Dr. Ambedkar Institute of Technology, Bengaluru-56 (An Autonomous Institute, Affiliated to VTU, Belagavi)

Master of Computer Applications Program (Accredited by National Board of Accreditation)

INTERDEPARTMENT ELECTIVES (2020 – 2022)

Dr. Ambedkar Institute of Technology (An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade) Department of Master of Computer Applications SCHEME OF TEACHING AND EXAMINATION OF MCA INTERDEPARTMENT ELECTIVE (AUTONOMOUS) 2020-2022

		Course Title		ching ho week	-		Exami	nation			
SI. No.	Course Code			Tutorial	Practical / Seminar	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credits	Eligibility
1	20MCAE01	Data Science using Python	3	-	-	3	50	50	100	3	All Branches
2.	20MCAE02	Professional Practices for Higher Education	3	-	-	3	50	50	100	3	All Branches
3.	20MCAE03	R programming for statistics and data Science	3			3	50	50	100	3	All Branches
4.	20MCAE04	Full stack web development	3			3	50	50	100	3	All Branches
5.	20MCAE05	Animation and Gaming	3			3	50	50	100	3	All Branches
6.	20MCAE06	Ethical Hacking	3			3	50	50	100	3	All Branches
		Total	6	-	-	6	100	100	200	06	

		DATA	SCI	ENCE USI	NG PY	THON						
Sub Code:				20MCAE0	1	CIE Marks:	50					
Number of L	ectu	re Hours per we	ek:	3		SEE Marks:	50					
Total number	of	Lecture Hours:		39		SEE Hours:	3					
Lecture (L):	3	Practical (P):	0	Tutorial (T):	0	Total Credits:	3					
		NING OBJECT										
		e the Fundamen		•								
• Dem	ons	strate the python	data	a structure								
• Imp	lem	ent the data wra	nglir	ng and data p	reproce	ssing						
		stand and learn zation.	data	a analytics c	oncept	using Numpy, pa	ndas and data					
	TEACHING HOURS											
MODULE 1:	Pyt	hon Collections					6 Hrs					
-	-	and storing string		• •		• •						
		st operations,	Built	in function	ns used	l on lists, List						
Comprehensio			т									
-		-	on 1	uples, Function	ons to Pi	rocess Tuples. Set						
Methods, set o	1		orioo	Distionary	Inthoda							
	-	rations on Diction mpy, Pandas and					9 Hrs					
						nd manipulations.	71115					
Data processir				mai array ope	rations a	ina mampulations.						
-	-		Data f	rames. compu	iting des	scriptive statistics,						
		sis with pandas.		, , , , , , , , , , , , , , , , , , ,	8	I,						
	-	-	pack	age-plotting	graphs-co	ontrolling Graph-						
Adding Text-	Moi	re Graph types. D	ata V	visualization v	vith Seab	oorne.						
		roduction to Dat angling	a Sci	ience, Data P	re-proce	essing and Data	8 Hrs					
		angung										
Introduction to		ta Science. Intro	ducti/	Introduction to Data Science: Introduction to Data science, Applications of Data Science, Roles, components, Life cycle of data science.								
) Da				_	plications of Data						

Data Wrangling: Missing values, duplica	te, grouping, merging, combining	
concatenating, Reshaping(pivoting), Data Tra		
	11 0	
MODULE 4: Statistical measures		7 Hrs
Understanding Descriptive statistics, s	standard deviations, probability	
distribution, Normal distribution-Skewnes	s, kurtosis, Inferential statistics-	
Hypothesis testing- t-test -One Sampled t-te	est, Correlation -Person correlation	
coefficient, Linear Algebra		
MODULE 5: Modelling techniques		9 Hrs
Classification techniques-Naïve Bayes c	lassifier, K Nearest Neighbor	
Classification Technique. Implementation in	_	
Clustering techniques, Applications, k-means	s Clustering algorithm, Performance	
of k-means, choosing Initial centroid- Imp	elementation in Python, Efficiency	
using Confusion matrix		
Question Paper Pattern:		
• Each full question consists of 20 mar	ks.	
• Questions are set covering all the top	ics under each module	
Text Books:		
1. Python for Data Analysis 2 nd Edition, O'F	Reilly Publications	
2. Python Data Analytics Fabio Nelli, Apres		
3. Data Science from Scratch, Joel Grus, O'	Reilly Publications	
Reference Books		
1. Python Data Science Handbook, Essentia	al Tools for Working with Data, Jake	
VanderPlas, O'Reilly Publications	-	
2. Pang-Ning Tan, Michael Steinbach, Vin	oin Kumar: Introduction to Data Mir	ning. Addison-
Wesley, 2005		
COURSE OUTCOMES (CO)		
CO1:Understand the Fundamentals of Pyt	thon programming	
CO2: Demonstrate various features of pyt	hon programming for building app	olications.
CO3: Apply python programming for desi	igning the applications efficiently.	
CO4:Design and Develop applications to be d	eployed in real world scenarios.	
COURSE OUTCOMES MAPPING WITH	H PROGRAM OUTCOMES	
	Apping with Program Outcomes(PO	O)
CO 1 P	PO1,PO2,PO3,PO4,PO5,PO8	
CO 2 P	O1,PO2,PO3,PO4	
	O1,PO2,PO3,PO4,PO5	

LEVEI	L OF C	O-PO	MAP	PING '	TABLE	E						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	H	H	М	Н							
CO2	Н	М	H	H	L							
CO3	М	М	H	H	L					М	М	
CO4	М	М	H	H	L					Н	Н	

PROFESSIONAL PRAC	TICES FOR HIGH	IER EDUCATION	
Course Code:	20MCAE02	CIE Marks:	50
Number of Lecture Hours per week:	3	SEE Marks:	50
Total number of Lecture Hours:	39	SEE Hours:	3
Lecture (L): 3 Practicals (P): 0	Tutorial (T):	0 Total Credits	3

- Learn to accurately use the vocabulary of English in writing
- Learn to speak fluently with appropriate link words
- Acquire knowledge on enhancing the reading capability
- Understand the techniques for improving the listening skills

MODULES	TEACHING HOURS
MODULE 1: Fundamentals of Higher Education and Reading skills	8 Hrs
GRE, IELTS – An Overview, Mode of Preparation. Examination Process.	
Reading: Working on improving the Reading capability,	
Speaking: Advice on how to improve performance - What the examiner is	
looking for? Insight into how examiners assess candidate performance in the	
speaking test. Advice and tips on how to deal effectively with subjects about	
which you have insufficient knowledge	
Writing: Improve performance in the writing test What the examiner is	
looking for? Assessing candidate performance in the writing test	
Listening: Improve performance in the learning test What the examiner is	
looking for? Assessing candidate performance in the learning test	
Question types: • Classification • Yes, No, Not given Topic: Art and culture	
Question types: • Multiple selection • Summary completion • Table	
completion • Matching headings to paragraphs • Sentence completion.	
MODULE 2: Working on Reading Skills	8 Hrs
Diagram completion • Classification • Short answer questions -Sentence	
completion • Summary completion Table completion • Diagram completion	
• Short answer questions • Sentence completion	
MODULE 3: Working on Writing Skills	8 Hrs
Practice exercises for reports on static charts - Practice exercises for reports	
on dynamic charts Practice exercises for compositions discussing arguments	
for and against -Practice exercises for reports on tables Practice exercises for	
compositions giving an opinion Practice exercises for reports on diagrams	
showing objects Practice exercises for compositions discussing the causes of	
a problem and suggesting solutions - Practice exercises for reports on static	

charts- Practice exercises for co	ompositions discussing advantages and	
disadvantages- Practice exercises f	or reports on dynamic charts and graphs-	
Practice exercises for composition	s discussing arguments for and against -	
Practice exercises for reports on ta	bles	
MODULE 4: Working on Lister	ing Skills	8 Hrs
Form completion • Classification	Summary completion • Table completion	
• Short answer questions • Laber	lling a diagram • Form completion • •	
Sentence completion		
MODULE 5: Working on Speaking	g Skills	7 Hrs
Tutorial: Interview Phase - An ana	lysis of the individual long turn phase of	
an IELTS speaking test, with com	mentary on the candidate's performance	
and score Interview Phase An ana	lysis of the two-way discussion phase of	
an IELTS speaking test, with com	mentary on the candidate's performance	
and score		
Question Paper Pattern:		
• Each full question consists	of 20 marks.	
• Questions are set covering a	all the topics under each module	
	-	
Text Books		
1. Cambridge IELTS Trainer,	Louise Hashemi and Barbara Thomas, Can	nbridge Publications
Reference Books		
1. Online IELTS Practice Mat	erials	
COURSE OUTCOMES (CO)		
CO1: Demonstrate enhanced kn	owledge on reading capability	
CO2: Demonstrate to use the voo	abulany of English in writing	
CO3: Apply the techniques to in	prove the listening efficiency	
CO4: Apply the skills to speak fl	uently with appropriate link words	
CO4. Apply the skins to speak in	uchtry with appropriate link words	
COURSE OUTCOMES MADDI		
	NG WITH PROGRAM OUTCOMES:	2
Course Outcomes(CO)	Mapping with Program Outcomes(Pe	0)
CO 1	PO9	
CO 2	PO9	
CO 3	PO9	
CO 4	PO9	

LEVEL OF CO-PO MAPPING TABLE												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									H			
CO2									Н			
CO3									Н			
CO4									Н			

R PROGRAMMING FOR STATISTICS AND DATA SCIENCE

Sub Code:				20MCAE03		CIE Marks:	50
Number of Lec	ture	Hours per week:		3		SEE Marks:	50
Total number of	cture Hours:		39		SEE Hours:	03	
Lecture (L):	3	Practicals (P):	0	Tutorial (T):	0	Total Credits:	3

- To understand the concepts of Data science.
- To analyse the sampling techniques for data classification.
- To implement modelling methods for machine learning problems.
- Analyzing data from files and visualizing graphical presentations using R.

MODULES	TEACHING HOURS
MODULE 1: Data Science	7 Hrs
Introduction, Evolution of data science, Data science process - roles, stages in data	
science project - components of the Data Science lifecycle, data analytics, exploring	
data – managing data – cleaning and sampling for modeling and validation	
MODULE 2: Exploratory Data Analysis using R	8 Hrs
Introduction, R features basic data types, Vectors, Lists, Arithmetic, logical & Matrix	
Operations, Control structures, Functions in R, Data frames, Reading Data & cleaning	
data, Data visualization techniques -Histograms, box plot, bar chart, scatter plot.	
MODULE 3: Statistical Analysis	8 Hrs
Descriptive statistics, Inferential Statistics-Hypothesis testing- t-test -One Sampled	
and two sampled tests, Correlation -Person correlation coefficient.	
Probability Distributions, Normal Distribution- Binomial Distribution- Poisson	
Distributions	
MODULE 4: Data Science algorithms	8 Hrs
Classification of Regression Analysis, Regression process, Linear Regression,	
Understanding Linear regression, making prediction-hypothesis on regression	

coefficients, multiple Linear Regression	, concepts and formulas, Logistic regression,	
Model building and making predictions,	Adding best fit.	
MODULE 5: Analytical Algorithms		8 Hrs
Classification techniques-Decision Tre	ees, K Nearest Neighbor Classification	
Technique. Implementation in R		
Clustering techniques, Applications, k-r	means Clustering algorithm, Performance of	
k-means, choosing Initial centroid- Impl	ementation in R, Efficiency using Confusion	
matrix		
Question Paper Pattern:		
• Each full question consists of 20	marks.	
• Questions are set covering all the	e topics under each module	
Textbooks:		
	al Data Science with R", Manning Publication	s, 2014.
	Statistical Programming Language, John Wiley	
3. Joseph Schmuller, "Statistical Ana	lysis with R", John Wiley, 2017.	
Reference Books		
 David Dietrich, Barry Heller," Da Visualizing and Presenting Data", 	ta Science & Big Data Analytics: Discovering Wiley,2015	g, Analysing,
2. Pang-Ning Tan, Michael Steinbac Wesley, 2005	ch, Vipin Kumar: Introduction to Data Mini	ng, Addison-
COURSE OUTCOMES (CO)		
-	d the significance of exploratory data analy	sis (EDA) in
data science.	ational analysis for data to make predi	ptions using
analytical tools.	ational analysis for data to make preud	cuons using
CO3: Apply basic machine learning results visually.	algorithms for predictive modelling and i	nterpret the
CO4: Construct use cases to validate a	approach and identify modifications require	ed.
COURSE OUTCOMES MAPPING V	VITH PROGRAM OUTCOMES:	
Course Outcomes (COs)	Mapping with Program Outcomes (POs)
C01	PO1, PO2	
CO2	PO1, PO2, PO4, PO5	

CO3					PO	PO1, PO2, PO4, PO5, PO7							
CO4					PO	PO4, PO5, PO7							
LEVF	LEVEL OF CO-PO MAPPING TABLE												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Μ	Н											
CO2	L	М		Η	Μ								
CO3		М		Н	Н		Н						
CO4				Μ	Н		Н						

FULL STACK WEB DEVELOPMENT							
Sub Code:	Sub Code:					CIE Marks:	50
Number of Lecture Hours per week:				3		SEE Marks:	50
Total number of Lecture Hours:				39		SEE Hours:	3
Lecture (L):	3	Practicals (P):		Tutorial (T):	0	Total Credits:	3

- To design as web page using front end technologies
- To develop application with server side scripting tools
- To develop web application with REST APIs and use of framework to communicate client-server applications.
- To build as responsive web application with managing NOSQL databases.

MODULES	TEACHING
	HOURS
MODULE 1: Introduction to React	8 Hrs
Welcome to React: Obstacles and Roadblocks, React's future, keeping up with	
the changes, working with the files.	
The Basics-Introduction, Installation, getting started -hello world program,	
Lifecycle of Components,	
MODULE 2: React Components and Redux	8 Hrs
React Props, React state-setting state, Event handling, Designing components-	
state vs props	
MODULE 3: Programming in Node.js	8 Hrs
Node.js Installation -getting started, Control flow, asynchronous pattern	
callback, Sequential functionality, nested callbacks and exception handling,	
asynchronous patterns and control flow.	
Routing Traffic, Serving Files and Middleware: Building a Simple Static File	
Server from Scratch, Middleware, Routers and Proxies	
MODULE 4: Exposing REST APIs	8 Hrs
REST-HTTP Methods as actions, Express-Routing, Handler Functions, The	
List API-automatic Server Restart, testing, Create API, Error Handling.	
MODULE 5: MongoDB	7 Hrs
Introduction to MongoDB: -Installation-Databases, Data Types, Using	
MongoDB Shell. Creating, Updating, Deleting and Querying Documents:	
Inserting, removing, and updating the documents. Scheme Initialization,	
Reading and writing to Mongodb.	
Question Paper Pattern:	
Each full question consists of 20 marks.	
• Questions are set covering all the topics under each module	
Text Books:	

- 1. Tomasz Dyl Kamil Przeorski, "Mastering Full-Stack React Web Development", 2017 Packt Publishing.
- 2. Vasan Subramanian ,"ProMERN Stack", Apress, 2018.

Reference Books

- 1. Eddy Wilson Iriarte Koroliova ,"MERN-Full stack Development", Packt Publishing Ltd.,2018
- 2. Shama Hoque, "Full stack React Projects", Pack Publishing Ltd., 2018.

COURSE OUTCOMES (CO)

CO1: Demonstrate basic concepts of react, node, express and mongodb techologies

CO2: Design front end application using React libraries.

CO3: Develop interactive web applications on server side with NOSQL databases.

CO4: Build responsive web application communicating with REST API and managing data with NOSQL databases.

Course Outcomes(Cos)	Mapping with Program Outcomes(POs)
C01	PO5, PO11
CO2	PO2, PO4, PO5, PO11
CO3	PO2, PO4, PO5, PO7, PO11
CO4	PO5, PO11

LEVEL OF CO-PO MAPPING TABLE CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

00/10	101	102	105	104	105	100	107	100	107	1010	1011	1012
CO1					Н						Μ	
CO2		М		Н	Н						L	
CO3		L		М	Н		Н				Н	
CO4					Μ						Н	

ANIMATION AND GAMING

Course Code:	20MCAE05	CIE Marks:	50
Number of Lecture Hours per week:	3	SEE Marks:	50
Total number of Lecture Hours:	39	SEE Hours:	3
Lecture (L):3Practicals (P):0	Tutorial (T):	0 Total Credits	3

- Understand the design histories and theories to develop creative, technical and analytical skills in animation film and Game production.
- Enable to manage Animation Projects from its Conceptual Stage to the final Product creation.
- Expertise in life-drawing and related techniques.
- Explore different approaches in computer animation

MODULES	TEACHING HOURS
MODULE 1:Fundamentals of Animation	8 Hrs
History of Animation, Introduction to Animation, Terms used in Animation	
,Types of Animation, Skills for Animation Artist, Basic Principles of	
Animation, Animator's Drawing Tools, Rapid Sketching & Drawing,	
Developing Animation Character, equipment required for animation	
Developing the characters with computer animation, 2 D virtual drawing for	
animation, sequential movement drawing, Thumbnails, motion studies,	
drawing for motion.	
MODULE 2:Introducing 3D Animations	8 Hrs
Introduction to Maya application, Maya History and future, System	
Requirements, Autodesk Maya Graphical User Interface, Class	
Fundamentals, UI Elements, Poly engineering: Product Design,	
Architectural Design, references for Modeling, Industrail Design Reference	
Setup, Industrial Design Reference Match in Maya, Industrial Design Basic	
Model.	
MODULE 3: L & F and Aesthetics Development	8 Hrs
Fundamental of Texturing, Shades: Maya Shades and Photorealistic Shades,	
Shades Types; Background Shades and Layered Shades, Working in	
Photorealistic shades. Refining the Lighting, Rendering, Indirect and Direct	
Lighting Technique.UVW Map 2D Projection:Genreating UV Maps,UV	
Editors, Animation walk Cycle Project.	
MODULE 4:FX and Dynamic Simulation	8 Hrs
Rigid Body Dynamic, Particles Simulation, Fluid Simulation, Fundamentals	
of Hair and fur, Maya integration with ARNOLD.	
MODULE 5: Visual Effects and Case Study	7 Hrs

Creating							, Anima	ating th	e Ship	os,		
Animati	ng a Wa	alk Cyc	le,3D M	lovie ai	nd Gam	es.						
	ch full	questio	on consi		20 mark the topi		er each	modul	e			
Text bo				0	•							
	The Con York)	nplete A	Animatio	on cour	se by C	hris Pa	tmore, E	By – Ba	rons E	ducatior	nal Serie	es (New
	Learning anuary	•	Version	1.0, A	Alias Wa	vefron	ıt, a divi	sion of	Silico	n Graph	ics Limi	ited.
Referen	ce Bool	ks										
1. 3	BDs May	k- Bible	2011 B	y – Ke	lly L. M	[urdoc]	WILE	Y PUB	LICA	TIONS		
COURS	SE OUI	COM	ES (CO)):								
CO1: U												
						•	e design		meru	ung m	iiii, teit	evision,
CO3: A	Analyse	differe	ent app	roache	s in con	nputer	animat	ion.				
CO4: I				ation p	rojects	from i	ts Conc	eptual	Stage	to the f	inal	
	Product											
COURS	SE OUI	COM	ES MAI	PPING	WITH	PRO	GRAM	OUTC	OME	S:		
Course	Outcon	nes(CO)		Mappir	ng with	n Progra	am Out	tcome	5(PO)		
CO1					PO1, P	05, PC)3, PO4	, PO5				
CO2					PO1, P	02, PC)10, P1	02				
CO3					PO4, P	05						
CO4					PO10, l	PO11,	PO12					
LEVEL	OF CO	D-PO M	IAPPIN	NG TA	BLE							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		TT	Μ	Μ	H			1			1	1
CO1	Μ	Н										
CO2	M H	H M								Μ		H
				M	Н					M M	Н	H

ETHIC	CAL HACKING		
Sub Code:	20MCAE06	CIE Marks:	50

Number of Lecture Hours per week:				3	SEE Marks:	50
Total number of Lecture Hours:				39	SEE Hours:	3
Lecture (L):	3	Practicals (P):	0	Tutorial (T): 1	Total Credits:	3

- Students will remember and understand the fundamental aspects and importance of ethical hacking
- Students will gain knowledge on the basic working principles of Kali Linux environment
- Students will apply the hacking tools to identify the security issues and exploitable insecurities
- Students will analyse and assess the effectiveness of the security policies.

MODULES	TEACHING
	HOURS
MODULE 1: Introduction	08 Hrs
Concept of Ethical Hacking: Hacking, Hackers, Types of Hackers - Phases of	
hacking: Reconnaissance, Scanning, Gaining Access, Maintaining access,	
Clearing tracks, Reporting	
Ethical Hacking - Working of an ethical hacker, responsibilities	
Vulnerabilities: Human and System - Exploits: Gaining access and denying access	
Gaining access: Social engineering, Passive password acquisition, Phishing, Spear-phishing, and Whaling	
Web Exploits: SQL Injection, URL Manipulation, Cross-Site Scripting and	
Request	
Malicious activity: Denial-of-Service attacks, malware, viruses, worms	
Defensive Security: Protecting self, password and email practices, computer	
software security, network security and encryption, web application security	
MODULE 2: Getting started with Kali Linux and Getting anonymous	08 Hrs
Installing VMWare, Kali Linux – Overview	
Command line arguments: ls, cd, mkdir, rmdir, cp, rm, mv, updatedb, grep, echo, man	
Networking Commands: ifconfig, iwconfig, ping, arp, netstat, route	
Users and Privileges: chmod, useradd, userdel, passwd	
Anonymity: Working with Proxychains: installation, tor service,	
proxychains.conf	
Address Spoofing: What is Address Spoofing, MAC address spoofing -	
Spoofing with Macchanger	
MODULE 3: Information Gathering and Scanning	08 Hrs
Reconnaissance: What is Reconnaissance? Types - HTTrack: Features -	
Working with HTTrack and WebHTTrack	

Information gathering: What is information gathering? - Types – Maltego:	
Features - Working with Maltego	
Recon-ng: What is Recon-ng and Features – uses – Working with Recon-ng	
recon-ng	
Passive information gathering tool: Dmitry: Features and usages – Working	
with Dmitry	
Scanning: Definition, Phases of scanning: Determining live systems, using	
ping and ping sweeps – Port scanning: Working with Nmap-using Nmap for	
TCP connect scan, SYN scan, Xmas scan, Null scan – Vulnerability Scan:	
Definition, Working with Nessus tool	
Wireless network analysis: Features of wireless network analysis – wireless	
network detection with kismet	
MODULE 4: Exploitation	08 Hrs
Exploits: What is Exploits? Types: Active and Passive	
Gaining access to remote services: Working with Medusa	
Network sniffing: What is network sniffing – Types – network sniffing with	
wireshark	
Metasploit: Working with Metasploit framework - Modules: Exploit,	
payloads, auxillary, post-exploitation, NOP generator - working with	
MSFconsole - MSFconsole commands – Payloads in Metasploit - Using the	
database in Metasploit	
Password cracking: Definition – Working with John the ripper tool	
MODULE 5: Web-based Exploitation and Maintaining Access	07 Hrs
Web application analysis: Spidering a website - burpsuite: Features – Tools:	
spider, proxy, intruder, repeater, sequencer, decoder, extender, scanner–	
spidering with burpsuite	
Wireless attacks: Features of aircrack-ng – monitoring, attacking, testing,	
cracking– working with aircrack-ng	
Maintaining Access: Definition – Tools: backdoor, covert channel, root kit,	
data exfiltration – working with sbd tool	
Question Paper Pattern:	
• Each full question consists of 20 marks.	
• Questions are set covering all the topics under each module	
TextBooks:	

TextBooks:

- 1. Basics of hacking and penetration testing, Patrick Engebretson, Elsevier, 2011 edition
- 2. Computer Hacking Beginner's Guide. Alan T. Norman

Reference Books

- 1. Hacking: The Art of Exploitation, John Ericson, 2nd Edition
- 2. Penetration Testing: A Hands-On Introduction to Hacking by Georgia Weidman
- 3. Hacking for Beginnners: Manthan Desai -2010-

COURSE OUTCOMES (CO)

- CO1: Remember the fundamental aspects of hacking and understand the role of ethical hacking
- CO2: Develop a practical understanding on the basic principles and techniques of Kali Linux
- CO3: Apply various hacking tools to gather information and gain access to networks and systems
- CO4: To build a network system with an offensive security strategies

Course Outcomes mapping with Program Outcomes

Course Outcomes(CO)	Mapping with Program Outcomes(PO)					
C01	PO3, PO6, PO10					
CO2	PO4, PO5					
CO3	PO3, PO4, PO5, PO6, PO10					
CO4	PO4, PO5, PO10					

LEVEL OF CO-PO MAPPING TABLE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			Μ			L				М		
CO2				L	Н							
CO3			Μ	Н	Н	L				М		
CO4				Н	Н					М		