:Demonstrate the concepts of user interface and server side framework for responsive web application development

CO2: Apply the knowledge of designing web application that use asynchronous communication.

CO3:Design Single page web applications using JavaScript frameworks.

CO4:Design an interactive web page with server side scripting language for real world problems.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(COs)	Mapping with Program Outcomes(POs)
CO1	PO5,PO11
CO2	PO2,PO4,PO5,PO11
CO3	PO2,PO4,PO5,PO7,PO11
CO4	PO5,PO11

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					Н						M	
CO2		M		H	Н						L	
CO3		L		M	Н		Н				Н	
CO4					M						Н	

I SEMESTER RDBMS						
Sub Code:	20MCA14	CIE Marks:	50			
Number of Lecture Hours per week:	52	SEE Marks:	50			
Total number of Lecture Hours:	4 Hrs	SEE Hours:	3 Hrs			
Lecture (L): 3 Practicals (P): 1	Tutorial (T): 0	Total Credits:	4			

- Understand and implement the processes of database management system.
- Apply the SQL Query, Database Design.
- Interpret RDBMS concept and managing multiple transactions , recovery techniques in case of transaction failures

MODULES	TEACHING
	HOURS
	HOURS
MODULE 1: Introduction:	12 Hrs
Characteristics of Database approach, Actors on the Scene, Workers behind	l
the scene, Advantages of using DBMS approach, Data models, schemas and	l
instances, Three -schema architecture and data independence, Database	l
languages and interfaces, the database system environment, Centralized and	l
client -server architectures, Classification of Database Management systems,	l
Entity-Relationship Model: Conceptual Database using high level	l
conceptual data models for Database Design, A Sample Database	l
Application, Entity types, Entity sets Attributes and Keys Relationship	l
types, Relationship Sets, Roles and Structural Constraints Weak Entity	l
Types.	
MODULE 2: Introduction to SQL:	10 Hrs
Overview of the SQL Query Language, SQL Data Definition, Basic	l
structure of SQL Queries, Additional Basic Operations, Null values,	l
Aggregate Functions, nested Sub queries, Modification of the Database, Join	l
Expressions, Views, Transactions, Integrity Constraints.	
MODULE 3: Database Design	10 Hrs
Informal Design Guidelines for Relation Schemas, Functional dependencies,	l
Normal Forms based on Primary Keys, General Definitions of 2nd and 3 rd	l
Normal Forms, Boyce Codd NormalForms, Stored Procedures and functions,	l
Triggers.	
MODULE 4: Introduction To RDBMS	10 Hrs
Introduction to popular RDBMS product and their features, Difference	l
between DBMS and RDBMS, Relationship among application programs and	l
RDBMS	
MODULE 5: Transaction Management:	10 Hrs
Transaction Concept, A Simple Transaction Model, Transaction Atomicity	

and Durability, Serialisability, Transaction Isolationand Atomicity, Transaction Isolation Levels, Implementationof Isolation Levels.Concurrency Control: Lock Basedprotocols,Deadlock Handling. RecoverySystem: Failure Classification, Storage, Recovery and Atomicity, RecoveryAlgorithm.

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Text Books:

- **1.** Elmasri and Navathe: Fundamentals of Database Systems, 5th Edition, Addison Wesley, 2011
- **2.** Silberschatz, Korth and Sudharshan Data base System Concepts,6th Edition, Tata McGraw Hill, 2011

Reference Books

- **1.** C.J. Date, A. Kannan, S. Swamynatham: An Introduction to Database Systems, 8th Edition, Pearson education, 2009.
- **2.** Raghu Ramakrishnan and Johannes Gehrke: Database management Systems, 3rdEdition, McGraw-Hill, 2003.

COURSE OUTCOMES (CO)

- CO1: Students are demonstrated on the fundamentals of data models and develop an ER diagram and relational database model for a given scenario
- **CO2:** Students understand to query the database
- CO3: Students apply the rules of normalization to Inference the database design in the real world entities
- CO4: Students understand on processing multiple transactions, concurrency control techniques and recovery

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1
CO2	PO1, PO2,PO4
CO3	PO1, PO2,PO4,PO5,PO7
CO4	PO1, PO2,PO4,PO5,PO7, PO8

LEVEL	OF CC)-PO N	/APP	ING T	ABLE	1						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M											
CO2	M	L		H								
CO3	M	L		Н	M		H					
CO4	M	L		M	H		H	H				
			•			•			•	ı	ı	

I SEMESTER MATHEMATICAL AND STATISTICAL MODELLING FOR COMPUTER APPLICATIONS

Course Code:	20MCA15	CIE Marks:	50
Number of Lecture Hours per week:	4	SEE Marks:	50
Total number of Lecture Hours:	52	SEE Hours:	3
Lecture (L): 4 Practicals (P): 0	Tutorial (T): 0	Total Credits:	4

- The primary objective of this course is to provide mathematical background and sufficient experience on various topics of discrete mathematics
- Acquire Knowledge like matrix algebra, logic and proofs, combinatory, graphs, algebraic structures, formal languages and finite state automata. This course will extend student's Logical and Mathematical maturity
- Ability to deal with abstraction and to introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.

MODULES	TEACHING
1102 6225	HOURS
MODULE 1: Matrix Algebra	12 Hrs
Rank of a matrix - Solving system of equations - Eigen values and	
Eigenvectors Cayley - Hamilton theorem - Inverse of a matrix.	
MODULE 2: Basic Set Theory	10 Hrs
Basic definitions - Venn diagrams and set operations - Laws of set theory -	
Principle of inclusion and exclusion – Partitions -Permutation and	
combination – Relations - Properties of relations – Matrices of relations -	
Closure operations on relations - Functions - Injective, subjective and objective functions.	
objective functions.	
MODULE 3: Mathematical Logic	10 Hrs
Propositions and logical operators - Truth table - Propositions generated by a	
set - Equivalence and implication - Basic laws - Some more connectives -	
Functionally complete set of connectives - Normal forms - Proofs in	
propositional calculus - Predicate calculus.	
MODULE 4: STATISTICS	10 Hrs
Introduction-meaning and scope of statistics, collection of data, classification and	
tabulation, diagrammatic and graphical representation, measures of central	
tendency, measures of dispersions, skewness and kurtosis	

MODULE 5: CORRELATION, REGRESSION, AND PROBABILITY	10 Hrs
Basics of correlation and regression, partial correlation, multiple correlation, Theory of probability, theoretical distribution, Binomial distribution, Poisson distribution, Normal distribution, chi-square distribution, regression analysis, and curve fitting	
Question Paper Pattern:	
 Each full question consists of 20 marks. 	

• Questions are set covering all the topics under each module

Textbooks:

- **1.** David Makinson, "Sets, Logic and Maths for Computing", Springer Indian Reprint, 2011.
- **2.** Grimaldi, R.P and Ramana, B.V. "Discrete and Combinatorial Mathematics", 5th Edition, Pearson Education, 2006.
- **3.** Hopcroft J.E and Ullman, J.D, "Introduction to Automata Theory, Languages and Computation", Narosa Publishing House, Delhi, 2002.
- **4.** Venkataraman, M.K., "Engineering Mathematics", 2nd Edition, Volume-II, National Publishing Company, 1989.

Reference Books

- **1.** Sengadir, T. "Discrete Mathematics and Combinatorics" Pearson Education, New Delhi, 2009.
- **2.** Trembley, J.P. and Manohar, R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill, New Delhi, 2007.
- 3. N G Goudru. "Discrete Mathematical Structures"

COURSE OUTCOMES (CO)

- CO1: Basic knowledge of matrix, set theory, functions and relations concepts needed for designing and solving problems.
- CO2: Logical operations and predicate calculus needed for computing skill Design and solve Boolean functions for defined problems.
- CO3: Apply the acquired knowledge of Statistical Analysis to the engineering areas
- CO4: Implement knowledge of theory of probability and to design discrete and continuous problems to solve by computers.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

`Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1, PO2, PO3
CO2	PO1, PO3, PO10
CO3	PO3, PO6, PO10
CO4	PO1,P03, PO5
	1 02,2 00, 1 00

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO/1 O	101	102	103	104	103	100	107	100	109	1010	1011	1012
CO1	L	M	Н									
		112										
CO2	M		Н							L		
CO3			H			M				L		
CO4	L		M		H							

I SEMESTER OBJECT ORIENTED PROGRAMMING USING JAVA LAB

Sub Code:		20MCAL16		CIE Marks:	50
Number of Lecture Hours per week:		2		SEE Marks:	50
Total number of Lecture Hours:			SEE Hours:	3	
Lecture (L): 0 Practicals (P): 1	1	Tutorial (T):	0	Total Credits:	1

- Design & Develop the fundamentals of Object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
- Design & Develop exception handling and multithreading concepts.
- Develop efficient Java applets and applications using OOP concepts

Sl. No	Program						
1.	a) Write a JAVA Program to demonstrate Constructor Overloading and Method						
	Overloading.						
	b) Write a JAVA Program to implement Inner class and demonstrate its Access						
	protection.						
2.	Write a program in Java for String handling which performs the following:						
	i) Checks the capacity of String Buffer objects.						
	ii) Reverses the contents of a string given on console and converts the resultant						
	string in upper case.						
	iii) Reads a string from console and appends it to the resultant string of (ii).						
3.	a) Write a JAVA Program to demonstrate multi-level Inheritance.						
	b) Simple Program on Java for the implementation of Multiple inheritance using						
	interfaces to calculate the area of a rectangle and triangle.						
4.	Write a JAVA program which has						
	i) A Class called Account that creates account with 500Rs minimum balance, a						
	deposit()method to deposit amount, a withdraw() method to withdraw amount						
	and also throws Less Balance Exception if an account holder tries to withdraw						
	money which makes the balance become less than 500Rs.						
	ii) A Class called LessBalanceException which returns the statement that says						
	withdraw amount (Rs) is not valid.						
	iii) A Class which creates 2 accounts, both account deposit money and one account						
	tries to withdraw more money which generates a LessBalanceException take						
	appropriate action for the same.						
5.	Write a java program to handle the following system exceptions						
	ArrayIndexOutOfBoundException						
	FileNotFoundException						
	NumberFormatException						

6.	a) Write a JAVA program using Synchronized Threads, which demonstrates
	Producer Consumer concept.
	b) Design a program to create two threads, one thread will print odd numbers and
	second thread will print even numbers between 1 to 10 numbers
7.	Write a JAVA program to implement a Queue using user defined Exception
/•	Handling (also make use of throw, throws).
8.	Complete the following:
0.	i. Create a package named shape.
	ii. Create some classes in the package representing some common shapes like
	Square, Triangle, and Circle.
	iii. Import and compile these classes in other program.
9.	Write a JAVA program which has
	i). A Interface class for Stack Operations
	ii). A Class that implements the Stack Interface and creates a fixed length Stack.
	iii).A Class that implements the Stack Interface and creates a Dynamic length Stack.
	iv). A Class that uses both the above Stacks through Interface reference and does the
	Stack operations that demonstrates the runtime binding.
10.	Write a JAVA Program which uses FileInputStream / FileOutPutStream Classes.
11.	Write a JAVA applet program, which handles keyboard event.
12.	Write a JAVA program which uses Datagram Socket for Client Server
	Communication for multiple systems

INSTRUCTIONS:

In the practical Examination student has to execute one program from a lot of all the 12 questions

COURSE OUTCOMES (CO)

CO1: Design and Develop Java programming languageand runtime environment. Gain knowledge and skill necessary to write java programs. Learn the object oriented concepts and its implementation in Java implement the multithreading and client side programming

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(COs)	Mapping with Program Outcomes(POs)
CO1	PO1,PO2,PO3,PO4,PO5,PO10,PO11

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	Н	Н	Н	Н					M	M	

I SEMESTER										
DATA STRUCTURES AND ALGORITHMS LAB										
Course Code:	20MCAL17	CIE Marks: 50								
Number of Lecture Hours per week:	2	SEE Marks: 50								
Total number of Lecture Hours:	26	SEE Hours: 3								
Lecture (L): 0 Practicals (P): 1	Tutorial (T): 0	Total Credits: 1								

- Design the programming codes for the implementation of data structures and algorithm concepts.
- Develop the codes to Analyse data structures and algorithms to solve the problems and evaluate their solutions.

Sl. No	Program									
1.	a) Design, Develop and Implement a menu driven program in C++ for the following operations on STACK of integers (Array implementation of stack with maximum size MAX)									
	i. Push an element on to stack									
	ii. Pop an element from stack.									
	iii. Demonstrate how stack can be used to solve tower of Hanoi problem with n disks.									
	iv. Demonstrate Overflow and Underflow situations on stack.									
	v. Display the status of stack.									
	vi. Exit.									
	Support the program with appropriate functions for each of the above operations.									
2.	Design, Develop and Implement a Program in C++ for the following Stack Applications Evaluation of Suffix expression with single digit operands and									
	operators: +, -, *, /, %, ^									
3.	Design, Develop and Implement a menu driven Program in C++ for the following operations on Circular QUEUE of Characters (Array Implementation of Queue with maximum size MAX).									
	i. Insert an Element on to Circular QUEUE									
	ii. Delete an Element from Circular QUEUE									
	iii. Demonstrate Overflow and Underflow situations on Circular QUEUE									
	iv. Display the status of Circular QUEUE									
	v. Exit									
	Support the program with appropriate functions for each of the above operations									

4.	Design, Develop and Implement a menu driven Program in C++ for the following operations on Singly Linked List (SLL) of Student Data with the fields: USN, Name, Branch, Semester, Mobile number i. Create a SLL of N Students Data by using front insertion.										
	ii. Display the status of SLL and count the number of nodes in it										
	iii. Perform Insertion and Deletion at End of SLL										
	iv. Perform Insertion and Deletion at Front of SLL										
	v. Demonstrate how this SLL can be used as STACK and QUEUE										
	vi. Exit										
5.	Design, develop and Implement a menu driven Program in C++ for the following operations on Doubly Linked List (DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo. i. Create a DLL of N Employees Data by using end insertion.										
	ii. Display the status of DLL and count the number of nodes in it										
	iii. Perform Insertion and Deletion at End of DLL										
	iv. Perform Insertion and Deletion at Front of DLL										
	v. Demonstrate how this DLL can be used as Double Ended Queue										
	vi. Exit										
6	Design, Develop and Implement a Program in C++ for create insert, delete and exit operations on Singly Circular Linked List (SCLL) with header nodes										
7	Design, Develop and Implement a menu driven Program in C++ for the following operations on Binary Search Tree (BST) of Integers i. Create a BST of N Integers										
	ii. Traverse the BST in Inorder, Preorder and Post Order										
	iii. Search the BST for a given element (KEY) and report the appropriate message										
	iv. Delete an element (ELEM) from BST										
	v. Exit										
8	Sort a given set of elements using Quick sort method and determine the time required sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n.										
9	From a given vertex in a weighted connected graph, find shortest paths to other										
10	vertices using Dijkstra's algorithm Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's										
11	algorithm. Implement Floyd's algorithm for the All-Pairs- Shortest-Paths Problem.										
12	Compute the transitive closure of a given directed graph using Warshall's algorithm.										
_	Compute the transitive closure of a given unected graph using warshan's argorithm.										

13	Impleme	Implement N Queen's problem using Back Tracking.										
Course	Course Outcome(CO)											
	CO1: Design, Develop and Analyze the performance of C/C++ programs that implement various data structures and their applications in fundamental algorithms											
COURS	COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:											
Course	Outcome	s(COs)	M	Mapping with Program Outcomes(POs)								
CO 1			P	PO1,PO2,PO3,PO4,PO5,PO11								
LEVEL	OF CO-	PO MA	PPIN	G TAB	LE							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P12
CO1	Н	H	L	M	M						L	

I SEMESTER
MINI PROJECT IN WEB TECHNOLOGIES

Sub Code:	20MCAM18	CIE Marks:	50
Number of Lecture Hours per week:	4	SEE Marks:	50
Total number of Lecture Hours:		SEE Hours:	3
Lecture (L): 0 Practicals (P): 1	Tutorial (T): 1	Total Credits:	2

COURSE LEARNING OBJECTIVES (CLO)

- To design web pages using Bootstrap framework and add effects with jQuery.
- To develop different approaches of Server side scripts using PHP and NodeJs
- To design asynchronous web applications using Ajax and Angular.

NOTE:

- 1. In the examination, one exercise from part A is to asked for 30 marks
- 2. Mini project student group size is limited to two students only.
- 3. The mini project under part B has to be evaluated for 20 marks.
- 4. Project report duly signed by the Guide and HOD, need to be submitted during examination.

examin	ation.
	PART –A
Sl.No	Program
6.	Design a webpage with Home tab and Sign In links using Tabs/navs. Apply modal for Sign In page and an image for Home tab.
7.	Design a web page for Photo Gallery using Bootstrap Carousel.
8.	Write jQuery program to solve the following: a) Limit character input in the text area including count. b) Based on check box, disable / enables the form submit button.
9.	a) Write a PHP program to store current date-time in a COOKIE and display the 'Last visited on' date-time on the web page upon reopening of the same page.b) Write a PHP program to store page views count in SESSION, to increment the count on each refresh, and to show the count on web page.
10.	Create HTML form with Name of License Holder, Fuel type, Vehicle Type, Registration Number, Make & Model, Year of Registration. On submitting, store the values in MySQL table. Retrieve and display the data based on name.
11.	* *
12.	Implement Structural Directives in Angular.
13.	Demonstrate the working of built-in module and local modules in NodeJS.
Note 1	: Student has to pick one question from a lot of 6 questions
	PART-B

Design and develop asynchronous/dynamic web application using the languages and concepts learnt in the theory and exercises listed in part A with a good look and feel effects. You can use any web technologies, frameworks and databases. Host the developed project using any free web hosting provider.

NOTE:

- 1. In the examination, one exercise from part A is asked for 30 marks.
- 2. The mini project under part B has to be evaluated for 20 marks.
- 3. A team of two students must develop the mini project.

However during the examination, each student must demonstrate the project individually.

- 4. The team must submit a brief project report (25-30 pages) that must include the following
 - > Introduction
 - > Requirement Analysis
 - ➤ Software Requirement Specification
 - ➤ Analysis and Design
 - > Implementation
 - > Testing
- 5. The report must be evaluated for 5 Marks. Demonstration and Viva for 15 Marks.
- 6. Project report duly signed by the Guide and HOD need to be submitted during examination.

INSTRUCTIONS

- 1. All laboratory experiments from part A are to be included for practical examination.
- 2. Mini project has to be evaluated for 30 Marks.
- 3. Report should be prepared in a standard format prescribed for project work.
- 4. Students are allowed to pick one experiment from the lot.
- 5. Strictly follow the instructions as printed on the cover page of answer script.
- 6. Marks distribution:
- a) Part A: Procedure + Conduction + Viva:5 + 20 + 5 = 30 Marks
- b) Part B: Demonstration + Report + Viva voce = 10+05+05 = 20 Marks

COURSE OUTCOMES (CO)

CO1:Design and Develop interactive asynchronous web application with server side script.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

CO1	PO2, PO4, PO5, PO7,PO11

LEVE	EL OF (CO-PO I	<u>MAPPI</u>	NG TA	BLE							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO		T.		M	M		S				S	

I SEMESTER PRINCIPLES OF PROGRAMMING										
Course Code:	20MCAB19	CIE Marks: 50								
Number of Lecture Hours per week:	3	SEE Marks: 50								
Total number of Lecture Hours:	39	SEE Hours: 03								
Lecture (L): 3 Practicals (P): 0	Tutorial (T): 0	Total Credits: 0								

- Provide students with the formal notations for solving a problem and make them learn the syntax of C language, thereby writing code with good programming style.
- Understand and appreciate the use of arrays, strings, functions, structures and Union in C
- Exploring the pointers and data file processing

MODULES	TEACHING
	HOURS
MODULE 1: Algorithms and Flowcharts	8 Hrs
Introduction to Algorithms, Definition of flowcharts, symbol of flowcharts,	
Algorithms & flowcharts using input statements, output statements, compute	
statements, and conditional statements and iterative statements.	
MODULE 2:Arrays and Strings	8 Hrs
Introduction to array, one dimensional and two dimensional arrays, declaration and initialization of arrays, reading, writing and manipulation of above types of arrays, multidimensional arrays, dynamic arrays, programming examples. Declaring and initializing string variables, reading string from terminal, writing string to screen, arithmetic operations on characters, putting strings together, comparison of two strings, string handling functions, table of strings, other features of strings, programming examples	
MODULE 3: User Defined Functions	8 Hrs
Need for user defined functions, a multi-function program, elements of user	
defined functions, defining functions, return values and their types, function	
calls, function declaration, category of functions, no arguments and no return	
values, arguments but no return values, arguments withreturn values, no	
arguments with return value, function that return multiple values, nesting of	
functions, recursion, passing array to functions passing string to functions,	
programming examples	

MODULE 4: Structures and Unions	7 Hrs
Defining a structure, declaring structure variables, accessing structure	
members, structure initialization, copying and comparing structure variables,	
operations on individual members, array of structures, structures within	
structures, structures and functions, Unions, size of structures, bit fields,	
programming examples	
MODULE 5: Pointers and File Management	8 Hrs
Understanding pointers, accessing the address space of a variable, declaring	
and initialization pointer variables, accessing a variable through its pointer,	
chain of pointers, pointer expressions, pointers and arrays, pointer and	
character strings, array of pointers, pointer as function arguments, functions	
returning pointers, pointers and structures, programming examples.	
Defining and opening a file, closing a file, input/output operation on files,	
error handling during I/O operations, random access files, command line	
arguments, programming examples.	

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks

- 1. Vikas Gupta:"Computer Concepts & C Programming", Dreamtech Press 2013. ISBN-13:9788177229981/ISBN-10:8177229982
- 2. Jacqueline Jones & Keith Harrow: Problem Solving with C, 1st Edition, Pearson 2011.
- 3. R S Bichkar, Programming with C, University Press, 2012.
- 4. V Rajaraman: Computer Programming in C, PHI, 2013.

Reference Books

- 1. Behrouz A Forouzan, Richard F Gilberg: Computer Science-A Structured Approach Using C, 3rd Edition, Cengage Learning,2013
- 2. M G Venkateshmurthy: Programming Techniques through C, Pearson Education, 2017
- 3. Ivor Horton: Beginning C from Novice to professional, 7th Edition, Springer, 2014

COURSE OUTCOMES (CO)

CO1:Design, write and execute C programs for simple applications

CO2: Formulate and appreciate the use of arrays, strings, functions, structures and unions in C

CO3:Design the pointers and data file processing

CO4:Design the pointers and data file processing

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES

Course Outcomes(CO)	Mapping with Program Outcome(PO)
CO1	PO1,PO2,PO3
CO2	PO1,PO2,PO4,PO9,PO12

CO ₃				P	01 , P0	2,PO4	, PO 9, P	O12				
CO4				P	01,PO	2,PO4,I	PO9,PO	12				
				I								
LEVEL	OF CO)-PO N	MAPP	ING T	ABLE	1						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	M	M							H		
CO2	L	L		M					M			H
CO3	L	L		M					M			H
CO4	L	L		M					Н			H
						1	1				1	

II S	SEMESTER		
PYTHON	PROGRAMMIN	G	
Sub Code:	20MCA21	CIE Marks:	50
Number of Lecture Hours per week:	4	SEE Marks:	50
Total number of Lecture Hours:	52	SEE Hours:	3
Lecture (L): 4 Practical (P): 0	Tutorial (T): 0	Total Credits:	4
COURSE LEARNING OBJECTIVES (0. Describe the Fundamentals of P 1. Demonstrate the python data str 2. Implement the data wrangling and	ython ructure	g	
 Understand and learn data analytic visualization. 	es concept using Nump	y, pandas and data	a
MOI	DULES		TEACHING HOURS
MODULE 1: Python Basic Concepts an	nd Programming		10 Hrs
Introduction to Python programming, I Python Program, Python Virtual Machin Management in Python, Garbage Collecti C and Python, Data types in Python, Con	ne (PVM, Frozen Bin ion in Python, Compa	aries, Memory risons between	
MODULE 2: Python Collections			10 Hrs
formattingStrings. Lists: Basic List operations, Built is Comprehensions. Tuples and Sets: Basic Operations on Tup Methods, set operations. Dictionaries: Operations on Dictionaries, I	oles, Functions to Proc Dictionary Methods.	on lists, List	10 Hwo
MODULE 3: :Files and Database Conn	ecuvity		10 Hrs
Exceptions Files: File Handling Object oriented Programming: Basics of oops, Encapsulation, Inheritance MODULE 4: Data Pre-processing and I			10 Hrs
MICDULE 4. Data I Te-processing and I	vata Wrangiing		10 111 2

Acquiring Data with python: Loading from different files, Accessing	
databases.	
Cleaning data with Python: Striping out extraneous information, Normalizing	
data and formatting data. Combining and merging Data sets-Reshaping and	
pivoting-Data Transformation – String Manipulation.	
Web scraping: Data Acquisition by scrapping web applications.	
MODULE 5: Numpy, Pandas and Data Visualization	12 Hrs
***	12 Hrs
MODULE 5: Numpy, Pandas and Data Visualization Numpy: The Numpy Array, N-dimensional array operations and	12 Hrs
***	12 Hrs
Numpy: The Numpy Array, N-dimensional array operations and	12 Hrs

Text- More Graph types. Data Visualization with Seaborne. **Ouestion Paper Pattern:**

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Data Visualization: Matplotlibs package-plotting graphs-controlling Graph-Adding

Text Books:

- 1. Core Python Programming: 2017 Edition, R. Nageswara Rao, DreamTechPublication.
 - 2. Python for Data Analysis 2nd Edition, O'Reilly Publications
 - 3. Exploring Python, Timothy A. Budd, Mc Graw Hill Education
 - **4.** Introduction to Python Programming ,Gowrihankar S, Veena A, CRC Press/Tyler and Francies

Reference Books

- **1.** Introduction to Python for Computational Science and Engineering (A beginner's guide), Hans Fangohr.
- **2.** Python for Informatics: Exploring Information, Charles Severance.
- 3. Learning Python, Fourth Edition, Mark Lutz, O'Reilly publication.
- **4.** Mastering Python Fundamentals with Ease, Asha Gowda Kare Gowda, Bhargavi K,Lambart Academic publishing.

COURSE OUTCOMES (CO)

CO1:Understand the Fundamentals of Python programming

CO2: Demonstrate various features of python programming for building applications.

CO3: Apply python programming for designing the applications efficiently.

CO4:Design and Develop applications to be deployed in real world scenarios.

Cour	rse Ou	itcome	es(CO)	1		Mapping with Program Outcomes(PO)							
CO 1						PO1,PO2,PO3,PO4,PO5,PO8							
CO 2					PO1,PO2,PO3,PO4								
CO 3	3					PO1	,PO2,I	PO3,PC)4,PO5				
CO 4	1					PO1	,PO2,I	PO3,PC)4,PO5				
LEV CO/	EL O	F CO-PO2	PO M	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
PO													
CO1	M	Н	Н	M	S								
CO2	Н	M	Н	Н	L								
002	M	M	Н	Н	L					M	M		
CO3													

]	II S	EMESTER			
		INTE	RN	ET OF THIN	IGS		
Sub Code:				20MCA22		CIE Marks:	50
Number of Lec	ture	Hours per week	:	04		SEE Marks:	50
Total number of	ecture Hours:		52		SEE Hours:	03	
Lecture (L):	4	Practicals (P):	0	Tutorial (T):	0	Total Credits:	04

- Learn the evolution of IOT from M2M to global Context.
- Understand IoT in managing data and knowledge.
- Realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks.
- Analyse the application areas of IOT .
- Design IoT projects to make the Real World work easy.

MODULES	TEACHING
	HOURS
MODULE 1: Introduction to IoT	6 Hrs
Definition and characteristics of IoT, Genesis of IoT, IoT and Digitization,	
IoT Impact, Modern day IoT applications, Physical and Logical design of	
IoT, IoT communicational model, IoT Challenges, The Core IoT Functional	
Stack.	
MODULE 2: Smart Things	6 Hrs
IoT Sensors, Actuators, IoT Networking, Connecting Smart Objects,	
Communications Criteria, IoT Access Technologies, Sensor Networks, IoT	
Access Technologies. IoT Enablers, Connectivity Layers, Baseline	
Technologies: M2M, CPS and WoT.	
MODULE 3: Embedded System Platform for IoT	15 Hrs
Embedded Devices: Introduction, Processor for things, Things design,	
Gateway design.	
Arduino: Introduction, Getting started with Arduino Feature of Arduino,	
Types of Arduino Board, Arduino IDE, Anatomy of Interactive devices,	
Blinking an LED.	
Raspberry Pi: Introduction, Essential of setting Raspberry Pi, Programming	

Raspberry with Python.	
Mobile Application Development for IoT using Android: Sending and	
Receiving Data via Bluetooth with an Android Device, Android application	
for Home Automation.	
MODULE 4: Communication Technologies	15 Hrs
Introduction,OSI and TCP/IP communication model for communication	
network.DataProtocol:MQTT,CoAP,AMQP,XMPP,WebSocket.	
CommunicationProtocols:IntroductiontoIEEE802.15.4,Zigbee,6LowPan,	
WirelessHART,Z –Wave, ISA 100, Bluetooth, NFC, RFID,LoRa.	
Applications of IoT: Smart Cities and Smart Homes, Connected Vehicles,	
Industrial Internet of Things, program practices. Problem statements for	
project work.	
MODULE 5: Big Data and Cloud Computing for IoT	10 Hrs
Big Data for IoT: Introduction, IoT platforms, The Eight main components	
of an IoT platform. IoT platform in Action: Use case for an appliance retailer.	
Cloud Computing for IoT: Sensor cloud, Fog Computing, Sending &	
Receiving Data to & from cloud, hands on example programs.	
Examples of IoT platforms: AWS IoT, Microsoft Azure IoT, IBM Watson,	
Cisco's IoT,SalesForce'sIoT,Carriots,Oracle Integrated Cloud, How to	
select the right IoT platform.	

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks

- **1.** "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press).
- **2**. "Internet of Things: A Hands-on Approach", by ArshdeepBahga and Vijay Madisetti (Hands-on-Approach)", 1stEdition, VPT, 2014. (ISBN: 978-8173719547).

Reference Books

- **1.** Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things:Introduction to a New Age of Intelligence",1 stEdition,AcademicPress, 2014.
- **2.** Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017. (ISBN: 978-9352605224).

COURSE OUTCOMES (CO)

CO1: Understand the concepts and application areas of IOT ·

CO2: Apply the concepts of IoT to different applications.

CO3: Analyze the IoT architecture and design along with functional/compute stack and data management.

CO4: Design and Implement IoT applications in different domains and embedded platform.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1,PO5, PO10
CO2	PO2,PO3,PO4,PO5,PO8
CO3	PO2, PO3,PO4.
CO4	PO2, PO3, PO4, PO8, PO11, PO12.

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	H				M					Н		
CO2		Н	M	M	Н			L				
CO3		Н	M	Н						L		
CO4		H	H	H	H			M			H	H

II SEMESTER SOFTWARE ENGINEERING AND PROJECT MANAGEMENT

Course Code:				CIE Marks:	50	
e Hours per weel	k:	04		SEE Marks:	50	
Lecture Hours:		52		SEE Hours:	3 Hours	
Practicals (P):	0	Tutorial (T):	0	Total Credits:	4	
	Lecture Hours:	re Hours per week: Lecture Hours: Practicals (P): 0	Lecture Hours: 52	re Hours per week: 04 Lecture Hours: 52	re Hours per week: 04 SEE Marks: Lecture Hours: 52 SEE Hours:	

COURSE LEARNING OBJECTIVES (CLO)

At the end of the course, student should be able to:

- Classify various software requirement process and tools
- Build software Design and Architecture using software notations and tools
- Understand, how to implement the software project using software tools and Methodologies
- Test the software and Measure the quality of Software
- Manage the software using software Management tools

MODULES	TEACHING
	HOURS
MODULE 1: Requirements Engineering	10 Hrs
Software requirements Fundamentals, Requirements process, Requirements	
elicitation, Requirements Analysis, Requirements specification, Requirements	
validation, Practical consideration, Requirement tools	
MODULE 2: Software Architecture and Design	10 Hrs
Software Design Fundamentals, Key Issues in Software Design, Software	
structure and Architecture, User Interface design, Software design quality	
analysis and evaluation, Software design notations, Software design strategies	
and Methods, Software design tools	
MODULE 3: Software Implementation Methods and Tools	10 Hrs
Software implementation Fundamentals, Managing software Implementation,	
Practical considerations, software Implementation Tools, software	
implementation Technologies, Product Documentation, Formal software	
Implementation methods	

10 Hrs
12 Hrs
-

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Text Books:

- **1.** Software Engineering, 10th Edition Ian Sommerville , University of St. Andrews, Pearson, 2016
- **2.** Software Engineering: A Practitioner's Approach, 8/eby <u>Bruce R. Maxim</u> and Roger S. Pressman, 2019
- **3.** Fundamentals of Software Engineering, Rajib Mall, 4th Edition, PHI, 2014 Identify, formulate and solve engineering problems in the domain of structural engineering field.

Reference Books

- 3. Object oriented software engineering, Stephan R .Schach, Tata McGraw Hill,2008
- 4. Applying UML and Patterns, Craig Larman, , 3rd edition, Pearson Education, 2005.
- 5. SWEBOK Guide 3.0 by Pierre Bourque, Richard E. (Dick) Fairley @ IEEE Computer Society

COURSE OUTCOMES (CO)

CO1: Identify, formulate and solve Software requirement Engineering problems

CO2: Design and Implement the software by using software design notations and design tools

CO3: Demonstrate various software tools for software testing and software Quality

CO4: Develop a Software using efficient software project management Techniques with sense of ethics, integrity and social responsibility

Course	Outcor	nes (C	(Os)		Mapping with POs								
CO1					PO1, PO2, PO9, PO11								
CO2						PO2, PO3,PO5,PO8, PO10, PO11							
CO3						PO5,P0	06,PO1	0					
CO4					PO3,	PO4, P	06, PO	7, PO8,	, PO9, I	PO10, PO	11, PO12		
	OF CO	O-PO	MAPF PO3	PING	TABLI PO5	E PO6	PO7	PO8	PO9	PO10	PO11		
					· ·		PO7	PO8	PO9	PO10	PO11		
CO/PO CO1 C02	PO1	PO2			· ·		PO7	PO8		PO10			
CO/PO	PO1	PO2	PO3		PO5		PO7				M		

II SEMESTER
RESEARCH METHODOLOGY

Sub Code:	20MCA24	CIE Marks:	50	
Number of Lecture Hours per week:	3	SEE Marks:	50	
Total number of Lecture Hours:	39	SEE Hours:	3	
Lecture (L): 3 Practicals (P): 0	Tutorial (T): 0	Total Credits:	3	

- Understand basic concepts of research and its methodologies.
- To gain overview of a range of quantitative and qualitative approaches to data analysis.
- To Accurately collect, analyze and report data
- Be aware of the ethical principles of research, report writing and ethical challenges

MODULES	TEACHING
	HOURS
MODULE 1: Overview of Research	8 Hrs
Research and its types, Research approaches, Significance of Research, Research	
Methods versus Methodology. Research Process. Criteria of Good Research.	
Identifying and defining research problem, Technique Involved in Defining a	
Problem.	
MODULE 2: Introduction to research designs.	8 Hrs
Essential constituents of Literature Review. Basic principles of experimental design,	
Primary data and Secondary Data, methods of primary data collection, classification	
of secondary data, designing questionnaires and schedules.	
MODULE 3: Sampling Methods	8 Hrs
Probability sampling: simple random sampling, systematic sampling, stratified sampling, cluster sampling and Multistage sampling. Non probability sampling: convenience Sampling, judgment sampling, quota sampling. Sampling distributions.	
MODULE 4: Processing & analysis of Data Statistical measures and their	8 Hrs
significance:	
Central tendencies, variation, skewness, Kurtosis, Correlation-Pearson Correlation and regression-Linear Regression, Testing of Hypotheses: Parametric test: z-test, t-test, Non parametric test-Chi Square.	

MODULE 5: Essential of Report writing and Ethical issues:	7 Hrs
Significance of Report Writing, Different Steps in Writing Report, Layout of the	
Research Report, Ethical issues related to Research, Plagiarism and self- Plagiarism,	
Publishing.	

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 3. Kothari C.R., Research Methodology Methods and techniques by, New Age International Publishers, 3rd Edition, 2013.
- 4. Levin RI and Rubin, "Statistics for Management", 7th Edition, Pearson Education, New Delhi, ISBN: 9788177585841

Reference Books

1. Krishnaswami KN ,Sivakuma AI and Mathiarajan, "Management Research Methodology", Pearson Education, 2009, ISBN: 9788177585636

COURSE OUTCOMES (CO)

CO1:Explain various research objectives and concepts of qualitative and quantitative research problems and report writing.

CO2: Apply appropriate method for data collection, process the complex data and prepare a report.

CO3: Analyse the real word data with quantitative techniques and interpret the results.

CO4:Formulate research methodology for real world problems.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(Cos)	Mapping with Program Outcomes(POs)
CO1	PO2, PO4, PO8
CO2	PO2,PO3,PO4,PO5
CO3	PO5,PO6
CO4	PO1,PO2,PO3,PO4,PO5,PO7,PO10

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		S		M				L				
CO2		M		M				L				
CO3					M	S						
CO4	L	L	M	M	S		S			M		

]	I SE	EMESTER				
	PYTHON PROGRAMMING LAB								
Course C	ode			201	MCAL27		CIE Marks	50	
Number	of Pra	ctica	l Hours/Week	02			SEE Marks	50	
Total Nu	mber o	of Le	ecture Hours:	26			SEE Hours	3	
Lecture (L):	0	Practicals (P):	1	Tutorial (T):	0	Total Credits:	1	
Course L	earnir	1g ()	bjective(CLO):						
			concepts of pytl	non n	rogramming				
• Im	pleme	ent a				n the l	knowledge gained	l.•	
1					of Programs				
1.			ate a python prog introl statements	ram (on				
	i) ii)		nctions						
2.			ate string operation	ne					
				115					
3.			ate list operations						
4.			ate Set operations						
5.			ate operations on						
6.			ate operations on	dictic	onary 				
7.			ate File handling	1.0					
8.			ate Object oriente		•				
9.	•		t a python progra						
10.			Datasets , Cleanine manipulation	ng the	e Data				
				4.0	laura au atuata tha f	-11 o.v.	n a vadin a Niver Dry		
11.	-						ng using NumPy		
	ŕ	•	nanipulation, Sear asting and Plotting	_		nung.			
12.						es anal	lysis with Pandas.		
13.			t a python progra			os ana	ijoio wini i andas.		
	_		lization with vari						
Note 1. In						nick or	ne question from a	a lot of	
11010 1. 111	tine p	acti	Cui 12Aaiiiiiaii0ii	cacii	stautht has to	JICIN UI	ic quesuon nom	u 10t UI	

all the	all the 13 questions.												
Course outcomes(CO): After completing the course the students are able to: CO: Design and develop an applications using Python Programming for real world													
	Senario. Course Outcomes(CO) Mapping with Program Outcomes(PO)												
СО							PO	O1,PO2	2,PO3,l	PO4,P0	05,PO8	,PO11	
LEVE	L OF C	O-PO	MAPP	ING TA	ABLE								
СО/РО	PO1	PO2	PO3	PO4	PO5	PO	PO6 PO7 PO8 PO9 PO10 PO11						PO12
CO	H	Н	M	Н	M				H	Н			

II SEMESTER
INTERNET OF THINGS LAB

Sub Code:			20MCAL28		CIE Marks:	50
Number of Lectu	re Hours per weel	k:	2		SEE Marks:	100
Total number of	Lecture Hours:		26		SEE Hours:	3
Lecture (L):	Practicals (P):	1	Tutorial (T):	0	Total Credits:	01

• To design and implement IoT programs Arduino /Raspberry pi.

PART-A

- 1.TO interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.
- 2. To interfaceDHT11 sensor with Arduino /Raspberry Pi and write a program to print temperature and humidity readings.
- 3. To interface motor using relay with Arduino /Raspberry and write a program to turn on Motor when push button was pressed.
- 4. To interface Bluetooth with Arduino /Raspberry and write a program to send sensor data to smartphone using Bluetooth.
- 5. Write a program on Arduino /Raspberry pi to to retrieve temperature and humidity data from things speak cloud.

PART-B

- 1. Designimplementation of IoT for Home Automation.
- 2. Design and implementation of IoT for Smart parking.

COURSE OUTCOMES (CO)

CO1:Implement IoT programs using Arduino /Raspberry pi.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course	Outco	mes(C	(O)			Ma	Mapping with Program Outcomes(PO)							
CO1							PO2,PO3,PO4,PO5							
LEVEL	LEVEL OF CO-PO MAPPING TABLE													
CO/PO	PO1	PO2	PO2 PO3 PO4 PO5 P		PO6	PO7	PO8	PO9	PO10	PO11	PO12			

CO/PO	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
CO1		M	M	H	H							

II SEMESTER

MINI PROJECT IN MOBILE APPLICATION DEVELOPMENT

Course Code				20MCAM29		CIE Marks	50
Number of Pra	actica	l Hours/Week an	d	2		SEE Marks	50
Number of Ins	struct	ional Hours/Weel	K	2			
Total Number	of Lo	ecture Hours		26+13		SEE Hours	03
Lecture (L):	0	Practicals(P):	1	Tutorial (T):	1	Total Credits:	2

Course Learning Objectives:

- Learn the basics of mobile app development
- Build mobile applications using database
- Develop mobile app that uses GPS location information
- Students will learn to develop a mobile app project using multiple features learnt

NOTE:

- 1. In the examination, one exercise from part A is to asked for 20 marks
- 2. Mini project student group size is limited to two students only.
- 3. The mini project under part B has to be evaluated for 30 marks.
- 4. Project report duly signed by the Guide and HOD, need to be submitted during examination.

PART - A

	Program List								
1.	Exploring layouts								
2.	Exploring widgets								
3.	Android activity life cycle								
4.	Intents in Android and Shared preferences								
5.	Sending SMS and EMAIL								
6.	Fragments in android								
7.	Animations								
8.	Databases and content providers								
9.	Sensors and location based services								
10.	Audio playback and image capture								

Note 1: Student has to pick one question from a lot of 10 questions

MINI-PROJECT

Students should be able to build a complete mobile app using multiple features learnt in Part - A with user interfaces and database connectivity. The Project should be deployed on the cloud like any cloud tool (ex.MS Azure, AWS etc..). The project work should be carried out with team strength of maximum two.

NOTE:

- 1. In the examination, one exercise from part A is asked for 20 marks.
- 2. The mini project under part B has to be evaluated for 30 marks.
- 3. A team of two students must develop the mini project.

However during the examination, each student must demonstrate the project individually.

- 4. The team must submit a brief project report (25-30 pages) that must include the following
 - > Introduction
 - > Requirement Analysis
 - > Software Requirement Specification
 - ➤ Analysis and Design
 - > Implementation
 - > Testing
- 5. The report must be evaluated for 5 Marks. Demonstration and Viva for 15 Marks.
- 6. Project report duly signed by the Guide and HOD need to be submitted during examination.

Course Outcome:

CO: Design and develop android mobile applications for real world senario.

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
СО	PO1,PO2,PO4,PO5,PO8,PO11

LEVEL OF CO-PO MAPPING TABLE

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12
СО	M	M	Н	Н	M	Н	Н					

II SE	EMESTER			
CYBER	R SECURITY	7		
Sub Code:	20MCA251	CIE Ma	arks:	50
Number of Lecture Hours per week:	3	SEE M	arks:	50
Total number of Lecture Hours:	39	SEE Ho	ours:	3
Lecture (L): 3 Practicals (P): 1	Tutorial (T):	Total C	redits:	4
COURSE LEARNING OBJECTIVES (C	CLO)	l		
To prepare students with the technique.	hnical knowled	lge and skills	needed	l to protect
and defend computer systems and				•
To develop graduates that can ide	ntify, Analyse			
Remediate computer security brea				
MODU	ILES		T	EACHING
				HOURS
MODULE 1: Introduction, Cybercrime				8 Hrs
Definition and Origins of the word, Cyber	ity,			
Who are Cybercriminals? Classifications	als			
Plan Them – Introduction, How Criminals	and			
Cybercrimes, Botnets, Attack Vector, The In				
MODULE 2: Tools and Methods used in		8 Hrs		
Introduction, Proxy Server and Anor	•		0	
Keyloggers and Spyware, Virus and V	=		ors,	
Steganography, DOS and DDOS attack, SQ		fer Overflow		
MODULE 3: Phishing and Identity Theft				8 Hrs
Introduction, Phishing – Methods of I	Phishing, Phish	ning Technique	ies,	
Phishing				
Toolkits and Spy Phishing. Identity Theft –	• •	•		
Techniques of ID Theft. Digital Forensic	cs Science, Ne	ed for Compu	iter	
Cyber	I :f- C1	_		
forensics and Digital Evidence, Digital Fore		e		O IIma
MODULE 4: Phishing and Identity Theft		n Windows		8 Hrs
Unix Command Lines, Backtrack Linux, M. Power Shell. NetCatCommands, Net Cat Us				
MODULE 5: Network Defense tools	868, 3311, Data 1	Tpe, Tpipe		7 Hrs
Firewalls and Packet Filters: Firewall Basic	e Dacket Filter	Ve Firewell U	OW	/ 1115
a Firewall Protects a Network, Packet C				
VsStateful Firewalls, Network Address				
Forwarding, the basic of Virtual Priva	`	· ·		
Windows Firewall, Snort: Introduction Dete			,	
	~ J =			

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Text Books:

- **5.** SunitBelapure and Nina Godbole, "Cyber Security: Understanding cyber crimes, computer forensics and legal perspectives", Wiley India Pvt. Ltd, 2013
- **6.** James Graham, Ryan Olson, Rick Howard, "Cyber SecurityEssentials", CRC Press 2010

Reference Books:

- **1.** Bill Nelson, Amelia Philips and Christopher Steuart, "Guide to Computer Forensics and Investigations", 4th Edition, 2015
- **2.** Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall
- 3. Cryptography: Theory and Practice by Douglas R. Stinson, CRC press.

COURSE OUTCOMES (CO)

- CO1: To Create Solutions in Incident Handling and Implement Cyber security Best Practices and Risk Management
- CO2: Communicate in a Written and Professional Manner to Strategize Identify and Implement Legal Ramifications
- CO3: Integrate Network Monitoring and Present Real-Time SolutionsUnderstand Software Design and Secure Practices
- CO4: Implement Cyber security concepts in real time projects

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:							
Course Outcomes(CO)	Mapping with Program Outcomes(PO)						
CO1	PO1, PO3, PO5						
CO2	PO1, PO3, PO10						
CO3	PO3, PO8, PO10						
CO4	P03, PO5, PO8						

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L		H		M							
CO2	M		H							L		
CO3			H					M		L		
CO4			M		H			L				
	•				•				•			•

II SEMESTER

SOFTWARE TESTING AND AUTOMATION											
Course Code:	20MCA252	CIE Marks:	50								
Number of Lecture Hours per week:	3	SEE Marks:	50								
Total number of Lecture Hours:	52	SEE Hours:	3								
Lecture (L): 3 Practical (P): 1 Tutorial (T): - Total Credits: 4											

- The process of Software Testing Life Cycle and Types of Testing
- Differentiate between Manual Testing and Automation in Testing
- Design Test Cases using the testing tool Selenium IDE and Web Driver.
- Identify different web Elements and apply them to design test cases.

MODULES	TEACHING
	HOURS
MODULE 1: INTRODUCTION TO TESTING	
Introduction and Fundamentals of Testing, Myths and Facts of Software	10 Hrs
Testing, Quality Assurance and Quality Control, Testing Objectives,	
Software Testing Life Cycle (STLC), Test Planning, Test-case Design	
Technique. Types of Testing- White Box testing, Black Box Testing,	
Integration Testing, Regression Testing, Validation Testing, Alpha Testing,	
Beta Testing, Acceptance Testing. Defect Management: Defect Management	
Process, JIRA Defect Tracking Tools.	
MODULE 2: USER INTERFACE TESTING	10 Hrs
Software Test Automation: Fundamentals of Test Automation, Manual	
Testing Vs Test Automation, Terms used in Automation, Skills needed for	
Automation, Scope of Automation, Challenges in Automation. Selenium –	
WebDriver: Introduction to WebDriver , Installation of Selenium	
WebDriver, Creating the Scripts in WebDriver, Web Element Locators,	
Xpath , id, LinkText, CSS Selector, Class Name, TagName WebDriver	
Commands: Browser Commands, getUrl(), getTitle(),	
getPageSource(),close(),Quit(), Navigation Commands,	
backward(0,forward(),to(),refresh() WebElements Commands, Isselected(),	
IsEnabled(), getAttribute(), getText(),notify(), sendKeys(), submit(), wait().	
MODULE 3: HANDLING WEB ELEMENTS	12 Hrs
CheckBox and Radio Button Operation, DropDown and Multiple select	
Operations, Handle Alert in WebDriver : dismiss(), accept(), getText(),	
sendKey(), Popup window handling in Web Drivers, getWindowHandle(),	
Wait commands in Web Drivers, Mouse Event using Action commands,	
Handling Multiple Windows, and IFrames, Running Test in Invisible Mode,	
Handling Dynamic Web Pages. Running selenium WebDriver in different	
popular Browser	

MODULE4: APPLICATION PROGRAMMING INTERFACE(API) TESTING	10 Hrs
Introduction, API testing types, Command, tests on APIs, Advantages, Tasks involved, Tools used for API Testing, Challenges, Best Practices, Case study, Database Testing, Security Testing.	
MODULE5: ADVANCED TOPICS ON TESTING	10 Hrs
Cross Platform Testing, Coding Standards Overview, Code Coverage Metrics, Code freeze, Code Inspection, Code Review, Code Walkthrough, Code based testing, Code driven Testing. CUCUMBER framework, Test Driven Development (TDD), Behavioral Driven Development (BDD)	
Practical Session: The Above Concepts are demonstrated in the Lab.	

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TEXTBOOKS

- 1. Rex Black: Advanced Software Testing—Vol. 1, Shroff Publishers, 2011.
- **2.** Srinivasan DesikanGopalaswamy: Software Testing Principles and Practices,5th Edition, Pearson Education, 2007.
- **3.** Paul C. Jorgensen: Software Testing ACraftman's Approach, 3rd Edition, Auernac Publications, 2008
- **4.** 4. David Burns: Selenium 2 Testing Tools: Beginner's Guide, PACKT PUBLISHING, 2012.

REFERENCE BOOKS

- 1. Rex Black: Advanced Software Testing—Vol. 2, Shroff Publishers, 2011.
- **2.** GundechaUnmesh: Selenium Testing Tools Cook Book, PACKT PUBLISHING, 2012

COURSE OUTCOMES (CO)

- CO1: Analyse the process of Software Testing Life Cycle and types of Testing.
- CO2: Demonstrate Manual Testing and Automation in Testing
- CO3: Design Test Cases for User Interface Testing.
- CO4: Design Test Cases for Application Programming Interface (API) Testing and Data base Testing.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)

CO1								PO1,PO3							
CO2							PO1,PO2,PO3								
CO3							PO1,PO2,PO3								
CO4								1, PO	2, PO3	PO4					
						1									
LEVEL	OF C	O-PO	MAPI	PING T	CABLE	2									
CO/PO	PO1	PO2	PO3	PO4	PO5	PO	6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	S		M												
CO2	M	M	M												
CO3	S	M	M												
CO4	M	M	M	L											

II SEMESTER DATA SCIENCE USING R

Sub Code:				20MCA253		CIE Marks:	50
Number of Lec	ture]	Hours per week:		4		SEE Marks:	50
Total number of	f Lec	ture Hours:		52		SEE Hours:	03
Lecture (L):	3	Practicals (P):	1	Tutorial (T):	0	Total Credits:	4

- To understand the concepts of Data science.
- To analyse the sampling techniques for data classification.
- To implement modelling methods for machine learning problems.
- Analyzing data from files and Visualizing graphical presentations using R.

MODULES	TEACHING
	HOURS
MODULE 1: Data Science Process	10 Hrs
Introduction, Evolution of data science, Data science process - roles, stages in	
data science project – components of the Data Science lifecycle, data analytics,	
exploring data - managing data - cleaning and sampling for modeling and	
validation	
MODULE 2: Exploring R Basics	11 Hrs
Introduction, R features basic data types, Vectors, Lists ,Arithmetic, logical &	
Matrix Operations, Control structures, Functions in R, Data frames, Reading Data	
& cleaning data Data visualization techniques –Histograms, box plot, bar chart,	
scatter plot. MODULE 3: Statistical Measures In R	10 Hrs
	10 1113
Understanding Descriptive statistics, standard deviations, probability distribution,	
Normal distribution-Skewness, kurtosis, Inferential statistics-Hypothesis testing-	
t-test -One Sampled t-test, Correlation -Person correlation coefficient.	
MODULE 4: Data Science Algorithms	10 Hrs
Classification of Regression Analysis, Regression process, Linear Regression,	
Understanding Linear regression, making prediction-hypothesis on regression	
coefficients, multiple Linear Regression, concepts and formulas, Logistic	
regression, Model building and making predictions, Adding best fit.	
MODULE 5: Machine Learning Techniques	11 Hrs
Classification techniques-Decision Trees, K Nearest Neighbor classification	
Technique. Implementation in R	
Clustering techniques, Applications, k-means Clustering algorithm, Performance	

of k-means, choosing Initial centroid- Implementation in R, Efficiency using Confusion matrix **Question Paper Pattern:** Each full question consists of 20 marks. Questions are set covering all the topics under each module TextBooks: 7. Nina Zumel, John Mount, "Practical Data Science with R", Manning Publications, 2014. David Dietrich ,Barry Heller ,"Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley, 2015 9. Joseph Schmuller, "Statistical Analysis with R", John Wiley, 2017. Reference Books W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013. 2. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Addison-Wesley, 2005 **COURSE OUTCOMES (CO)** CO1:Explain role of data science and the significance of exploratory data analysis (EDA) in data science. CO2: Apply statistics and computational analysis for data to make predictions using statistical tools. CO3: Apply basic machine learning algorithms for predictive modelling and interpret the results visually. CO4: Construct use cases to validate approach and identify modifications required. COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES: **Course Outcomes(COs) Mapping with Program Outcomes(POs)** CO₁ **PO1,PO2** CO₂ PO1,PO2,PO4,PO5

PO1,PO2,PO4,PO5,PO7

PO4,PO5,PO7

LEVEL OF CO-PO MAPPING TABLE

CO₃

CO4

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	S										
CO2	L	M		S	M							
CO3		M		S	S		S					
		1,1										
CO4				M	S		S					

II SEMESTER PROGRAMMING USING C#

Course Code:			20MCA254		CIE Marks:	50
Number of Lecture H	lours per weel	k:	4		SEE Marks:	50
Total number of Lect	39		SEE Hours:	3 Hrs		
Lecture (L): 3 Pr	racticals (P):	1	Tutorial (T):	0	Total Credits:	4
COURSE LEARNIN 10. To describe th			` ′	·k		
11. To demonstra	te Object Orie	ented	Programming	conc	epts using C#	
12. To implement	delegates, eve	ent ha	andling and exce	eptio	n handling	

13.	To develop	Web ap	plications	using A	ASP.NET.	ADO.NET
	- 0 0-0 P	· · · · · · · · · · · · · · · · · · ·	P	B		,

MODULES	TEACHING HOURS
MODULE 1: Getting started with .NET Framework 4.0 and C#	7 Hrs
Understanding Previous Technologies, Benefits of .NET Framework,	/ HIS
Architecture of .NET Framework 4.0,.NET Execution Engine, Components	
of .NET Framework 4.0: CLR, CTS, Metadata and Assemblies, .NET	
Framework Class Library, Windows Forms, ASP .NET and ASP .NET	
AJAX, ADO .NET, Windows workflow Foundation, Windows Presentation	
Foundation, Windows Communication Foundation, Widows Card Space and	
LINQ.	
Introducing C#	
Need of C#, C# Pre-processor Directives, Creating a Simple C# Console	
Application, Identifiers and Keywords. Data Types, Variables and	
Constants: Value Types, Reference Types, Type Conversions, Boxing	
andUnBoxing, Variables and Constants. Expression and Operators:	
Operator Precedence, Using the ?? (Null Coalescing) Operator, Using the ::	
(Scope Resolution) Operator and Using the is and as Operators. Control	
Flow statements: Selection Statements, Iteration Statements and Jump	
Statements	
MODULE 2: Namespaces, Classes and Object Oriented Programming	8 Hrs
Namespaces, The System namespace, Classes and Objects: Creating a Class,	
Creating an Object, Using this Keyword, Creating an Array of Objects,	
Using the Nested Classes, Defining Partial Classes and Method, Returning a	
Value from a Method and Describing Access Modifiers. Static Classes and	
Static Class Members. Properties: Read-only Property, Static Property,	
Accessibility of assessors and Anonymous types. Indexers, Structs: Syntax	
of a struct and Access Modifiers for structs. System. Object Class	
Encapsulation: Encapsulation using assessors and mutators, Encapsulation	
using Properties. Inheritance: Inheritance and Constructors, Sealed Classes	
and Sealed Methods, Extension methods.	
Polymorphism: Compile time Polymorphism/ Overloading, Runtime	
Polymorphism/ Overriding. Abstraction: Abstract classes, Abstract methods.	

Interfaces: Syntax of Interfaces, Implementation of Interfaces and						
Inheritance						
MODULE 3: Delegates, Events, Exception Handling	8 Hrs					
Delegates: Creating and using Delegates, Multicasting with Delegates.						
Events: Event Sources, Event Handlers, Events and Delegates, Multiple						
Event Handlers.						
Exception Handling : The try/catch/throw/finally statement, Custom						
Exception. System. Exception, Handling Multiple Exception						
MODULE 4: Graphical User Interface with Windows Forms	8 Hrs					
Introduction, Windows Forms, Event Handling: A Simple Event- Driven						
GUI, Control Properties and Layout, Labels, TextBoxes and Buttons,						
GroupBoxes and Panels, CheckBoxes and RadioButtons, ToolTips, Mouse-						
Event Handling, Keyboard-Event Handling. Menus, Month Calendar						
Control, LinkLabel Control, ListBox Control, ComboBox Control,						
TreeView Control, ListView Control, TabControl and Multiple						
Document Interface (MDI) Windows.						
MODULE 5: Web App Development and Data Access using ADO.NET 8 Hr						
Introduction to Web Basics, Multitier Application Architecture, First Web						
Application: Building Web-Time Application, Examining Web-Time.aspx's						
Code-Behind File, Understanding Master pages, Standard Web Controls:						
Designing a Form, Validation Controls, GridView Control, DropDownList,						
Session Tracking. Set up the sample database, Create the forms and add						
controls, Store the connection string, Retrieve the connection string, Write the						
<u>code for the forms,Test your application</u>						
ASP.NET AJAX :ExploringAJAX, Need for AJAX, AJAX and other						
Technologies, AJAX Server Controls, ScriptManager control, Update Panel,						
UpdateProgress Control, Creating Simple Application using AJAX Server						
Controls.						

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 1. .NET 4.0 Programming (6-in-1), Black Book, Kogent Learning Solutions Inc., Wiley-Dream Tech Press.
- **2.** Paul Deitel and Harvey Deitel: C# 2010 for Programmers, 4th Edition, Pearson Education.

Reference Books

- 1. Andrew Trolsen: Pro C# 5.0 and the .NET 4.5 Framework, 6th Edition, WileyAppress.
- 2. Bart De Smet: C# 4.0 Unleashed, Pearson Education- SAMS Series.
- 3. Herbert Schildt: Complete Reference C# 4.0, Tata McGraw Hill, 2010.

COU	COURSE OUTCOMES (CO)											
CO1:	Disting	guish t	he feat	ures of	C# aı	nd clien	t-serve	r conce	epts usi	ng .Net	Fram	ework
	Comp	onents	•									
CO2:	Demon	strate	delegat	es, ever	nts an	d except	ion ha	ndling	with			
ASP,	Win Fo	orm, Al	DO.NE	Т.								
CO3:	Develo	p Grap	hical U	ser Inte	erface	for vari	ous ap	plicatio	ns			
CO4 :	Develo	p Web	based a	nd Cor	nsole b	pased ap	plicati	ons wit	h datab	ase con	nectivi	ty
COU	RSE O	UTCO	MES M	APPIN	IG WI	TH PRO	OGRA	M OUT	ГСОМІ	ES:		
Cours	se Outc	omes(C	CO)			Mapping with Program Outcomes(PO)						
CO1						PO1,PO2,PO3,PO4,PO5,PO8						
CO2						PO1,PO2,PO3,PO4						
CO3						PO1,PO2,PO3,PO4,PO5						
CO4						PO1,PO2,PO3,PO4,PO5						
					I							
LEVI	EL OF	CO-PO	MAPI	PING T	ABLI	E						
CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	L	M	L			L				
					L			L				
CO2	H	H	L	M								
CO3	M	H	M	H	L							
CO4	M	H	H	H	H							

ETHICAL HACKING						
Sub Code:		20MCA255		CIE Marks:	;	50
Number of Lecture Hours per week:		4		SEE Marks	:	50
Total number of Lecture Hours:		52		SEE Hours:	;	3
Lecture (L): 3 Practicals (P): 1		Tutorial (T):	0	Total Credi	ts:	4
COURSE LEARNING OBJECTIVE		·				
Introduce the fundamental as						
Demonstrate different feature	es o	f ethical hackin	g			
Remediate computer security	br	eaches, attack a	nd de	fence		
Analyze encryption technique		•	nitecti	ure		
Me	OD	ULES				CACHING
]	HOURS
MODULE 1: Ethical Hacking						10Hrs
,Gaining Access ,Maintaining Access , Security Foundations:	The Triad, Risk, Policies, Standards, and Procedures, Security Technology,					
MODULE 2: System Hacking & Malware						10 Hrs
Searching for Exploits ,System Compromise ,Metasploit Modules ,Exploit-DB ,Gathering Passwords ,Password Cracking ,John the Ripper ,Rainbow Tables ,Client-Side Vulnerabilities ,Post Exploitation ,Privilege Escalation ,Pivoting ,Persistence ,Covering Tracks.						
Malware Types "Virus "Worm "Trojan "Botnet "Ransomware "Dropper "Malware Analysis "Static Analysis, Dynamic Analysis "Creating Malware "Writing Your Own, Using Metasploit "Malware Infrastructure "Antivirus Solutions						
MODULE 3: Sniffing and Social Engineering						11 Hrs
Packet Capture .tcpdump ,tshark ,Wireshark ,Berkeley Packet Filter (BPF) ,Port ,Mrroring/Spanning , Packet Analysis ,Spoofing Attacks ,ARP Spoofing ,DNS Spoofing ,sslstrip						
Social Engineering ,Pretexting ,Social Engineering ,Badge Access ,Man Tra ,Phishing Attacks ,Website Attacks Social Engineering ,Automating Social	ps ,Cl	Biometrics ,Pholoning ,Rogue	one C	alls ,Baiting		

MODULE 4: Wireless Security , Attack and Defence	11 Hrs
Wi-Fi ,Wi-Fi Network Types ,Wi-Fi Authentication ,Wi-Fi Encryption ,Bring Your Own Device (BYOD) ,Wi-Fi Attacks ,Bluetooth ,Scanning ,Bluejacking ,Bluesnarfing ,Bluebugging ,Mobile Devices ,Mobile Device Attacks. Web Application Attacks ,XML External Entity Processing ,Cross-Site Scripting (XSS) ,SQL Injection ,Command Injection ,Denial of Service Attacks ,Bandwidth Attacks ,Slow Attacks ,Legacy ,Application Exploitation ,Buffer Overflow ,Heap Spraying ,Lateral Movement ,Defense in Depth/Defense in Breadth ,Defensible Network Architecture.	
MODULE 5: Cryptography & Security Architecture and Design	10 Hrs
Basic Encryption ,Substitution Ciphers ,Diffie-Hellman ,Symmetric Key Cryptography ,Data Encryption Standard (DES) ,Advanced Encryption Standard (AES) ,Asymmetric Key Cryptography ,Hybrid Cryptosystem ,Non-Repudiation ,Elliptic Curve Cryptography ,Certificate Authorities and Key Management ,Certificate Authority ,Trusted Third Party ,Self-Signed Certificates ,Cryptographic Hashing ,PGP and S/MIME.	
Data Classification ,Security Models ,State Machine ,Biba ,Bell-LaPadula ,Clark-Wilson Integrity Model ,Application Architecture ,n-tier Application Design ,Service-Oriented Architecture ,Cloud-Based Applications ,Database Considerations ,Security Architecture .	
Practical contents	
1 Coopping for Open Douts of Domesta Machine	

- 1. Scanning for Open Ports of Remote Machine
- 2. Gaining SSH Access of Remote Machine using hydra Tool
- 3. Accessing Wife Saved Password in Windows Machine
- 4. Accessing Wife Saved Password in Linux Machine
- 5. Accessing Key using Keylogger through email/Telegram
- 6. Sniffing Wifi Password of Access Point
- 7. Accessing System, Boot and CPU information of windows machine
- 8. Obtaining Screenshots of Remote Machine

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 1. CEH Certified Ethical Hackers All-in-one Exam Guide, Willy publishing inc
- 2. Computer Hacking Beginners Guide: How to Hack Wireless Network, Basic Security and Penetration Testing, Kali Linux, Your First Hack Kindle Edition
- 3. The Web Application Hacker's Handbook, DafyddStuttard Marcus Pinto, Willy publishing inc

Reference Books

- 1. Hacking: The Art of Exploitation, John Ericson, 2nd Edition
- 2. Penetration Testing: A Hands-On Introduction to Hacking

by Georgia Weidman

- 3. Penetration Testing with Kali Linux, Offensive security
- 4. Wireless Attacks WiFu, Mati Aharoni Devon Kearns Thomas d'Otreppe de Bouvette

COURSE OUTCOMES (CO)

CO1: Understand the features of ethical hacking

CO2: Analyse the security breaches required for ethical hacking

CO3:Apply the ethical hacking techniques in the real time scenario

Cours	Course outcomes mapping with program outcomes											
Cours	se Outc	omes(C	CO)	Марр	ing wit	h Prog	ram Oı	ıtcome	s(PO)			
CO1				PO1,	PO3,P	O5,						
CO2				PO2,	PO3, P	06, PO	9, PO1	0				
CO3				PO4,	PO6, P	08, PO	10					
						,						
CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M		M		H							
CO2		M	L			Н			H	Н		
CO3				H		Н		L		Н		

II SEMESTER					
DATA MINING AND BUSINESS INTELLIGENCE					
Course Code:	20MCA261	CIE Marks:	50		
Number of Lecture Hours per week:	3	SEE Marks:	50		
Total number of Lecture Hours:	39	SEE Hours:	3 Hrs		
Lecture (L): 3 Practicals (P): 0	Tutorial (T): 0	Total Credits:	03		

- Learn the concept of data base technology evolutionary path which has led to the need for data mining and its application
- Understand the concept of Data warehousing and OLAP, storage and retrieval technique of data from DATA CUBE and different pre processing techniques
- Discover interesting patterns from large amounts of data to analyze and extract pattern to solve problems, make predictions of outcomes
- Select and apply proper data mining algorithms to build analytical applications
- Evaluate systematically supervised and unsupervised models with respect to their accuracy
- Learn thedata mining for various business intelligence applications for the given problem

MODULES	TEACHING
	HOURS
MODULE 1: Overview and concepts Data Warehousing and Business	7Hrs
Intelligence	
Why reporting and Analysing data, Raw data to valuable information-	
Lifecycle of Data - What is Business Intelligence - BI and DW in today's	
perspective - What is data warehousing - The building Blocks: Defining	
Features - Data warehouses and data 1 marts - Overview of the components -	
Metadata in the data warehouse - Need for data warehousing - Basic elements	
of data warehousing - trends in data warehousing.	
The Architecture of BI and DW	
BI and DW architectures and its types - Relation between BI and DW -	
OLAP (Online analytical processing) definitions - Difference between OLAP	
and OLTP - Dimensional analysis - What are cubes? Drill-down and roll-up -	
slice and dice or rotation - OLAP models - ROLAP versus MOLAP -	
defining schemas: Stars, snowflakes and fact constellations.	

MODULE 2: Introduction to data mining (DM)	7 Hrs
Motivation for Data Mining - Data Mining-Definition and Functionalities –	7 1113
Classification of DM Systems - DM task primitives - Integration of a Data	
Mining system with a Database or a Data Warehouse - Issues in DM – KDD	
Process Data Pre-processing: Why to pre-process data? - Data cleaning:	
Missing Values, Noisy Data - Data Integration and transformation - Data	
Reduction: Data cube aggregation, Dimensionality reduction - Data	
Compression - Numerosity Reduction - Data Mining Primitives - Languages	
and System Architectures: Task relevant data - Kind of Knowledge to be	
mined - Discretization and Concept Hierarchy.	
MODULE 3: Concept Description and Association Rule Mining	8Hrs
What is concept description? - Data Generalization and summarization-based	
characterization - Attribute relevance - class comparisons Association Rule	
Mining: Market basket analysis - basic concepts - Finding frequent item sets:	
Apriori algorithm - generating rules - Improved Apriori algorithm -	
Incremental ARM – Associative Classification – Rule Mining.	
MODULE 4: Classification and prediction	9 Hrs
What is classification and prediction? – Issues regarding Classification and	
prediction: Classification methods: Decision tree, Bayesian Classification,	1
Rule based, CART, Neural Network Prediction methods: Linear and	1
nonlinear regression, Logistic Regression. Introduction of tools such as DB	
Miner /WEKA/DTREG DM Tools.	
MODULE 5: Data Mining for Business Intelligence Applications	8 Hrs
Data mining for business Applications like Balanced Scorecard, Fraud	O III S
Detection, Clickstream Mining, Market Segmentation, retail industry,	1
telecommunications industry, banking & finance and CRM etc., Data	
Analytics Life Cycle: Introduction to Big data Business Analytics - State of	
the practice in analytics role of data scientists Key roles for successful	
analytic project - Main phases of life cycle - Developing core deliverables for	
stakeholders.	
Summer of the Control	

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 1. J. Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- **2.** M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley &Sons Inc.
- **3.** G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", Wiley India

Reference Books

1. PaulrajPonnian, "Data Warehousing Fundamentals", John Willey

- **2.** K. Gupta: Introduction to Data Mining with Case Studies, 3rd Edition, PHI, New Delhi, 2009.
- **3.** AlexBerson and Stephen J.Smith: Data Warehousing, Data Mining, and OLAP Computing McGrawHill Publisher, 1997.

COURSE OUTCOMES (CO)

- CO1: Understand the concept of data warehouse, Business Intelligence and OLAP, data preprocessing techniques
- CO2: Demonstrate application of association rule mining algorithms, various classification algorithms and evaluation of classifiers for the given problem
- CO3: Apply classification and regression techniques for the given problem.
- CO4: Analyse data mining for various business intelligence applications for the given problem

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1,PO2,PO5
CO2	PO1,PO2,PO4
CO3	PO1,PO2,PO4
CO4	PO1,PO2,PO4

LEVEL OF CO-PO MAPPING TABLE

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	H	L			L							
CO2	M	M		Н								
CO3	Н	M		Н								
CO4	L	L		H								

II SEMESTER
ENTERPRISE RESOURCE PLANNING

Course Code:				20MCA262		CIE Marks:	50
Number of Le	re Hours per weel	k:	03		SEE Marks:	50	
Total number	of I	Lecture Hours:		39		SEE Hours:	3 Hours
Lecture (L):	3	Practicals (P):	0	Tutorial (T):	0	Total Credits:	3

At the end of the course, student should be able to:

- Identify the different ERP related Technologies and their benefits
- Understand the Various Business Modules
- ERP implementation using different Techniques
- Learn different ERP vendors and practice them

MODIFIE	TE A CHILLIC
MODULES	TEACHING
	HOURS
MODULE 1: ERP and Related Technologies	8 Hrs
Business Process Re-engineering, Management Information systems, Decision Support Systems, Executive Information Systems-	
Advantages of EIS; Disadvantages of EIS, Data Warehousing, Data	
Mining, On-Line Analytical Processing, Product Life Cycle	
Management, Supply Chain Management, ERP Security	
MODULE 2: Benefits of ERP	7 Hrs
Reduction of Lead-time, On-time shipment, Reduction in cycle time,	
Improved Resource Utilization, Better Customer Satisfaction, Improved	
Supplier performance, Increased flexibility, Reduced quality costs, improved	
information Accuracy and Decision-making capability	
MODULE 3: Business Modules	8 Hrs
Business Modules in an ERP Package, Finance, Manufacturing, Human	
Resource, Plant Maintenance, Materials Management, Quality	
Management, Sales and Distribution	
MODULE 4: ERP Implementation Life Cycle	8 Hrs
ERP Tools and Software, ERP Selection Methods and Criteria, ERP	
Selection Process, ERP Vendor Selection, ERP Implementation	
Lifecycle, Pros and cons of ERP implementation, Factors for the	
Success of an ERP Implementation, Latest ERP Implementation	
Methodologies	
MODULE 5: Different ERP Vendors	8 Hrs

ERP Vendors, SAP-AG: Products and technology R/3 overview; SAP advantage, Baan Company , Oracle Corporation: Products and technology; Oracle Application; Vertical solutions, Microsoft Corporation, QAD

Case Study - hands on exercises using various ERP tools

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Text Books

- 1. Alexis Leon, Enterprise Resource planning, McGraw-Hill Education (India), 2014
- **2.** Garg, vinodkumar, venkitakrishnan n. k., Enterprise Resource planning concepts and practice, 2016
- 3. Ellen F. Monk, Bret J. Wagner, Concepts of Enterprise Planning, Cengage, 2013

Reference Books

- 1. Enterprise Resource Planning, Mary Sumner, Pearson Education, Fourth Impression 2009
- 2. The SAP R /3 Hand book, Jose Antonio Fernandz, , Tata McGraw Hill
- 3. Enterprise Resource Planning, Mahadeo Jaiswal & Ganesh Vanapalli, Macmillan, 1/e 2005

COURSE OUTCOMES (COs)

CO1: Acquire knowledge of ERP related Technologies and their benefits

CO2: Analyze various Business Modules

CO3: Apply ERP implementation in different business organizations

CO4: Evaluate various ERP tools, and practice them

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES

Course Outcomes (COs)	Mapping with POs
CO1	PO5, PO6
CO2	PO9, PO11, PO12
CO3	PO8, PO9,PO10
CO4	PO5, PO7

LEV	LEVEL OF CO-PO MAPPING TABLE											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
/PO												
CO1					Н	M						
CO2									H		M	L
CO3									Н		M	L
CO4					Н		L					

II SEMESTER

SUPPLY CHAIN MANAGEMENT

Course Code	:			20MCA263		CIE Marks:	50	
Number of L	ectui	re Hours per wee	k:	3		SEE Marks:	50	
Total number	r of I	Lecture Hours:		39		SEE Hours:	3 Hrs	
Lecture (L):	3	Practicals (P):	0	Tutorial (T):	0	Total Credits:	3	

- Demonstrate knowledge of the functional logistics and supply chain management
- Illustrate the concepts and activities of the supply chain and actual organization
- Analyse the role of technology in logistics and supply chain management
- Evaluate cases for effective supply chain management and its implementation and execute smart contracts to maintain relationship management

MODULES	TEACHING
	HOURS
MODULE 1: Introduction to Supply Chain Management	8 Hrs
Objectives, importance, decision phases, process view, competitive and	
supply chain strategies, achieving strategic fit, supply chain drivers,	
obstacles, framework facilities inventory transportation information sourcing	
pricing	
MODULE 2: Designing the Supply Chain Network	8 Hrs

Designing the distribution network, role of distribution ,factors influencing	
distribution, design options, e business and its impact, distribution networks	
in practice, network design in the supply chain, role of network, factors	
affecting the network design decision, modelling for supply chain	
MODULE 3: Designing and Planning Transportation Network	8 Hrs
Role of transportation , modes and their performance, transportation	
infrastructure and policies, design options and their trade off, tailored	
transportation	
MODULE 4: Sourcing and Pricing	7 Hrs
Sourcing, In-house or outsource, 3 rd and 4 th PLs, supplier scoring and	
assessment, selection, design collaboration, procurement process, sourcing	
Planning and analysis. Pricing and revenue management for	
multiplecustomers, perishable products, seasonal demand, bulk and spot	
contracts	
MODULE 5: Information Technology in Supply chain	8 Hrs
IT Framework, customer relationship management, internal supply chain	
management, supplier relationship management, transaction management,	
future of IT	
Question Paper Pattern:	

Each full question consists of 20 marks.

• Questions are set covering all the topics under each module

TextBooks:

- 1. Sunil Chopra and Peter Meindl, Supply Chain Management Stratergy, Planning and Operation, Pearson/PHI,3rd Edition, 2007
- Coyle, Bardi, Longley, The management of Business Logistics- A Supply Chain Perspective, Thomson Press,2006
- 3. Supply Chain Management by Janat Shah Pearson Publication 2008

Reference Books

- Donald J Bowersox, Dand J closs, M BixybyColuper,Supply Cain Logistics Management, TMH, Second Edition,2008
- 2. Wisner, Keong Leong and Keah-Choon Tan, Principles of Supply Chain Management A Balanced Approach, Thomson Press, 2005
- **3.** David Simchi-Levi et al, Designing and Managing the Supply Chain- Concepts, ISBN-13:978-0072357561

COURSE OUTCOMES (CO)

- CO1: Demonstrate the knowledge of the functional logistics and supply chain management
- CO2: Illustrate Concept and Activities of supply chain management Analyse the role of technology in logistics and supply chain management
- CO3: Evaluate cases for effective supply chain management and its implementation
- CO4: Predict the role information technology in bringing transparency and execute smart contracts to maintain relationship management

COLIDO	T OUT	COM		DDI	IC WI	TII DD	OCDA	MATI	COM	EQ.		
COURS	E OUI	COM	ES MIA	APPII	NG WI	IHPK	UGKA	MI OU I	COM	LS:		
Course	Outcon	nes(CC))		Mapp	ing wit	h Prog	ram Ou	tcomes	(PO)		
CO1					PO1, l	PO5, P	O10					
CO2					PO1, PO2, PO3, PO4							
CO3					PO1, PO2, PO4, PO5, PO8							
CO4					PO1, PO2, PO3, PO11, P12							
LEVEL	OF CO)-PO N	MAPP	ING 7	FABLE	E						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L				Н					Н		
CO2	L	L	M	M								
CO3	L	L		M	M			Н				
CO4	L	L	M				+			1	Н	Н

II SEMESTER								
STORAGE AREA NETWORKS								
Course Code: 20MCA264 CIE Marks: 5								
Number of Lecture Hours per week:	3	SEE Marks: 100)					
Total number of Lecture Hours:	39	SEE Hours: 3						
Lecture (L): 3 Practicals (P): 0	Tutorial (T): 0	Total Credits: 3						

- Understand the need for Storage Area Network and Data protection to satisfy the information explosion requirements.
- Get an insight of Storage area network architecture, protocols and its infrastructure.
- Evaluate different SAN management strategies to fulfil business continuity requirements.

MODULES	TEACHING HOURS
MODULE 1: Concepts of Storage Networking	8 Hrs
The Data Storage and Data Access Problem, The Battle for Size and Access	
Decoupling the Storage Component: Putting Storage on the Network,	
Decoupling the Storage Component: Creating a Network for Storage	
MODULE 2: Storage Fundamentals	7 Hrs
Storage Architectures, Device Overviews, Connectivity Options, Data	
Organizational Methods.	
MODULE 3: Network Attached Storage	8 Hrs
Putting Storage on the Network, NAS Hardware Devices , NAS software	
Components, NAS Connectivity Options.	
MODULE 4: Storage Area Networks	8 Hrs
Architecture Overview, Hardware Devices, Software Components, Configuration	
Options for SANs.	
MODULE 5: SAN Applications	8 Hrs
Defining the I/O Workload, Applying the SAN Solution, Applyingthe	
NASSolution Considerations When Integrating SAN and NASManagement.	
Planning Business Continuity, Managing Availability, Maintaining	
Serviceability, Capacity Planning and SecurityConsiderationsCase	
StudiesNAS Case Study, SAN Case Study, SAN/NAS Management	
CaseStudy.	

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module.

TextBooks:

3. The Complete Reference "Storage networks", Robert Spalding, Mc Graw Hill Education (India) 2003.

Reference Books

- Information Storage and Management (Misl-Wiley): 2nd Edition, Emc Education Services, Wiley; Second edition (29 August 2012), ISBN-13: 978-8126537501
- 2. Storage Are networks Essentials : A complete guide to understanding and Implementing SANs, Richard Barker, Paul Massiglia, Wiley

COURSE OUTCOMES (CO)

CO1:Understand the significance of storage component in networking.

CO2: Apply the SAN techniques and solutions used for data maintenance.

CO3: Analyse the significance of the architectural components for NAS and SAN.

CO4: Design secured, scalable SAN / NAS enterprise solutions.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO3, PO5
CO2	PO4, P5.
CO3	P03, PO5, PO8
CO4	P05, PO8, PO12

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PO												
CO1			Н		M							
CO2			Н		M							
CO3			H		Н			L				
CO4					Н			Н				M

II SEMESTER DISTRIBUTED OPERATING SYSTEM

Course Code:	20MCA265	CIE Marks:	50
Number of Lecture Hours per week:	3	SEE Marks:	50
Total number of Lecture Hours:	39	SEE Hours:	3 Hrs
Lecture (L): 3 Practicals (P): 0	Tutorial (T): 0	Total Credits:	3

COURSE LEARNING OBJECTIVES (CLO)

- To understand the hardware and software architecture of modern distributed systems.
- To handle process synchronization in distributed systems
- To analyse the memory management techniques in distributed systems

MODULES	TEACHING
	HOURS
MODULE 1: Introduction to Distributed Systems	8 Hrs
Introduction to Distributed System, Hardware concepts, Software concepts,	
Design issues. Communicationin Distributed Systems, Layered Protocols,	
ATM networks, The Client-sever model, Remote Procedure call, Group	
communication.	
MODULE 2: Synchronization	8 Hrs
Synchronization in Distributed System, Clock Synchronization, Mutual	
Exclusion, Election algorithms, Atomic transactions, Deadlocks in	
Distributed Systems.	
MODULE 3: Process Management	8 Hrs
Process and processors in Distributed System threads, System Models,	
Processors allocation, Scheduling in Distributed System, Fault tolerance,	
Real time Distributed System.	
MODULE 4: Distributed File System	7 Hrs
Distributed File Systems, Distributed File System Design, Distributed File	
System implementation, Trends in Distributed File System.	
MODULE 5: Memory Management	8 Hrs
Distributed Shared Memory, Introduction, Consistency models, Page based	
Distributed Shared memory, Shared – variable Distributed Shared memory,	
Object based Distributed Shared Memory.	

Question Paper Pattern:

• Each full question consists of 20 marks.

• Questions are set covering all the topics under each module

TextBooks:

- 1. Distributed Operating Systems, Andrew S. Tanenbanm
- 2. Distributed Operating Systems Concepts and Design, Pradeep K. Sinha, PHI

Reference Books

- **1.** Distributed Systems: Concepts and Design by George Coulouris, Jean Dollimore, TimKindberg, Pearson
- 2. Distributed Computing by Sunita Mahajan & Seema Shah OXFORD
- **3.** Distributed Computing, Fundamentals, Simulations and Advanced topics, 2nd Edition, HagitAttiya and Jennifer Welch, Wiley India

COURSE OUTCOMES (CO)

CO1:Understand the various models of Distributed systems

CO2:Understand the process management and synchronization of Distributed Computing systems

CO3: Analyze the file system architecture for distributed systems

CO4: Analyse the implementation of memory management techniques for distributed architecture

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1,PO3
CO2	PO1,PO3,PO10
CO3	PO1,PO3,PO10
CO4	PO1,PO3,PO10

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L		M									
CO2	S		M							L		
CO3	S		M							L		
CO4	M		S							M		

III SEMESTER
MACHINE LEARNING USING PYTHON

Sub Code:			20MCA31		CIE Marks:	50	
Number of Lecture Hours per week:				4		SEE Marks:	50
Total number of Lecture Hours:			52		SEE Hours:	3	
Lecture (L):	4	Practical (P):	0	Tutorial (T):	0	Total Credits:	4

- To distinguish between, supervised & unsupervised and gain knowledge about basic concepts of Machine Learning.
- To introduce participants to the fundamentals of data analytics using Python
- To apply the appropriate machine learning strategy for any given problem.
- To develop skills of using recent machine learning software for solving practical problems.

MODULES	TEACHING
	HOURS
MODULE 1: Introduction to Machine learning	10 Hrs
Introduction toMachine Learning, types of Machine learning, Applications, Machine Learning Process, Well posed learning problems, Designing a Learning system, Perspective and Issues in Machine Learning	
MODULE 2: Modelling and Evaluation	10 Hrs
Selecting a Model, Training a model, Model representation and interpretability, Evaluating performance of a model Introduction to Bayes Theorem and Concept learning, Naive Bayes Classifier, Applications of Naïve Bayes Classifier, Bayesian Belief Network in Machine Learning	
MODULE 3: Unsupervised Learning & Supervised Learning	11 Hrs
Clustering –Different types of the clustering techniques, K-Means Clustering Algorithm Classification-Introduction, KNN classifier, Decision Tree, Random Forest Model, Support Vector Machines	
MODULE 4: Regression Learning	10 Hrs
Training a model-Linear Regression, Multiple Linear regression, Improving accuracy of Linear Regression Model, k-fold cross validation method, Polynomial Regression Model	
MODULE 5: Neural Network and Deep Learning	11 Hrs

Artificial Neural Networks: IntroductionArtificial Neural Networks: Introduction, Neural Network representation, Appropriate problems, Perceptron, Back propagation algorithm.

Deep Learning, Deep Learning Architectures.

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 1. Fabio Nelli, "Python Data Analytics", Apress, Springer Science + Business Media Finance Inc (SSBM Finance Inc).
- 2. Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, 1st Edition, 2019, Pearson Publications, , ISBN 978-93-530-6669-7
- 3. Machine Learning, Tom M Mitchel, McGraw Hill publications, ISBN-0070428077
- 4. Machine Learning with Python: Design and Develop Machine Learning and Deep Learning, BPB Publishing, India, 2018

Reference Books

- 1. Jake Vander plas, "Python Data Science Handbook: Essential tools for working with data", O'Reilly Publishers, I Edition.
- EthemAlpaydin "Introduction To Machine Learning" 2nd Edition PHI Learning Pvt. Ltd-New Delhi.

COURSE OUTCOMES (CO)

CO1: Explain the concepts related to Machine Learning techniques.

CO2: Demonstrate Pre-processing techniques and perform exploratory data analysis related to a scenario.

CO3: Identify and apply the appropriate techniques to process the data and solve the applications using machine learning techniques

CO4: Apply data analytics principles and techniques of Machine learning to solve real time problems.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(COs)	Mapping with Program Outcomes(POs)
CO1	PO1,PO2,
CO2	PO1,PO2,PO4,PO8
CO3	PO1,PO2,PO4,PO5,PO8,PO10,PO11
CO4	PO1,PO2,PO4,PO5,PO8,PO10,PO11

LEVEL OF CO-PO MAPPING TABLE												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	S										M
CO2	L	M		S				M				L
CO3	L	L		S	S			M		S	M	L
CO4	L	L		S	S			M		S	M	L

	III SEMESTER											
ADVANCES IN JAVA												
Sub Code: 20MCA32 CIE Marks:												
Number of Le	ectui	re Hours per wee	k:	4		SEE Marks:	50					
Total number of Lecture Hours:				52		SEE Hours:	3					
Lecture (L):	4	Practical (P):	0	Tutorial (T):	0	Total Credits:	4					

- Describe the JDBC concepts and designing an applications using JDBC.
- Introduce the concepts of server side programming using Servlets & JSP.
- Understand Java Beans and different types of enterprise java beans and implement them. Design and developing an application using springs framework.

MODULES	TEACHING
1.102 0228	HOURS
MODULE 1: JDBC	10 Hrs
The Concept of JDBC, JDBC Driver types, A brief overview of JDBC process,	
Database Connection, Statement objects, Result Set, Transaction Management, Data	
types, Exceptions. Introduction to Embedded SQL with JDBC.	
MODULE 2: SERVLET	10 Hrs
Architecture, Servlet Structure, Servlet packaging, HTML building utilities, Lifecycle,	
SingleThreadModel interface, Handling Client Request: Form Data, Handling Client	
Request: HTTP Request Headers. Generating server Response: HTTP Status codes,	
Generating server Response: HTTP Response Headers, Handling Cookies, Session	
Tracking.	
MODULE 3: JSP	10 Hrs
Overview of JSP: JSP Technology, Benefits of JSP, Advantages of JSP, Basic syntax.	
ISP life cycle, JSP tags, looping statements, The JSP page directive, JSP Action tags,	
SP implicit objects.JSP form processing, JSP database connectivity.	
MODULE 4: Annotations & EJB	10 Hrs
Annotations	
Creating Packages, Interfaces, JAR files and Annotations. The core java API	
package, New java. Lang Sub package, Built-in Annotations with examples.	
Java Beans and EJB	
Working with Java Beans. Introspection, creating java bean, manifest file, Bean Jar file, adding controls, Bean properties, Simple properties, bound properties, Icon, Bean	
info class, Constrained Properties, Persistence, Java Beans API.	
Enterprise Java Beans: The EJB Container, EJB Classes, EJB Interface. Deployment	
Descriptor, Session Java Bean, Entity Java Bean, Message-Driven Bean.	

MODULE 5: Spring Framework	12 Hrs
Spring Framework	
Introduction to Spring Framework, Spring Framework architecture, IOC-containers, Bean scopes, Bean Life cycle, Dependency Injection, Beans wiring, Event Handling in springs, Custom events in springs Spring AOP, and Spring JDBC. Spring MVC	
Spring MVC : Spring 3.0 features –Introduction to Spring MVC –Handler Mapping – Controllers –Validations –Handler Interceptors –Views –Form tags.	
Question Paper Pattern:	
• Each full question consists of 20 marks.	
 Questions are set covering all the topics under each module 	

Text Books:

- **1.** Marty Hall, Larry Brown. Core Servlets and Java Server Pages. Volume 1: Core Technologies. 2nd Edition. (Chapter 3,4,5,6,7,8,9,10,11,12,13,14).
- **2.** Java 6 Programming Black Book, Dreamtech Press. 2012 (Chapter 17,18,19,20,21,22,27,28,29,30).
- **3.** Andrew LeeRubinger, Bill Burke. Developing Enterprise Java Components. Enterprise JavaBeans 3.1.O'reilly. (Chapter 1,2,3,4,5,6,7,8,9,10,11).

Reference Books

- 1. Michael Sikora, EJB 3 Developer Guide, A practical guide for developers and architects to the Enterprise Java Beans Standard, Shroff Publishers & Distributors PVT LTD. July 2008.
- 2. Herbert Schildt, Java The Complete Reference, 8th Edition. Comprehensive coverage of the Java Language. Tata McGraw-Hill Edition 2011.

COURSE OUTCOMES (CO)

CO1:Understand Concept of advanced java concepts.

CO2: Analyze the methodologies and constraints of implementation.

CO3: Apply the advanced java methodologies to design applications.

CO4: Design and Develop applications to be deployed in real world scenarios.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO 1	PO2,PO3,PO5
CO 2	PO2,PO4,PO5,PO11
CO 3	PO2,PO4,PO5,PO8,PO11
CO 4	PO2,PO4,PO5,PO11

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

PO									
CO 1	M	Н	Н						
CO 2	M		Н	M				Н	
CO 3	M		Н	M		Н		M	
CO 4	S		Н	Н		Н		M	

III SEMESTER NETWORK ARCHITECTURE AND PROGRAMMING

Sub Code:				20MCA33		CIE Marks:	50
Number of Le	cture	Hours per week	:	04		SEE Marks:	50
Total number	of Le	ecture Hours:		52		SEE Hours:	03
Lecture (L):	4	Practicals (P):	2	Tutorial (T):	0	Total Credits:	04

- Classify the network protocols and identify the service
- Demonstrate the architecture of larger and emerging networks
- Implement a wired and wireless network architecture using a simulator tool
- Analyse the performance characteristics of a network with a simulator tool

MODULES	TEACHING
	HOURS
MODULE 1: Protocols and Standards	14 Hrs
TCP/IP Reference Model, Circuit Switching, Packet Switching,	
InternetProtocols (TCP, IP, UDP, ICMP, ARP), Unicast Routing Protocols	
(OSPF, DVRP), Multicast Routing protocols (MOSPF, DVMRP)	
MODULE 2: Larger Networks	10 Hrs
Optical Networking: SONET/SDH, Frame Relay, ATM, Virtual LAN	
MODULE 3: Wireless Networking	08 Hrs
SAN, Bluetooth, Broadband ISDN, Wireless networks, Wireless sensor	
Networks	
MODULE 4: Emerging Network Technologies	08 Hrs
Software Defined Network, Delay-tolerant Networking, Home Networking,	
Content Distributed Network, Data Center Network	
MODULE 5: Network Simulation Software	12 Hrs
Working on Network Simulation Tools - Building a Lan Topology with a	
simulation tool, Analysing the flow of packets with TCP protocol, Analysing	

the flow of packets with UDP protocol, Simulating routing technologies (Distance Vector), wireless

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks

- 5. Tanenbaum, A., Computer Networks, 3rd ed., Prentice-Hall, 1996.
- 6. Jan L Harrington, Network Security: A Practical Approach, Morgan Kauffman, 2005

Reference Books

- **6.** "Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6th Edition, PHI 2014, ISBN-10: 0130183806
- 7. Uyless Black "Computer Networks, Protocols, Standards and Interfaces" 2nd Edition PHI ,ISBN-10: 8120310411
- **8.** M. E. Whitman and Herbert J. Mattored, Principles of Information Security, Information Security Professional 4thedition
- 9. A Practical Guide To Advanced Networking By Jeffrey S. Beasley And PiyasatNilkaew, Pearson Education 2013 Ed

COURSE OUTCOMES (CO)

CO1: Understand the network protocols and its services

CO2: Demonstrate the architecture of wired and wireless network variants

CO3: Analyse the significance of emerging network architectures

CO4: Implement a network architecture with a simulator and automate the performance analysis of a network

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1, PO3
CO2	PO1, PO3, PO10
CO3	PO3, PO10

CO4							PO1,P03, PO5						
LEVEL	LEVEL OF CO-PO MAPPING TABLE												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L		H										
CO2	M		Н							L			
CO3			H							L			
CO4	L		M		H								
							_1		1	<u> </u>	<u> </u>	<u> </u>	

III SEMESTER									
DIGITAL MARKETING									
Sub Code:	Sub Code:					CIE Marks:	50		
Number of Lec	Number of Lecture Hours per week:					04 SEE Marks:			
Total number of	of Lect	ure Hours:		52		SEE Hours:	03		
Lecture (L):	3	Practicals (P):	0	Tutorial (T):	2	Total Credits:	4		

- Identify the importance of the digital marketing for marketing success, to manage customer relationships across all digital channels
- Able to do Web site and SEO optimization and to develop a digital marketing plan.
- Create Google AdWords campaigns, social media planning and basic knowledge
 of Google Analytics for measuring effects of digital marketing

MODULES	TEACHING
	HOURS
MODULE 1: Introduction to Digital Marketing	7 Hrs
Introduction: Introduction to digital marketing, Digital marketing platforms	
and Strategies , Latest Digital marketing trends ,Emergence of digital	
marketing as a tool, Drivers of the new marketing environment; P.O.E.M.	
framework, Digital landscape, Digital marketing plan, Digital marketing	
models.	
Web design: Optimization of Web sites, MS Expression Web)	
MODULE 2: Search Engine Optimization	9 Hrs
Search Engines: Components of Search Engines, Keyword Research,	
Google Keyword Planner, Market Research and Analysis.	
OnpageOptimization: Onpage Analysis Methodology, Web site Speed,	
Domain name in SEO ,Optimization- Title,URL,Meta Tags, Sitemaps	

07 Hrs
08 Hrs
08 Hrs

risks	and c	challen	iges.										
Question Paper Pattern:													
_		_			- 4 1	e 20	1						
•			questic					,					
	Que	stions	are se	t cove	ring al	I the to	opics u	nder ea	ch mod	ule			
Text	Dook	· a											
			4- "Di	-:4-1 N	المسائد مالسما	~?? М ~	Casa II	:11 1 a4 E	di4: a.a. 2	017			
									dition – 2		1141	2017	
15.	Pune	et Sing	gn Bnat	ia "Fun	damen	tais of l	Digital N	/larketin	g" Pearso	on 1st E	aition –	2017.	
Refe	rence	e Book	KS .										
1.	Ian	Dodso	n "The	e Art o	f Digit	al Mar	keting"	Wiley	Latest E	dition			
2.	"Dig	ital So	cial Me	dia Ma	rketing	" By P	rof. Nitii	n C. Kan	nat, Mr.C	Chinmay	/ Nitin K	Camat	
COU	IRSE	OUT	COM	ES (CO	O)								
CO1	: Un	dersta	nd the	key cor	ncepts	related	to digit	al-mark	keting				
CO2	: De	monst	trate 1	the us	e of	differe	ent elec	ctronic	media	for d	esignin	g mar	keting
	act	tivities	S.										
CO3	: An	alyze	role of	social	medi	a marl	keting f	or the g	given pr	oblem	and te	chnical	
	sol	lutions	s to ov	ercom	e socis	ıl med	ia threa	ats					
<u>CO4</u>									keting f	or the	givon c	nco	
	· Esu	шас	uic Ke	y conc	epts 1	ciateu	to uigit	a1-111a1	Kening I	or the	given c	ast.	
COL	IDCE	OUT	COM	FC MA	DDIN	C WI	ти рр	OCDA	M OUT	COMI	rc.		
		itcome				G W1						<u>O)</u>	
CO1		reome	.5(00)				Mapping with Program Outcomes(PO) PO7,PO10						
CO2							PO4,P						
CO3													
CO4 PO7,PO10,PO12													
		LEVEL OF CO-PO MAPPING TABLE											
LEV	EL (OF CO	-PO N	IAPP	NG T	ABLE	C						
LEV CO/P		OF CO	PO2	PO3	NG T	ABLE PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO2			M	H				
CO3							Н	M
CO4					L		Н	M
	•	•						

III SEMESTER								
CLOUD COMPUTING THEORY AND PRACTICE								
Course code:	20MCA342	CIE Marks:	50					
Number of Lecture Hours per week:	3	SEE Marks:	50					
Total number of Lecture Hours:	52	SEE Hours:	3					
Lecture (L): 3 Practical (P): 1	Tutorial (T): -	Total Credits:	4					

- Introduce the fundamental aspects of cloud computing
- Discuss virtualization technologies along with the architectural models of cloud computing.
- Leverage the prominent Cloud computing technologies available in the market place.
- Demonstrate different features of cloud platforms used in Industry
- To understand how energy efficiency achieved in cloud computing using green computing and understand the mechanism needed to harness cloud computing in the respective endeavours.

MODULES	TEACHING
	HOURS
MODULE-1: CLOUD COMPUTING OVERVIEW	12 Hrs
Cloud Computing Overview, The Vision of Cloud Computing, Defining a	
Cloud, A Closer Look, Cloud Computing Architecture, Characteristics and	
Benefits, Challenges in the cloud, Historical Developments, Distributed	
Systems, Virtualization, Web 20, Service Oriented Computing, Utility-	
Oriented Computing, Building Cloud Computing Environments, Application	
Development, Infrastructure and System Development, Computing	
Platforms and Technologies, Amazon Web Services (AWS), Google	
AppEngine, Microsoft Azure, Hadoop, Forcecom and Salesforcecom,	
MODULE-2: VIRTUALIZATION	10Hrs
Virtualization Introduction, Characteristics of virtualized environments,	
Increased security, Managed execution, Portability, Taxonomy of	
virtualization techniques, Virtualization and cloud computing, Pros and cons	
of virtualization, Technology examples- Xen par virtualization, VMware:	
full virtualization, Microsoft Hyper-V.	
Cloud Computing Architecture: Introduction, Reference model-	
Architecture, Infrastructure- and hardware-as-a-service, Platform as a	

service, Software as a service, Deployment Model- Public clouds, Private	
clouds, Hybrid clouds, Community clouds, Open challenges.	
MODULE-3: CLOUD MANAGEMENT	10 Hrs
Service Level Agreement, Cloud Economics, Managing Data, Introduction	
to Map Reduce, Open Stack, Resource Management.	
MODULE-4: CLOUD PLATFORMS IN INDUSTRY	10 Hrs
Amazon web services: Compute services, Storage services, Communication	
services, Additional services. Google Cloud, AppEngine: Architecture and	
core concepts, Application life cycle, Cost model Observations Microsoft	
Azure: Azure core concepts, SQL Azure, Windows Azure platform	
appliance, Observations.	
MODULE-5: ADVANCED TOPICS IN CLOUD COMPUTING	10 Hrs
Green cloud computing, Introduction to Docker Container, Sensor Cloud	
Computing, IoT Cloud, Fog Computing, Mobile Cloud Computing.	
PRACTICAL CONTENT:	
Working with Amazon Web Services(AWS):	
Familiarize the services by AWS	
Creating user login	
Creating Linux, Windows virtual machines instance using EC2	
Run simple applications on EC2 Instance	
Creating Storage using S3	
Create a Backup using Image and launch new instance using Backup image	
Creating an RDS Instance with MySQL Workbench and Dynamo DB	
Demonstrate Database application on AWS	
Upgrading and downgrading the infrastructure based on the requirement	
Demonstrate Load balancing using different instance of EC2	
Launch a web application.	
Demonstration of Identity and Access management.	
Demonstrate Elastic bean stack	
Demonstrate AWS dynamic web application	
Salesforce Trailhead Platform	
• Create a web application to enter the students' details like name,	
11	

USN, semester, section and CGPA to a database on Salesforce cloud platform.

- Create a web application to implement an online cart for adding items to a shopping cart and deleting it.
- Create a web application to enter the faculty details like faculty ID, faculty name, and salary to a database and calculate the income tax to be paid by the faculty at the end of financial year.
- Create a web application to book a flight from a source to destination and store the status of flight, and departure timings on database.
- Create a Collaborative learning environment for a particular learning topic using Google Apps. Google Drive, Google Docs and Google Slides must be used for hosting e-books, important articles and presentations respectively.
- Develop Department events' registration app with an object containing event name, date/time, venue as parent relationship, another object containing student name, branch, event name, date/time, and venue as child relationship.
- Develop Blood donation registration app with an object which records donors' name, age and blood group as parent relationship and another object containing hemoglobin level, donated or not details (if age>18) child relationship.
- Develop Attendance maintenance app with an object to record student details, attendance and provide a link to college websites' results webpage.
- Create a web application with objects to maintain database of an art gallery which contains objects like artists, arts, and inventory and provide a link to any of the art gallery website.

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Textbooks:

Cloud Computing: Principles and Paradigms, Editors: RajkumarBuyya, James Broberg, Andrzej M. Goscinski, Wiley,2011

Enterprise Cloud Computing - Technology, Architecture, Applications, Gautam Shroff, Cambridge University Press, 2010

Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010

Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, Wiley-India,2010

Reference Books:

Buyya, Rajkumar, James Broberg, and Andrzej M. Goscinski, eds. Cloud computing: Principles and paradigms. Vol. 87. John Wiley & Sons, 2010.

COURSE OUTCOMES (CO)

CO1: Explain the fundamental principles of cloud computing and its related Concepts.

CO2: Analyse Prominent Cloud computing technologies available in the marketplace.

CO3: Apply suitable applications to leverage the strength of cloud computing.

CO4: Develop the applications of cloud Computing that can harness the power of cloud computing.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES

COs	Mapping with POs
CO1	PO1,PO2,PO3
CO2	PO1,PO5,PO8,PO10
CO3	PO1,PO2,PO3,P10
CO4	PO1,PO2,PO3,PO4,PO5

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	M	M									
CO2	L				S			S		M		
CO3	M	M	M							L		
CO4	S	S	M	M	M							

		-	III S	SEMESTER						
BIG DATA ANALYTICS										
Sub Code:				20MCA343		CIE Marks:	50			
Number of Lect	ture l	Hours per week:		3+2		SEE Marks:	50			
Total number of Lecture Hours:				52		SEE Hours:	3			
Lecture (L):	3	Practical (P):	1	Tutorial (T):	0	Total Credits:	4			

- To impart fundamental concepts about big data and its identification.
- To analyse the design of Hadoop Distributed Files system.
- To understand and analyse Map Reduce technique for solving Big Data problems
- To analyse different hadoop related tools like Pig & Hive and manage NOSQL databases.

MODULES	TEACHING
	HOURS
MODULE 1: Big Data & Hadoop Eco system	10 Hrs
Example Applications, Basic Nomenclature, Analysis Process Model,	
Analytical Model Requirements , types of Data Sources, Sampling, Types of	
data elements, data explorations, exploratory statistical analysis, missing values,	
outlier detection and Treatment, cloud and Big Data –Predictive Analytics.	
A Brief History of Hadoop, Apache Hadoop and the Hadoop Ecosystem	
Hadoop Releases Response.	
MODULE 2: The Hadoop Distributed File system	11 Hrs
The Hadoop Distributed File system	
The Design of HDFS, HDFS Concepts, Blocks, Name nodes and Datanodes,	
HDFS Federation, HDFS High-Availability, The Command Line Interface, Basic	
File system Operations, Hadoop File systems Interfaces ,The Java Interface,	
Reading Data from a Hadoop URL, Reading Data Using the File System	
API, Writing Data, Directories, Querying the File system, Deleting Data,	
Data Flow Anatomy of a File Read ,Anatomy of a File Write, Coherency	
Model, Parallel Copying with distop Keeping an HDFS Cluster Balanced, Hadoop	
Archives	
MODULE 3: Map Reduce	10 Hrs
A Weather Dataset ,Data Format, Analyzing the Data with Unix Tools,	
Analyzing the Data with Hadoop, Map and Reduce, Working of Map Reduce	
- Anatomy of a Map Reduce Job Run, Failures, Shuffle and Sort, Task Execution,	
Map Reduce Formats - Input Formats, Output Formats	
MODULE 4: NOSQL &Hadoop Tool-Pig	11 Hrs
NOSQL Data bases	

Introduction to NoSQL- Types of NOSQL Data bases-Key-Value based ,						
Document based, Column-oriented data models, graph databases						
Hadoop Tool-Pig						
Pig – Grunt – pig data model – Pig Latin – developing and testing Pig Latin						
scripts, Pig Latin - Structure, Statements, Expressions, Types, Schemas,						
Functions, Macros, User-Defined Functions DataProcessing Operators – Loading						
and storing of data, Filtering data, Groupingand Joining data						
and storing of data, Thering data, Oroupingand Johning data						
MODULE 5: Hadoop Tool-Hive	10 Hrs					
	10 Hrs					
MODULE 5: Hadoop Tool-Hive	10 Hrs					
MODULE 5: Hadoop Tool-Hive Installing Hive – The Hive shell, Hive – Architecture, data types and file formats –	10 Hrs					
MODULE 5: Hadoop Tool-Hive Installing Hive – The Hive shell, Hive – Architecture, data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries. Tables –	10 Hrs					

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 10. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications" Wiley
- 11. Tom White, "Hadoop: The Definitive Guide", 3rd Edition, O'reilly, 2012.
- 12. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 13. Alan Gates, "Programming Pig", O'Reilley, 2011

Reference Books

- 3. Boris lublinsky, Kevin t. Smith, AlexeyYakubovich, "Professional Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.
- 4. Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013.

COURSE OUTCOMES (CO)

- CO1: Explain the fundamentals of big data analytical techniques and usage of hadoop tools.
- CO2: Analyse Hadoop ecosystem and Map Reduce concept to solve big data problems.
- CO3: Design a Map-Reduce model to process the data using hadoop tools for a use case.
- CO4: Evaluate the performance of data analytics and visualize the results.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(COs)	Mapping with Program Outcomes(POs)
CO1	PO3,PO4
CO2	PO3,PO4,PO5
CO3	PO3,PO4,PO5,PO7,PO10,PO11
CO4	PO2,PO3,PO4,PO5,PO7,PO10,PO11

CO/DO DO1 DO2 DO4 DO5 DO6 DO7 DO8 DO10 DO11 DO1												DO 12
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			M	Н								
CO2			M	Н	Н							
CO3			M	M	Н		L			M	L	
CO4		L	M	M	Н		Н			Н	Н	

III SEMESTER PROGRAMMING IN GOLANG										
Course code:	20MCA344	CIE Marks:	50							
Number of Lecture Hours per week:	03	50								
Total number of Lecture Hours:	52	SEE Hours:	03							
Lecture (L): 3 Practicals (P): 01	Tutorial (T): 0	Total Credits:	04							

- Learn the fundamentals of Go programming language
- Understand the handling of various data structures in Go
- Apply Go routines and packages to build parallel systems
- Design and implement runtime projects

MODULES	TEACHING
MODULES	
	HOURS
MODULE 1: Structure of Go Program	10 Hrs
GO: Getting started – Go Primer: Variables, Functions, Looping,	
Enumerations, Structures, Methods, Interfaces, Numbers	
MODULE 2: Go Data Structures	10 Hrs
Generic and Specialized Generic Data Structures, Arrays - Slices -	
Strings, Collections: Maps, Lists	
MODULE 3: Handling Concurrency	11 Hrs
Go Routines: Channels – Multiplexing – Cancellation – Implementation	
MODULE 4: Testing	11 Hrs
The Go test Tool, Test Functions, Benchmark functions, profiling -	
Implementation	
MODULE 5: Network Access	10 Hrs
Connecting to servers, Distributing Go, Serving Objects, Calling Remote	
procedures	

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Text Books

- a. The GO Programming Language by David Chisnall published by Addision Wesley
- b. The GO Programming Language by Alan A. A. Donovan, Brian W. Kernighan published by Addision Wesley

Reference Books

- 1. An Introduction to Programming in GO by Caleb ISBN: 978-1478355823
- 2. Learning GO by MiekGieben

COU	COURSE OUTCOMES (CO)											
CO1:	Under	stand th	ne langi	uage fe	atures	of Go a	and gair	n an ins	ight on	their in	plement	ation
CO2:	Analy	se the l	anguag	ge featu	res for	critica	ıl desigi	n decisi	ons			
CO3: Apply Go tools to handle concurrent programming												
CO4: Implement Go tools to build applications for massively parallel systems												
COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES												
Cour	se Out	comes((COs)		N	Aappi r	ng with	Progra	am Out	tcomes(POs)	
CO1					PO	1, PO2	2, PO3,	PO4, P	O5			
CO2					PO	PO1,PO2, PO3,PO4, PO5						
CO3					PO	2, PO3	9,PO4, 1	PO5, P	O8			
CO4					PO	PO2, PO3,PO4, PO5, PO8,PO10						
LEV	EL OF	CO-P	O MAI	PPING	TAB	LE						
CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PO												
CO1	L	H	M	H	<u>H</u>							
CO2	M	H	L	H	H			T				
CO3		H H	M	H H	H H			L		L		
CU4		11	IVI	11	11			L		L		

III SEMESTER
FULL STACK WEB DEVELOPMENT

Sub Code:				20MCA345	CIE Marks:	50
Number of Le	ctur	e Hours per week	:	3+2	SEE Marks:	50
Total number	of L	ecture Hours:		52	SEE Hours:	3
Lecture (L):	3	Practicals (P):	1	Tutorial (T): 0	Total Credits:	4

- To design as web page using front end technologies
- To develop application with server side scripting tools
- To develop web application with REST APIs and use of framework to communicate client-server applications.
- To build as responsive web application with managing NOSQL databases.

MODULES	TEACHING
	HOURS
MODULE 1: Introduction to React	10 Hrs
Welcome to React: Obstacles and Roadblocks, React's future, keeping up with the changes, working with the files. The Basics-Introduction, Installation, getting started -hello world program, Lifecycle of Components, Understanding Functional & Class Components Passing Data.	
MODULE 2: React Components and Redux	11 Hrs
React Props, React state-setting state, Event handling, Designing components-state vs props An Introduction to Redux- Core Concepts, Reducer, Action, Action Creator, Combining Reducers, Store, Data Flow in Redux, Usage with React	
MODULE 3: Programming in Node.js	11 Hrs
Node.js Installation –getting started, Control flow, asynchronous pattern callback, Sequential functionality, nested callbacks and exception handling, asynchronous patterns and control flow. Routing Traffic, Serving Files and Middleware: Building a Simple Static File Server from Scratch, Middleware, Routers and Proxies	
MODULE 4: Expressing REST APIs	10 Hrs
REST-HTTP Methods as actions, Express-Routing, Handler Functions, The List API-automatic Server Restart, testing, Create API, Error Handling.	

MODULE 5: Module Title	10 Hrs
Introduction to MongoDB: -Installation-Databases, Data Types, Using	
MongoDB Shell. Creating, Updating, Deleting and Querying Documents:	
Inserting, removing, and updating the documents. Scheme Initialization,	
Reading and writing to Mongodb.	

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks:

- 1. Tomasz Dyl Kamil Przeorski, "Mastering Full-Stack React Web Development", 2017 Packt Publishing
- 2. VasanSubramanian, "ProMERN Stack", Apress, 2018.

Reference Books

- 1. Eddy Wilson IriarteKoroliova ,"MERN-Full stack Development", Packt Publishing Ltd.,2018
- 2. ShamaHoque, "Full stack React Projects", Pack Publishing Ltd., 2018.

COURSE OUTCOMES (CO)

- CO1: Demonstrate basic concepts of react, node, express and mongodbtechologies
- CO2: Design front end application using React and Redux libraries.
- CO3: Develop interactive web applications on server side with NOSQL databases.
- CO4: Build responsive web application communicating with RES API and managing data with NOSQL databases.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(Cos)	Mapping with Program Outcomes(POs)
CO1	PO5,PO11
CO2	PO2,PO4,PO5,PO11
CO3	PO2,PO4,PO5,PO7,PO11
CO4	PO5,PO11

LEVEL OF CO-PO MAPPING TABLE												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					H						M	
CO2		M		Н	H						L	
CO3		L		M	H		Н				Н	
CO4					M						H	

III s	SEMESTER		
BLOCKCHA	AIN TECHNOLO	GY	
Course code:	20MCA351	CIE Marks:	50
Number of Lecture Hours per week:	03	SEE Marks:	50
Total number of Lecture Hours:	39	SEE Hours:	3 Hrs
Lecture (L): 3 Practicals (P): 0	Tutorial (T): 0	Total Credits:	3

- Designed to provide the conceptual understanding of the blockchain
- Learn the working technology of blockchain
- Understand the application scenarios of blockchain
- Implement blockchain in Ethereum technology

MODULES	TEACHING
	HOURS
MODULE 1: Basis of Blockchain Technology	8Hrs
Introduction to Blockchain, growth – Definition – Elements of Blockchain,	
Tiers, Types, Consensus, Decentralization: Methods of Decentralization,	
Routes to decentralization, Blockchain and full ecosystem decentralization	
MODULE 2: Blockchain Mining	8 Hrs
Blockchain: The structure of block, The structure of block header, genesis	
block – Mining: Tasks, Rewards, Proof of Work, Mining Algorithm, Mining	
Systems: CPU, GPU, FGPA, ASIC- Mining Pools	
MODULE 3: Usecase - Financial Markets and Smart Contracts	8 Hrs
Trading, Exchanges, Trade Lifecycle, order anticipators, Market,	
Manipulation, Smart Contracts: Templates, Smart Oracles, Deploying smart	
contracts in Blockchain	
MODULE 4: Generic Use Cases	8Hrs
BlockChain as Evidences – Digital Art -BlockChain Health-Blockchain	
Government	
MODULE 5: Technology on Ethereum	7 Hrs
Ethereum blockchain, Ethereum network: mainnet, testnet, private net,	
components of Ethereum ecosystem, Ethereum Virtual Machine	

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks

- 1. Mastering Blockchain, by Imran Bashir, II edition Packt Publications
- 2. BlockChain: Blueprint for a new economy, by Melanie Swan O'Reilly Publications

Reference Books

- **1.** "BlockChain: A Beginners Guide", Authors: SherminVoshmgir, Valentin Kalinov Publisher: https://blockchainhub.net/
- **2.** "Cryptocurrency and Bitcoin Technologies", Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder published by Princeton University press 2016

COURSE OUTCOMES (CO)

CO1:Understand the structure and underlying technology of blockchain

CO2:Analyze the application scenarios of blockchain

CO3: Apply the blockchain technology to build a blockchain system

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1,PO3,PO7
CO2	PO3, PO7, PO10
CO3	PO3, PO4, PO5, PO7, PO10

	CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO9	PO10	PO11	PO12
	PO												
ſ	CO1	M	H					L					
	CO2			H				L			M		
	CO3			H	L	M		L			M		

III SEMESTER
5G WIRELESS TECHNOLOGIES

Course code:				20MCA35	2	CIE Marks:	50
Number of week:	Lect	ure Hours pe	r	3		SEE Marks:	50
Total number of Lecture Hours:			39		SEE Hours:	3	
Lecture (L):	3	Practical (P):	0	Tutorial (T):	0	Total Credits:	3

- Understand 5G wireless features and their benefits
- Outline different 5G Wireless Use Cases
- Walk through current and future deployment of 5G scenarios
- Illustrate 5G network architecture and components

MODULES	TEACHINGHOURS
MODULE 1: Introduction And Roadmap To 5g	8 Hrs
Historical trend and evolution of LTE technology to beyond 4G – Key building blocks of 5G 5th Generation Wireless technology,5G as a technology vision, Why 5G?, End-to-End 5G Ecosystem, 5G high level requirements and features, Basic concepts behind 5G technology of mobile communication, 5G technologies, 5G technical objectives, 5G Activities and Interest Groups, 5GPP, 5G Forum, 5GMF, 3GPP, ITU-T's IMT-2020, WRC-15, NGMN	
Alliance, 5G Americas, ETSI, ARIB MODULE 2: Wireless Requirements, Applications, And	8 Hrs
Services	OIIIS
12.1 1.1 2.11	
5G promises and challenges, Disruptive technology directions, Bandwidth	
Power consumption, Infrastructure, Spectral efficiency, Resilience	
of the network, Adapting new topologies, Radio propagation and	
channel models, Pervasive networks, Internet of things (IoT) and	
M2M, Wireless sensor networks and ubiquitous computing,	
Wearable devices with AI capabilities.	
Module 3: Mobile Edge Computing & Fog Computing	8 Hrs
Mobile Edge Computing Introduction, Concept, Architecture,	
Benefits;	
Fog Computing and Cloud Computing.	
MODULE 4: 5g Wireless Use Cases And Applications	8Hrs

Description of Use Cases and Scenarios, Internet of Things (IoT)
and Machine to Machine (M2M), Smart Grid, SCADA, EMS and
Critical Infrastructure Monitoring, Smart Building and Smart Cities,
m-Health/Telemedicine, eMBB: Enhanced Mobile Broadband,
MTC: Machine Type Communications, Automotive and Self-
Driving Vehicles, V2X, Sports and Fitness Management, 3D/Virtual
Reality (VR), Augmented Reality (AR), Gaming Applications,
Public Safety and Citizen Analytic, Location and Context-Aware
Service

MODULE 5: 5G NETWORK SECURITY

7Hrs

5G Security , 5G Security Goals,5G New Trust Model, Diversified Identity ManagementUser Privacy Protection Requirement,5G Core Security5G Radio Network Security

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Textbooks:

- A Comprehensive Guide to 5G Security by MadhusankaLiyanage ,Ijaz Ahmad, et al.,| 19 March 2018.
- An Introduction to 5G Wireless Networks: Technology, Concepts and Usecases BySaroVelrajan—3 July 2020

Reference Books:

- 5G Simplified Paperback by Ajith Singh, 3 October 2019
- 5G System Design: Architectural and Functional Considerations and Long Term Research Hardcover by Patrick Marsch—4 May 2018

COURSE OUTCOMES (CO)

CO1:Describe features supporting 5G wireless technologies.

CO2:Discuss the rationale for 5G wireless and key deployment topologies

CO3:Walk through current and future deployment of 5G scenarios

CO4:Outline the changes required to implement 5G and security issues

COURSE OUTCOMES	MAPPING WITH PROGRAM OUTCOMES:
CO1	PO1,PO3
CO2	PO3,
CO3	PO10
CO4	PO3

LEVEI	L OF C	O-PO M	IAPPIN	NG TA	BLE							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2			M									
CO3										M		
CO4			S									

III SEMESTER ARTIFICIAL INTELLIGENCE							
Course code:			20MCA353		CIE Marks:	50	
Number of Le	e Hours per	week:	3		SEE Marks:	50	
Total number	Lecture Hou	rs:	39		SEE Hours:	3	
Lecture (L):	3	Practical s (P):	0	Tutorial (T):	0	Total Credits:	3

COURSE LEARNING OBJECTIVES (CLO)

- Identify the problems where AI is required and the different methods Available.
- Compare and contrast different AI techniques available.
- Define and explain learning algorithms.

MODULES	TEACHING
	HOURS
MODULE 1: Introduction	8Hrs
Introduction to artificial intelligence, Course structure and policies,	
Historyof AIProposing and evaluating AI applications, Case study What is artificial	
intelligence?, Problems, Problem Spaces and search, Heuristic searchtechnique	
MODULE 2: Knowledge Representation	8Hrs
Issues, Using Predicate Logic, Representing knowledge using Rules,	
Problem spaces and search Knowledge and rationality, heuristic search	
strategies, Search and optimization (gradient descent) Adversarial search,	
Planning and scheduling	
MODULE 3: Symbolic Reasoning	8Hrs
under Uncertainty, Statistical reasoning, Weak Slot and Filter Structures,	
strong lot-and-filler structures, Game Playing	
MODULE 4: Fuzzy Logic and inference	8Hrs
Ontologies Bayesian reasoning Temporal reasoning Case study: Medical	
diagnosis	
MODULE 5: Natural Language Processing	7Hrs
Learning, Expert Systems, Case studies: Playing chess, Manufacturing scheduling	

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

Text Books:

- 1. E. Rich, K. Knight & S. B. Nair Artificial Intelligence, 3/e, McGraw Hill.
- 2. Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson

T 1	. •	A 1	T 1'.'
Han	cation	nd	Edition

3. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems – Prentice Hal of India

Reference Books:

- 1. Artificial Intelligence and Expert Systems Development by D W Rolston-Mc Graw hill.
- 2. N.P. Padhy "Artificial Intelligence and Intelligent Systems", Oxford University Press-2015

COURSE OUTCOMES (CO)

CO1: Identify the AI based problems

CO2: Apply techniques to solve the AI problems

CO3: Define learning and explain various learning techniques

CO4: Implement AI concepts in real time projects

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES

Course Outcomes (COs)	Mapping with POs
CO1	PO1, PO2, PO3
CO2	PO1, PO3, PO6
CO3	PO3, PO8, PO10
CO4	PO1,P03, PO9

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	M	Н									
CO2	M		Н		L							
CO3			Н					M		L		
CO4	L		M						Н			

III SEMESTER							
SOFTWARE ARCHITECTURE AND DESIGN PATTERNS							
Course code:			20MCA354	1	CIE Marks:	50	
Number of Lo	Number of Lecture Hours per week:					SEE Marks:	50
Total number	Total number of Lecture Hours:					SEE Hours:	3 Hrs
Lecture (L):	3	Practicals (P):	0	Tutorial (T):	0	Total Credits:	3

COURSE LEARNING OBJECTIVES (CLO)

- 1. Designed to understand emerging field of software architecture in software development and the critical need for the development of such architectures.
- 2. Develop ability to perform the analyses necessary to formulate effective software architectures.
- 3. Analyze Software Engineering problems in terms of architectural thinking.
- 4. Apply the architectural concepts of platform, framework, pattern in architecting applications

TODAY EG	THE A CITYLE
MODULES	TEACHING
	HOURS
MODULE 1: Understanding Architecture	7 Hrs
Introduction and Context of Software Architecture. The Architecture	
Business Cycle. What software architecture is and what it is not; What	
makes a "good" architecture? What it is and what it is not? Other points of	
view. Architectural patterns, Reference Models and Reference	
Architectures. Importance. Architectural structures and views	
MODULE 2: Architecture Quality	8 Hrs
Architecture and Quality Attributes: System Quality Attributes. Quality	
attribute scenarios in practice. System quality attributes. Achieving Quality	
attributes: Availability; Modifiability; Performance; Security; Testability;	
Usability, Business Qualities	
MODULE 3: Quality Tactics	8 Hrs
Applying Tactics: Availability tactics, Interoperability tactics; Modifiability	
tactics; Performance tactics; Security tactics; Testability tactics; Usability	
tactics	
MODULE 4: Design Patterns - 1	8 Hrs
Architectural styles: Pipes and Filters, Data Abstraction and OO	
organization, Event-based, Implicit Invocation, Layered Systems,	
Repositories, Interpreters, Process Control	
Architectural Patterns - I: From Mud to structure; Layers; Pipes and filters;	
Blackboard	
MODULE 5: Architecture Designs Case Studies	8 Hrs
Architectural Patterns – II: Distributed systems: Broker; Interactive systems:	
Model-view-control	
Case Studies: Keyword to context, Instrumentation Software, Mobile	

Robotics **Question Paper Pattern:** Each full question consists of 20 marks. Questions are set covering all the topics under each module **TextBooks:** 1. Len Bass, Paul Clements, Rick Kazman, "Software Architecture in Practice" 3rd Edition ISBN-13: 978-0321815736, ISBN-10: 9780321815736 2. Frank Buschmann, RegineMeunier, et al "Pattern Oriented Software Architecture" 2nd Edition – John Wiley & Sons, ISBN-10: 8120310411 **Reference Books** Nick Rozanski, Eoin Woods "Software Systems Architecture working with stake holders using viewpoints and perspectives" I edition ISBN-published by Addison Wesley 13: 978-0321112293, ISBN-10: 0321112296. **COURSE OUTCOMES (CO)** CO1:To acquire the knowledge of the context and importance of software architecture andquality maintenance CO2:To apply the knowledge of various architectural tactics in multiple scenarios to enhancesoftware quality CO3:To comprehend an architectural style as patterns CO4:To analyze and apply architectural style in multiple contexts COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES: Course Outcomes(CO) **Mapping with Program Outcomes(PO) CO1 PO1, PO3**

CO2	PO1, PO3, PO8
CO3	PO1, PO3,PO5, PO8
CO4	PO1, PO3, PO5,PO8, PO10

LEVE	LEVEL OF CO-PO MAPPING TABLE											
CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PO												
CO1	L		H									
CO2	L		H					M				
CO3	L	L	H		M			M				
CO4	L	L	H		M			H		M		

III SEMESTER GRAPH THEORY						
Course code:	20MCA355	CIE Marks:	50			
Number of Lecture Hours per week	03	SEE Marks:	50			
Total number of Lecture Hours	39	SEE Hours:	3			
Lecture (L): 3 Practicals (P):	Tutorial (T): 1	Total Credits:	04			

COURSE LEARNING OBJECTIVES (CLO)

- The primary objective of this course is to provide mathematical background and sufficient experience on various topics of Graph Theory
- Students will be able to formally understand and prove theorems/lemmas and relevant results in graph theory.
- Students will be able to apply theoretical knowledge acquired to solve realistic problems in real life and concepts to address network design problems.

problems in real ine and concepts to address network design probl	
MODULES	TEACHING
	HOURS
MODULE 1: DEFINITIONS AND FUNDAMENTAL CONCEPTS	07 Hrs
Definitions, Walks, Trails, Paths, Circuits, Connectivity, Components Graph	
Operations, Cuts, Labelled Graphs and Isomorphism	
MODULE 2:TREES	08 Hrs
Trees and Forests (Fundamental) Circuits and (Fundamental) Cut Sets,	
Directed Graphs, Definition, Directed Trees, Acyclic Directed Graphs	
MODULE 3: GRAPH ALGORITHMS	08 Hrs
Computational Complexity of Algorithms, Warshall's Algorithm Depth	
First and Breadth-First Searches, The Lightest Path: Dijkstra's Algorithm,	
The Lightest Path: Floyd's Algorithm, The Lightest Spanning Tree:	
Kruskal's and Prim's Algorithm The Lightest Hamiltonian Circuit	
(Travelling Salesman's Problem): Hungarian Algorithm Maximum Flow in	
a Transport Network: The Ford–Fulkerson Algorithm	
MODULE 4: DRAWING GRAPHS	08 Hrs
Planarity and Planar Embedding, The Davidson–Harel Algorithm, The	
Lightest Hamiltonian Circuit (Travelling Salesman's Problem): Hungarian	
Algorithm Maximum Flow in a Transport Network: The Ford-Fulkerson	
Algorithm	
MODULE 5: MATROIDS	08 Hrs
itary Systems The Circuit Matroid of a Graph, Other Basic Matroids	
Greedy Algorithm, The General Matroid, Operations on Matroids	

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

TextBooks

- 1. ANDRÁSFAI, B.: Introductory Graph Theory. The Institute of Physics (1978)
- 2. ANDRÁSFAI, B.: Graph Theory: Flows, Matrices. The Institute of Physics (1991)
- **3.** BANG-JENSEN, J. & GUTIN, G.: Digraphs: Theory, Algorithms and Applications. Springer–Verlag (2002)
- **4.** BOLLOBÁS, B.: Modern Graph Theory. Springer–Verlag (2002)

Reference Books

- **1.** CHRISTOFIDES, N.: Graph Theory. An Algorithmic Approach. Academic Press (1975)
- **2.** DOLAN, A. & ALDOUS, J.: Networks and Algorithms. An Introductory Approach. Wiley (1999)
- **3.** GIBBONS, A.: Algorithmic Graph Theory. Cambridge University Press (1987)

COURSE OUTCOMES (CO)

CO1: To understand and apply the fundamental concepts in graph theory To improve the proof writing skills.

CO2: To apply graph theory based tools in solving practical problems

CO3: To improve the proof writing skills.

CO4:Apply the acquired knowledge of finite graph theory and to design network problems to solve by computers.

COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES

Course Outcomes(CO)	Mapping with Program Outcomes(PO)
CO1	PO1, PO2, PO3
CO2	PO1, PO3, PO10
CO3	PO3, PO6, PO10
CO4	PO1,P03, PO5

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	M	H									
CO2	M		Н							L		
CO3			Н			M				L		
CO4	L		M		Н							

							ESTER						
		\mathbf{M}_{A}	ACHI	NE LE	EARN	ING	USING	PY	ΓHON	I LAB			
Sub Co	ode:					2	OMCAL3	36	CIE	Marks:	5	0	
Numbe	er of Le	ecture	Hours	per we	eek:	2),		SEE	Marks:	5	0	
Total r	number	of L	ecture l	Hours:					SEE	Hours:	3		
Lectur	re (L):	0	Practic	al (P):	1	1 T	Tutorial (T):	0 Tota	ıl Credi	ts: 1		
COUR	SE LE	ARN	ING OI	BJECT	IVES	(CLO)						
•	To und	lersta	nd Pre	-proces	sing t	echniq	ues and p	perfo	rm exp	lorator	y data a	nalysis.	
•	Identi	fy a		_			rning a						
	proble		1 '11	e		41	1 1	. •		C	1	4 1	
•	proble	_	SKIIIS O	using	recen	it mac	hine learı	ning s	soitwa	re ior so	oiving p	racticai	
Sl.No						P	rogram						
1.	Create	a Da	ta frame	and de	emonst	trate di	fferent wa	ays to	treat n	nissing v	alues.		
2.												on.	
3.	implement Data Wranging (Werge, Concatenate, Group) and Data Aggregation.												
						<u> </u>	Head, Tail		•				
4.	Impler	nent l	Linear F	Regress	ion usi	ing Pyt	thon Scrip	t and	identif	y explan	atory va	riables.	
5.	Write	a prog	gram to	demon	strate t	the wo	rking of th	ne dec	ision to	ree.			
6.	Imple	nent o	clusterir	ng techr	nique f	or a gi	ven data s	et in	python	•			
7.		red as	-	-			e Bayesian accuracy o					_	
8.						•	implemen	ting t	he Bac	k propag	gation al	gorithm	
Note ·			same us				sets. a lot of 8	Ullec	tions				
	SE OU					. II VIII	4 IUI UI U	ques					
				ŕ	1	1.	1.	4: -	1 1100	S	1.	•	
			<u>-</u>	•	•	,	ı visualiza İn Python.		ına difi	erent m	acnine L	earning	
									U TCO I	MES:			
COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES: Course Outcomes(COs) Mapping with Program Outcomes(POs)													
Course													
Course CO1				r	-,	.,	·, · · · · ·						
CO1				•		,							
CO1	EL OF	CO-I	PO MA	•		,	PO7	PO8	PO9	PO10	PO11	PO12	

							ESTER					
Sub Cod	le:			ADV	AN(N JAV MCAL			Marks	: 50	0
Number	of Lec	ture I	Hours p	er we	ek:	02	,		SEE	Marks	s: 50	0
Total nu	mber o	of Lec	ture Ho	ours:		26	•		SEE	Hours	: 3	Hrs
Lecture	(L):]	Practica	als (P)	: 0	2 Tu	ıtorial	(T):	Tota	al Credi	its: 1	
Course I	Learnii	ng obj	ectives			·		·	·			
• L	earn tl	ne fun	damen	tal of	conn	ecting t	o the da	atabase	e			
• D	emons	trate	server s	side p	rogra	mming	g using S	Servlet	, JSP,	EJB.		
• D	esign a	and de	evelop v	veb ap	plica	tions u	sing Sp	ring F	ramew	ork.		
					Lis	t of Pr	ograms					
1.	Demo	nstrat	e JDBC	progr	ams ı	ısing M	ySQL a	nd nati	ve data	base		
2.			e servle				-					
3.			e servle									
	i)	Lo	gin and	passw	ord v	alidatic	n using	databa	se			
	ii)) Au	ito refre	shing	web p	oage						
	iii) Us	ing get	or pos	t metl	hod						
4.	Devel	lop a j	ava serv	let pro	ogran	using	cookies					
5.	Devel	lop a j	ava serv	let pro	ogran	n for ses	ssion ha	ndling				
6.	Devel	-	SP prog	-								
	i)	Im	plemen	ting pa	age di	rectives	8					
	ii)	Im	plemen	ting ac	ction t	ags						
	iii) Im	plemen	ting pa	ige di	rectives	S					
7.	Devel	lop an	applica	tion u	sing .	JSP and	JDBC					
8.	Devel	lop an	applica	tion u	sing J	AVA b	ean and	JSP				
9.	Devel	lop a j	ava app	licatio	n usii	ng						
	i)	int	erface	ii) p	ackag	ges						
10.			ample a									
11.	Devel	lop JD	BC app	olicati	on us	ing Spri	ng fram	nework				
12.	Devel	lop M	VC app	licatio	n usir	ng Sprir	ng frame	ework				
• Not	te: In th	ne pra	ctical E	Exami	natio	n each	student	has to	pick o	ne ques	tion fron	n a lot
of a	all the 1	12 que	estions.									
COURS												
CO: Des											pts	
COURS				PPIN								
Course (Outcon	nes(C	0)							nes(PO))	
CO	OF CC) PQ	N / A DP'	NIC T			O4,PO	5,PO8,	<u>PO11</u>			
LEVEL CO/PO	OF CO PO1)-PO PO	MAPPI PO3	NG T PO	ABL PO	E PO6	PO7	PO8	PO9	PO10	PO11	PO12
00/10	101		103	10	10	100	10/	100	109	1010	1011	1012
CO	TT	TT	T	7. AT	T			TT			TT	
CO	Н	H	L	M	L			Н			Н	

				ESTER ROJECT						
Course Code 20MCAM38 CIE Marks 50										
Number of Pra	ctica	l Hours/Week	4		S	EE Marks	50			
Number of Ins	tructi	ional Hours/Week								
Total Number	of Le	cture Hours			S	EE Hours	03			
Lecture (L):	0	Practicals (P):	4	Tutorial (T):	0	Total Cred	its:	2		

Course Learning Objectives:

Students will develop an application using any latest tools and technologies learnt.

MINI-PROJECT

Synopsis

- A team of two students must develop the mini project.
- Synopsis of the project must be submitted in the beginning of the 3rd semester
- The synopsis of the project must include:

Problem formulation and literature survey.

Details of the required tools and technologies for the development of project.

• Internal assessment shall be evaluated by the internal panel/guide for 50 marks.

The team must submit a brief project report (25-30 pages)

that must include the following

- > Introduction
- ➤ Requirement Analysis
- > Software Requirement Specification
- ➤ Analysis and Design
- > Implementation
- > Testing

The report must be evaluated for 10 Marks. Demonstration and Viva for 40 Marks.

The project presentation and Viva-voce shall be evaluated jointly by both the internal and external examiners for 50 marks.

Course Outcome:

CO: Design and develop an applications for real world scenario.

Course	Outcon	Mapp	Mapping with Program Outcomes(PO)												
CO				PO1,I	PO1,PO2,PO4,PO5,PO6,PO8,PO11										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
СО	L	M		S	M	M		S			S				

III SEMESTER TECHNICAL SEMINAR												
Course Code	20MCAS39	CIE Marks	50									
Number of Practical Hours/Week	-	SEE Marks										
Number of Instructional Hours/Week	-											
Total Number of Lecture Hours	-	SEE Hours	03									
Lecture (L): - Practicals (P): -	Tutorial (T): -	Total Credits:	2									

Course Learning Objectives:

• Students will present technical seminar by learning new technologies

Technical Seminar

Seminar Guidelines

- Selection of topic/area: Select a paper according to the specialization of students. Papers from any reputed journals or latest technology shall be selected.
- Obtain the approval from the guide for the selected topic.
 Study of topic: Students are informed to acquire a thorough knowledge on the subject end of the paper) on the corresponding area.
- Preparation of slides for presentation: Slides may be presented in MS power point. Time allowed for presentation is 20 minutes for presentation and 5 minutes for discussions. So, number of slides may be around 20 25 to adhere the time limit.

Organization of slides:

The first slide will be a title page showing the title, name of student (presenter), USN. and Semester. 2nd page will contain overview of the seminar

- Successive pages will contain
 - ✓ Objectives of the paper
 - ✓ Introduction
 - ✓ Body of the paper includes system dynamics, methodology, graphs, block
 - ✓ diagrams etc. arranged in a logical sequence depending on the problem.
 - ✓ Results and discussions
 - ✓ Conclusion
- Last page will contain references and bibliography. References must be presented in

IEEE format

- Each slide consists of 4 or 5 lines with enough space between lines.
- All equations must be typed using equation editor (available with MS office/other office suite)
- Each slide will have a title and each figure have a caption.
- The internal panel will evaluate the seminar presentation for 50 Marks.

Course Outcomes(CO) Mapping with Program									omes(P	O)			
СО				PC	1,PO7,	PO8,P	011						
СО/РО	PO1	PO2	PO3	,	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО	L							M	Н			Н	

IV SEMESTER MOOC COURSE & INDUSTRY INTERNSHIP

Course Code:	20MCAI41	CIE Marks:	50
Number of Lecture Hours per week:	-	SEE Marks:	50
Total number of Lecture Hours:	-	SEE Hours:	3
		Credits	05

Internship - Guidelines

- ➤ The students should undergo an internship for 4 weeks during the vacation soon after the 3rd semester SEE.
- ➤ The internship shall be carried out in an Industry/R&D labs or Institution
- ➤ The student should submit the internship report and make the presentation to the internal panel.
- ➤ The internal panel will evaluate the internship work for 50 Marks.
- > SEE will be conducted for Internship and will be evaluated for 50 Marks

MOOC Course -Guidelines

> Student shall register in any IT related online courses through NPTEL, SWAYAM etc.,or any other MOOC platform (Minimum of Four weeks)

Note: Department will not take care of reimbursement of paid courses

- > Student should submit Course Registration Details to the guides for the registered online platforms (i.e., NPTEL, SWAYAM, etc.).
- ➤ Students can register for MOOC course in any semester between I to III Semesters and have to Submit the Course Completion Certificate during 4th Semester.
- ➤ The soft copy of certificate should be submitted to the respective guides/exam section to indicate that student has cleared the MOOC course.

Course	e Outc	omes														
CO1	Ap	ply don	nain kn	owledg	ge in p	roposin	g soluti	on for	IT pro	blem						
CO2		velop/in	-	ent the	design	with a	ppropria	ate tech	niques	s and too	ols to de	liver				
	tile	solutio	11.													
CO3	Wo	Work in independently or in collaborative environment														
CO4	De	Develop project with communications skills, make presentations and prepare														
	tec	hnical c	locume	nt												
COUR	SE OU	UTCON	MES M	IAPPII	NG W	ITH P	ROGR	AM O	UTCO	MES:						
Course	e Outc	omes(C	COs)	I I		ng witl	ı Progr	am Ou	ıtcome	es(POs)						
CO1				PO	PO1,PO2,PO3,PO4											
CO2				PO	01,PO2	2,PO3,I	PO4,PC	05,PO7	,PO8							
CO3				PO	4,PO5	5,PO7,I	PO8,PC)10,PO	11							
CO4				PO	4,PO5	5,PO7,I	PO8,PC	9,PO1	0, PO 1	1,PO12	2					
LEVE	L OF	CO-PO	MAP	PING '	ΓABL	E										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	Н	Н	M	M												
CO2	L	L	M	Н	Н			M								
				M	M		M	Н		Н	H					
CO3																

	IV SEMESTER													
	PROJECT WORK													
Course Code:				20MCAP4	2	CIE Marks:	50							
Number of Le	cture	Hours per week	:	- SEE Marks: 50										
Total number	of Le	cture Hours:		-		SEE Hours:	3							
Lecture (L):	0	Practical (P):	4	Tutorial	0	Total Credits:	20							

Synopsis

- > Synopsis of the project must be submitted before the end of the first month of 4th semester
- > The synopsis of the project must include:
 - a) Problem formulation and literature survey.
 - b) Details of the required tools and technologies for the development of project.
 - c) Write up shall not exceed 15 pages.
- ➤ Internal assessment for synopsis presentation and evaluation of the synopsis by the internal panel /guide is for 100 marks.

Dissertation:

- ➤ The project shall be carried out in the same institution or in industry/R&D labs based on software tools and technologies learnt in MCA course/internship for minimum period of 16 weeks.
- ➤ Internal assessment shall be evaluated by the internal panel/guide for **50** marks. For continuous evaluation of project work by the internal examiner/guide with progress reports is for 10 marks each. (3 progress reports x 10 marks= 30)
- Final presentation for the entire project is evaluated for 20 marks by the project Guide.
- ➤ The internal examiners (Project Guide with at least 3 years of experience) and the external examiners shall be appointed by the authorities of the college for the final evaluation of the project.
- Internal and external examiners shall carry out the evaluation of Dissertation report for 125 marks individually. The average of the marks allotted by the internal and external examiners shall be the final marks for the project Dissertation report evaluation.
- ➤ The project presentation and Viva-voce shall be evaluated jointly by both the internal and external examiners for 75 marks.
- The student shall publish the project outcome in the reputed journals.

Course	Outco	mes													
CO1	Ana	lysis o	f proje	ect base	ed on v	arious	param	eters a	nd res	sources	and pr	epare			
	Gan	tt cha	rt.												
CO2	Imp	lemen	t algor	ithms o	r tech	niques	that co	ntribu	te to t	he softv	ware so	lution			
	of the project using different tools.														
CO3	Analyse, interpret, test and validate experimental results.														
CO4	Develop research/technical report with enhanced writing /communication														
	skills following ethical practices.														
	COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES:														
COUR	SE OU	TCO	MES N	IAPPIN	NG WI	TH PI	ROGRA	M OU	JTCO	MES:					
Course	Outco	mes(C	COs)	Ma	npping	with I	Progran	1 Outc	omes(l	POs)					
CO1						O3,PC									
CO2				PO1 ,	PO2,P	O3,PC)4,PO5,	PO7,P	O8						
CO3				PO4.	PO5.P	O7.PC	08,PO10	.PO11							
				10.,		07,1		,,1 0 1 1	-						
CO4				PO4,	PO5,P	O7,PC)8,PO9,	PO10,	PO11,	PO12					
LEVEI	OF C	CO-PO	MAP	PING T	TABLI	${\mathfrak T}$									
СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
	_				100	100	107	100	10)	1010	1011	1012			
CO1	M	M	H	H											
CO2	L	L	M	M	Н		Н	Н		M					
CO3				Н	M		Н	Н				Н			
CO4				Н	M		H	Н	H		Н	Н			