Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications <u>Scheme and Syllabus - CBCS - 2022 -2024</u>

Semester	INTER D	INTER DEPARTMENTAL ELECTIVE (IDE)										
Course Title	DATA SCI	DATA SCIENCE USING PYTHON										
Course Code	22MCAE	22MCAE01										
Category	Computer A	Computer Applications										
Scheme and		1	No. of Hour	s/Week		Total teaching	Credits					
Credits	L	Т	Р	SS	Total	hours						
	03	00	00	00	03	40	03					
CIE Marks: 50	SEE Mark	s: 50	Total Ma	Durati	Duration of SEE: 03 Hours							

COURSE OBJECTIVE:

- Describe the Fundamentals of Python
- Demonstrate the python data structure
- Implement the data wrangling and data preprocessing
- Understand and learn data analytics concept using Numpy, pandas and data visualization.

UNIT I: Python Collections	6 hours
Strings: Creating and storing strings, string operations, formatting Strings.	
Lists: Basic List operations, Built in functions used on lists, List Comprehensions.	
Tuples and Sets: Basic Operations on Tuples, Functions to Process Tuples. Set Methods,	
set operations.	
Dictionaries: Operations on Dictionaries, Dictionary Methods.	
UNIT II: Numpy, Pandas and Data Visualization	09 hours
Numpy: The Numpy Array, N-dimensional array operations and manipulations. Data process	ing using
arrays.	
Pandas: Essential Functionality, Data frames, computing descriptive statistics, Time series	s analysis
with pandas.	
Data Visualization: Matplotlibs package-plotting graphs-controlling Graph-Adding Text- Mo	ore Graph
types. Data Visualization with Seaborne.	
UNIT III: Introduction to Data Science, Data Pre-processing and Data Wrangling	10 hours
Introduction to Data Science: Introduction to Data science, Applications of Data Science	e, Roles,
components, Life cycle of data science.	
Acquiring Data with python: Loading from different files, Accessing databases.	
Data Wrangling: Missing values, duplicate, grouping, merging, combining, con	catenating
Reshaping(pivoting), Data Transformation – Mapping.	
Understanding Descriptive statistics, standard deviations, probability distribution, Normal dist	tribution-
Skewness, kurtosis, Inferential statistics-Hypothesis testing- t-test -One Sampled t-test, Cor	relation -

Person correlation coefficient.

UNIT V: Modelling Techniques

09 hours

Classification techniques-Naïve Bayes classifier, K Nearest Neighbor Classification Technique. Implementation in Python

Clustering techniques, Applications, k-means Clustering algorithm, Performance of k-means, choosing Initial centroid- Implementation in Python, Efficiency using Confusion matrix

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

CO1:Understand the Fundamentals of Python programming CO2: Demonstrate various features of python programming for building applications. CO3: Apply python programming for designing the applications efficiently.

CO4:Design and Develop applications to be deployed in real world scenarios.

TEXT BOOKS

- 1. Python for Data Analysis 2nd Edition, O'Reilly Publications
- 2. Python Data Analytics Fabio Nelli, APRESS
- 3. Data Science from Scratch, Joel Grus, O'Reilly Publications

REFERENCE BOOKS

1.Python Data Science Handbook, Essential Tools for Working with Data, Jake

2. VanderPlas, O'Reilly Publications

3 Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Addison-Wesley, 2005

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO10	PO11	PO12
PO									9			
CO1	Μ	Η	Η	Μ	S							
CO2	Н	Μ	Н	Н	L							
CO3	Μ	Μ	Н	Η	L					Μ	Μ	
CO4	Μ	Μ	Н	Н	L					Н	Н	
Strength	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications <u>Scheme and Syllabus - CBCS - 2022 -2024</u>

Semester	INTER D	INTER DEPARTMENTAL ELECTIVE (IDE)										
Course Title	R PROGE	R PROGRAMMING FOR DATA SCIENCE										
Course Code	22MCAE	22MCAE02										
Category	Computer A	Computer Applications										
Scheme and		١	No. of Hour	s/Week		Total teaching	Credits					
Credits	L	Т	Р	SS	Total	hours						
	03	00	00	00	03	40	03					
CIE Marks: 50	SEE Mark	s: 50	Total Max. marks=100 Dura			ion of SEE: 03 Hours						

COURSE OBJECTIVE:

To understand the concepts of Data science.

To analyse the sampling techniques for data classification.

To implement modelling methods for machine learning problems.

Analyzing data from files and visualizing graphical presentations using R.

UNIT I: Data Science

08 hours

08 hours

Introduction, Evolution of data science, Data science process – roles, stages in datascience project – components of the Data Science lifecycle, data analytics, exploring data – managing data –cleaning and sampling for modeling and validation.

UNIT II: Exploratory Data Analysis using R

Introduction, R features basic data types, Vectors, Lists, Arithmetic, logical & MatrixOperations, Control structures, Functions in R, Data frames, Reading Data & cleaning data, Data visualization techniques –Histograms, box plot, bar chart, scatter plot.

UNIT III: Statistical Analysis

Descriptive statistics, Inferential Statistics-Hypothesis testing- t-test -One Sampledand two sampled tests, Correlation -Person correlation coefficient. Probability Distributions, Normal Distribution- Binomial Distribution- Poisson Distributions

UNIT IV: Data Science algorithms

Classification of Regression Analysis, Regression process, Linear Regression, Understanding Linear regression, making prediction-hypothesis on regression coefficients, multiple Linear Regression, concepts and formulas, Logistic regression, Model building and making predictions, Adding best fit.

UNIT V: Analytical Algorithms

Classification techniques-Decision Trees, K Nearest Neighbor ClassificationTechnique. Implementation in R Clustering techniques, Applications, k-means Clustering algorithm, Performance ofk-means, choosing Initial centroid- Implementation in R, Efficiency using

08 hours

08 hours

08 hours

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- CO1: Explain role of data science and the significance of exploratory data analysis (EDA) in data science.
- CO2: Apply statistics and computational analysis for data to make predictions using analytical tools.
- CO3: Apply basic machine learning algorithms for predictive modelling and interpret the results visually.
- CO4: Construct use cases to validate approach and identify modifications required.

TEXT BOOKS

- 1. Nina Zumel, John Mount, "Practical Data Science with R", Manning Publications, 2014.
- 2. Mark Gardener, Beginning R- The Statistical Programming Language, John Wiley & Sons, Inc, 2012.
- 3. Joseph Schmuller, "Statistical Analysis with R", John Wiley, 2017.

REFERENCE BOOKS

1. David Dietrich, Barry Heller," Data Science & Big Data Analytics: Discovering, Analysing, Visualizing and Presenting Data", Wiley,2015

2. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Addison-Wesley, 2005

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO10	PO11	PO12
PO									9			
CO1	Μ	Η										
CO2	L	Μ		Η	Μ							
CO3		Μ		Η	Н		Н					
CO4				Μ	Н		Н					
Strength	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications <u>Scheme and Syllabus - CBCS - 2022 -2024</u>

Semester	INTER DEPARTMENTAL ELECTIVE (IDE)											
Course Title	FULL ST	FULL STACK WEB DEVELOPMENT										
Course Code	22MCAE	22MCAE03										
Category	Computer A	Computer Applications										
Scheme and		١	No. of Hour	s/Week		Total teaching	Credits					
Credits	L	Т	Р	SS	Total	hours						
	03	00	00	00	03	40	03					
CIE Marks: 50	SEE Mark	s: 50	Total Ma	Durati	Duration of SEE: 03 Hours							

COURSE OBJECTIVES:

- To design as web page using front end technologies
- To develop application with server-side scripting tools
- To develop web application with REST APIs and use of framework to communicate client-server applications.
- To build as responsive web application with managing NOSQL databases.

UNIT I: Introduction to React

The Basics-Introduction, Installation, getting started -hello world program, Lifecycle of Components, Page Setup, The Virtual DOM, React Elements, React DOM, Children, constructing elements with data, React Components, DOM Rendering.

UNIT II: Reacts & Props

React Props- Passing data- using properties, react state-setting state, Event handling, communicating from child to parent. Designing components- state vs props

UNIT III: Programming in NodeJS

Node.js Installation getting started, Control flow, asynchronous pattern callback, REPL-an interactive environment, nested callbacks and exception handling,

Routing Traffic, Serving Files and Middleware: Building a Simple Static File Server from Scratch, Middleware-routers

UNIT IV: Expressing REST APIs

HTTP Methods as actions- REST API-handling GET and POST method, file upload, Express-Installation, Routing, Handler Functions, The List API-automatic Server Restart, testing, Create API, Error Handling.

UNIT V: MongoDB

Introduction to MongoDB: -Installation-Databases, Data Types, data formats, Introduction to the MongoDB Shell, Running the Shell, Creating, Updating, Deleting and Querying Documents- CRUD operations with NodeJS and querying with documents.

8 hours

8 hours

8 hours

8 hours

8 hours

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- CO1: Demonstrate basic concepts of react, node, express and mongo dB technologies.
- CO2: Design an application and apply the knowledge of React.js, Node.js, Express.js and MongoDB for a given scenario.
- CO3: Develop interactive web applications on server side with NodeJS and MongoDB.
- CO4: Build responsive web application communicating with REST API and managing data with NOSQL databases.

TEXT BOOKS

- 1. MERN Quick Start Guide, Eddy Wilson Iriarte Koroloiva, 2018, PACKT Publication, ISBN 978-1-78728-108-0
- 2. Learning React Functional Web Development with React and Redux, Alex Banks and Eve Porcello, O'Reilly Media, Inc., May 2017
- 3. Pro MERN Stack, Vasan Subramanian, 2019, ISBN-13(pbk):978-1-4842-2653-7

REFERENCE BOOKS

1. MERN Quick Start Guide, Eddy Wilson Iriarte Koroloiva, 2018, PACKT Publication, ISBN 978-1-78728-108-0.

EBOOKS/ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					H						Μ	
CO2		Μ		Η	H						L	
CO3		L		Μ	H		H				Н	
CO4					Μ						Η	
Stren	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - CBCS – 2022 -2024

Semester	INTER DEPARTMENTAL ELECTIVE (IDE)											
Course Title	ETHIC	ETHICAL HACKING										
Course Code	22MCA	22MCAE04										
Category	Comput	Computer Applications										
Scheme and		•	No. of Hou	rs/Week		Total teaching	Credits					
Credits	L	Т	Р	SS	Total	hours						
	03	00	00	00	03	40	03					
CIE Marks: 50	SEE Mar	:ks: 50	Total Max. marks=100 Durat			ion of SEE: 03 Hours						

COURSE OBJECTIVE:

- Students will remember and understand the fundamental aspects and importance of ethical hacking.
- Students will gain knowledge on the basic working principles of Kali Linux environment.
- Students will apply the hacking tools to identify the security issues and exploitable insecurities.
- Students will analyze and assess the effectiveness of the security policies.

UNIT I : Introduction to IoT 8 hours
Concept of Ethical Hacking: Hacking, Hackers, Types of Hackers - Phases of hacking: Reconnaissance,
Scanning, Gaining Access, Maintaining access, Clearing tracks, Reporting
Ethical Hacking - Working of an ethical hacker, responsibilities
Vulnerabilities: Human and System - Exploits: Gaining access and denying access
Gaining access: Social engineering, Passive password acquisition, Phishing, Spear-phishing, and
Whaling
Web Exploits: SQL Injection, URL Manipulation, Cross-Site Scripting and Request
Malicious activity: Denial-of-Service attacks, malware, viruses, worms
Wireless Hacking: Hacking Wi-Fi, Wi-Fi Encryption Protocols, Wi-Fi Attacks
Defensive Security: Protecting self, password and email practices, computer software security, network
security and encryption, web application security
UNIT II : Getting started with Kali Linux and Getting anonymous 8 hours
Installing VMWare, Kali Linux – Overview
Command line arguments: ls, cd, mkdir, rmdir, cp, rm, mv, updatedb, grep, echo, man
Networking Commands: ifconfig, iwconfig, ping, arp, netstat, route
Editing Commands: echo, cat, replacing, appending, touch, nano, gedit
Installing updates and tools: wget, sudo apt install, sudo apt remove, sudo apt upgrade, apt-get, sudo
apt update, sudo su
Users and Privileges: chmod, useradd, userdel, passwd

Anonymity: Working with Proxychains: installation, tor service, proxychains.conf Address Spoofing: What is Address Spoofing, MAC address spoofing – Spoofing with Macchanger. UNIT III: Information Gathering and Scanning 8 hours Reconnaissance: What is Reconnaissance? Types – HTTrack: Features - Working with HTTrack and WebHTTrack Information gathering: What is information gathering? - Types – Maltego: Features - Working with Maltego Recon-ng: What is Recon-ng and Features – uses – Working with Recon-ng recon-ng: Workspaces – databases - marketplace and modules - API keys Passive information gathering tool: Dmitry: Features and usages – Working with Dmitry Scanning: Definition, Phases of scanning: Determining live systems, using ping and ping sweeps - Port scanning: Working with Nmap-Nmap scanning commands – Nmap for TCP connect scan, Nmap for SYN scan, Nmap for Xmas scan, Nmap for Null scan UNIT IV : Exploitation 8 hours Exploits: What is Exploits? Types: Active and Passive, Gaining access to remote services: Working with Medusa Network sniffing: What is network sniffing – Types – network sniffing with wireshark Metasploit: Working with Metasploit framework - Modules: Exploit, payloads, auxillary, postexploitation, NOP generator - working with MSFconsole - MSFconsole commands - Payloads in Metasploit - Using the database in Metasploit Password cracking: Definition – Working with John the ripper tool UNIT V : Web-based Exploitation and Maintaining Access 8 hours Web application analysis: Spidering a website - burpsuite: Features - Tools: spider, proxy, intruder, repeater, sequencer, decoder, extender, scanner-spidering with burpsuite Wireless attacks: Features of aircrack-ng – monitoring, attacking, testing, cracking– working with

aircrack-ng

Maintaining Access: Definition – Tools: backdoor, covert channel, root kit, data exfiltration

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- CO1: Remember the fundamental aspects of hacking and understand the role of ethical hacking
- CO2: Develop a practical understanding on the basic principles and techniques of Kali Linux
- CO3: Apply various hacking tools to gather information and gain access to networks and systems
- CO4: To build a network system with an offensive security strategy.

TEXT BOOKS

- 1. Basics of hacking and penetration testing, Patrick Engebretson, Elsevier, 2011 edition
- 2. Computer Hacking Beginner's Guide. Alan T. Norman

REFERENCE BOOKS

- 1. Hacking: The Art of Exploitation, John Ericson, 2nd Edition
- 2. Penetration Testing: A Hands-On Introduction to Hacking by Georgia Weidman.
- 3. Hacking for Beginners: Manthan Desai -2010.

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			2			1				2		
CO2				1	3							
CO3			2	3	3	1				2		
CO4				3	3					2		
Stren	Strength of correlation: Low-1, Medium- 2, High-3											