Master of Computer Applications Program (Accredited by National Board of Accreditation)

Scheme 2024 – 2026 MCA I – IV Semester

For the Academic Year 2024-25

Dr. Ambedkar Institute of Technology, Bengaluru-56

(An Autonomous Institution, Affiliated to VTU, Approved by AICTE, Accredited by NAAC with A+ grade)

Master of Computer Applications

Institute - Vision and Mission

Vision

To create Dynamic, Resourceful, Adept and Innovative Technical professionals to meet global challenges.

Mission

- To offer state-of-the-art under graduate, post graduate and doctoral programs in the fields of Engineering, Technology and Management
- To generate new knowledge by engaging faculty and students in research, development and innovation.
- To provide strong theoretical foundation to the students, supported by extensive practical training to meet the industrial requirements.
- To instil moral and ethical values with social and professional commitment.

DEPARTMENT - VISION AND MISSION

VISION

To create a quality human resource with good technical competence to face the global challenges.

MISSION

- To create a Centre of Excellence through industry institute interaction.
- To prepare students for utilizing more creativity, innovativeness and leadership Qualities.
- To inculcate a sense of commitment to the students towards socio-economic development of the nation

Program Educational Objectives

PEO 1: Apply the principles of software engineering and application development in verticals related to Information Technology and Information Technology Enabled services (ITES).

PEO 2: Inculcate creative and innovative ideas with latest developments in the industry to be displayed as an entrepreneur, or a researcher or academician.

PEO 3: To incorporate the lifelong learning process with leadership skills and corporate social responsibilities.

Program Outcomes:

PO 1: Ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modelling and design of computer based systems.

PO 2: Graduates will be able to demonstrate with excellent programming, analytical, logical and problem solving skills.

PO 3: Graduates will be able to design a computing system to meet desired needs within realistic constraints such as safety, security and applicability.

PO 4: An ability to devise and conduct experiments, interpret data and provide well informed conclusions.

PO 5: An ability to select modern computing tools and techniques and use them with dexterity.

PO 6: An ability to function professionally with ethical responsibility as an individual as well as in multidisciplinary teams with positive attitude.

PO 7: An ability to appreciate the importance of goal setting and to recognize the need for life-long learning.

PO 8: Develop and maintain medium to large scale application software using theoretical and applied knowledge of software engineering and project management.

PO 9: An ability to communicate effectively.

PO 10: An ability to understand the impact of system solutions in a contemporary, global, economical, environmental, and societal context for sustainable development.

PO 11: An ability to execute the project either individually or in a group.

PO 12: An ability to become an Entrepreneur in the field of information technology to create a value and wealth for the betterment of the individual and society at large.

Department of Master of Computer Applications

Sl. No.	Course Type	Course Code	Course Title	Te	aching hou week	rs per		Exam	ination		Credits
				Lecture	Tutorial/ Seminar/ Assignment	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks	
1	РСС	MCAT11	Object Oriented Programming using Java	3	-	-	3	50	50	100	3
2	PCC	MCAT12	Web Technologies	3	-	-	3	50	50	100	3
3	PCC	MCAT13	Computer Networks	3	-	-	3	50	50	100	3
4	BSC	MCAT14	Mathematical Foundations for Computer Applications	3	-	-	3	50	50	100	3
5.	IPCC	MCAU15	Data Structures and Algorithms	3	-	2	3	50	50	100	4
6	IPCC	MCAU16	Fundamentals of C Programming	3	-	2	3	50	50	100	4
7	PCCL	MCAL17	Object Oriented Programming using Java Lab	-	-	2	3	50	50	50	1
8	PCCL	MCAL18	Web Technologies Lab	-	-	2	3	50	50	50	1
9	NCMC	MCAT19	Mathematics Bridge Course For MCA	3	-	-	3	50	50	100	PP
Tota	1			18	-	08	27	450	450	900	22

SCHEME OF TEACHING AND EXAMINATION OF MCAFIRST SEMESTER

2024-2026

Note:			
PCC	: Professional Core Course	PCCL	: Professional Core Course Lab
BSC	: Basic Science Course	NCMC	: Non-Credit Mandatory Course
AEC	: Ability Enhancement Course	IPCC	: Integrated Professional Core Course
Т	: Theory	U	: Integrated
L	: Lab	Μ	: Mini project
Bridge	Course: Non-Credit Mandatory Course]	MMAT1	08-Mathematics for MCA Students, Student

Bridge Course: Non-Credit Mandatory Course MMAT108-Mathematics for MCA Students: Students who have not taken Mathematics at the 10+2 or degree level are required to study and pass this course in the 1st semester. However, this course/subject will not be considered for vertical progression.

Department of Master of Computer Applications

SCHEME OF TEACHING AND EXAMINATION OF MCA SECOND SEMESTER 2024-2026

Sl. No.	Course Type	Course Code	Course Title	T	eaching h per wee			Exa	minatio)n	Cre dits
				Lecture	Tutorial/ Seminar/ Assignmen	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks	
1	PCC	MCAT21	Python Programming	3	-	-	3	50	50	100	3
2	PCC	MCAT22	Software Engineering	3	-	-	3	50	50	100	3
3	PCC	MCAT23	Data Science	3	-	-	3	50	50	100	3
4	IPCC	MCAU24	Database Management	2	-	2	3	50	50	100	3
5	IPEC	MCAU25x	Elective –1	2	-	2	3	50	50	100	3
6	PEC	MCAT26x	Elective - 2	3	-	-	3	50	50	100	3
7	PCCL	MCAL27	Python Programming Lab	-	-	2	3	50	50	100	1
8	PCCL	MCAL28	Data Science Lab	-	-	2	3	50	50	100	1
9	PBLC	MCAM29	Mini Project	-	2	2	3	50	50	100	2
Tota	1	1	1	16	02	10	27	450	450	900	22

Note:

PCC : Professional Core Course

PCCL : Professional Core Course Lab

- IPEC : Integrated Professional Elective Course
- : Theory Т L : Lab

- PEC : Professional Elective Course
- **IPCC** : Integrated Professional Core Course
- PBCL : Project Based Learning Course
- : Integrated U
- Μ : Mini project

Department of Master of Computer Applications

MCA SECOND SEMESTER ELECTIVE COURSES

S.No	Course Type	Course Code	Course Title
1.	IPEC	MCAU251	Cloud Essentials
2.	IPEC	MCAU252	Big Data Analytics
3.	IPEC	MCAU253	Go Programming

<u>Elective – 1</u>

Elective – 2

S.No	Course Type	Course Code	Course Title
1.	PEC	MCAT261	Software Architecture
2.	PEC	MCAT262	Soft Computing
3.	PEC	MCAT263	Software Testing and Automation

Department of Master of Computer Applications

Sl. No.	Course Type	Course Code	Course Title	Teaching hours per week			Examination				Credi ts
				Lecture	Tutorial/ Seminar/ Assignment	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks	
1	IPEC	MCAU31x	Specialization-1	3	-	2	3	50	50	100	4
2	IPEC	MCAU32x	Specialization-2	3	-	2	3	50	50	100	4
3.	IPEC	MCAU33x	Specialization-3	3	-	2	3	50	50	100	4
4	PBLC	MAEC34	Ability Enhancement Course	-	-	4	3	50	50	100	2
5.	INT	MCAI35	Industry Internship	-	-	-	-	50	50	100	6
Tota	1			9	-	10	12	250	250	500	20

SCHEME OF TEACHING AND EXAMINATION OF MCA THIRD SEMESTER 2024-2026

Note:

 PBLC
 : Project Based Learning Course

INT : Internship IPEC : Integrated Professional Elective Course

AEC : Ability Enhancement Course

Department of Master of Computer Applications

MCA THIRD SEMESTER ELECTIVE COURSES

Specialization-1

Artificial Intelligence & Machine Learning

S.No	Course Type	Course Code	Course Title
1.	IPEC	MCAU311	Machine Learning and Deep Learning
2.	IPEC	MCAU312	Artificial Intelligence
3.	IPEC	MCAU313	Generative AI and its Applications

Specialization-2

Web Applications and analytics

S.No	Course Type	Course Code	Course Title
1.	IPEC	MCAU321	Full Stack Web Development
2.	IPEC	MCAU322	Advanced Java Programming
3.	IPEC	MCAU323	Web Marketing and Analytics

Specialization-3

System Security

S.No	Course Type	Course Code	Course Title
1.	IPEC	MCAU331	Blockchain Technology
2.	IPEC	MCAU332	Cyber Security
3.	IPEC	MCAU333	Ethical Hacking

Department of Master of Computer Applications

SCHEME OF TEACHING AND EXAMINATION OF MCA \underline{FOURTH} SEMESTER 2024-2026

Sl. No.	Course Type	Course Code	Course Title	Teach	ing hou week	rs per		Exam	ination		Cred its
				Lecture	Tutorial/ Seminar	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks	
1.	NCMC	MMC41	MOOC		s and ev of the or				re as per	the	PP
2.	NCMC	MRMI42	Research Methodology and IPR (online)								PP
3.	PROJ	MCAP43	Project Work		EMEST JRATIO		3	100	50	150	16
	•		Total	-	-	-	3	100	50	150	16
				Grand	Total				•		
	Tot	al Marks:	2450	Total Credits: 80							
SEC PRO	Note: SEC : Skill Enhancement Course PROJ : Project Work MRMI: Research Methodology & IPR				NCMC: Non-credit Mandatory Course PP : Passing is Mandatory MOOC: Massive Open Online Course						

Department of Master of Computer Applications

SCHEME OF TEACHING AND EXAMINATION OF MCA INTERDEPARTMENT ELECTIVE (AUTONOMOUS) 2024-2026

GI		Course Type	Course Title	Tea	ching hour week	rs per		Exami	nation		Cre dits	Eligi bility
SI. No ·	Course Code			Lecture	Tutorial/ Seminar/ Assignme	Practical / Project	Duration in hours	SEE Marks	CIE Marks	Total Marks		
1	MCT6051	OEC	Data Science using Python	3	-	-	3	50	50	100	3	All Bran ches
3.	МСТ6052	OEC	R programming for data Science	3			3	50	50	100	3	All Bran ches
4.	MCT6053	OEC	Full stack web development	3			3	50	50	100	3	CSE ISE
5.	MCT6054	OEC	Ethical Hacking	3			3	50	50	100	3	All Bran ches

Department of Master of Computer Applications

Course Type	Semester-1 Credits	Semester-2 Credits	Semester-3 Credits	Semester-4 Credits	Total Credits
Basic Science Course (BSC)	3	-	-	-	3
Professional Core Course (PCC)	9	6	-	-	15
Professional Elective Course (PEC)	-	3	-	-	3
Integrated Professional Core Course (IPCC)	8	6	-	-	14
Integrated Professional Elective Course (IPEC)	-	3	12	-	15
Labs (PCCL)	2	2	-	-	4
Mini Project (PBLC)	-	2	2	-	4
Seminar (SEC)	-	-	-	-	-
Internship (INT)	-	-	6	-	6
Project Work (PROJ)	-	-	-	16	16
Total Credits	22	22	20	16	80

Curriculum Distribution for MCA 2024 Scheme

Dr. Ambedkar Institute of Technology, Bengaluru (An Autonomous Institute affiliated to VTU, Accredited by NAAC with 'A' grade) Department of Master of Computer Applications

Credits for the Two-Years MCA Program- Scheme 2024 (AUTONOMOUS) 2024-2026

	Credits for the TWO Year MCA Program- Scheme 2024												
Semester	Core	Practical	Elective	Project / Industry Internship	Bridge Course	Total Credits	Total Marks						
Ι	19	2	0	0	1	21	900						
II	12	2	6	2		22	900						
III	-	-	12	8		20	500						
IV	-	-	-	17		17	150						
		Tota	al			80	2450						

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

Three Tests conducted (**Average of best two of three CIE tests conducted**) for each of 30 Marks (duration 01 hour 30 minutes)

Assignments covering all COs assessed of 10 Marks:

Course Seminar suitably planned to attain the COs and POs assessed for 5 Marks.

Group Activity assigned covering all Cos and mapping Pos as assessed for 5 Marks.

Assessment	Marks	Min. Passing marks
Average of best two of three CIE tests conducted	30	15
Assignment	10	5
Seminar	5	2.5
Group Activity	5	2.5
Total	50	25

<u>CIE Evaluation features</u>

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- The 15 marks are for conducting the experiment and preparation of the laboratory record, the other 05 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report.
- Each experiment report can be evaluated for 10 ups are added and scaled down to 15 marks. The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 20 marks.

SEMESTER END EXAMINATION (SEE):

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SEE for IPCC

Theory SEE will be conducted by college as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50 marks.
- 2. The question paper will have ten questions. Each question is set for 20 marks.
- 3. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- 4. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only.

However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 40% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50. (Student has to secure an aggregate of 50% of maximum marks of the course (CIE+SEE)

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications <u>Scheme and Syllabus - CBCS – 2024 -2026</u>

Semester	Ι												
Course Title	OBJECT ORIENTED PROGRAMMING USING JAVA												
Course Code	MCAT11	1CAT11											
Category	Profession	Professional Core Course (PCC)											
Scheme and		1	No. of Hour	s/Week		Total teaching	Credits						
Credits	L	Т	Р	SS	Total	hours							
	03	00	00	00	03	40	03						
CIE Marks: 50	SEE Mar	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours											

COURSE OBJECTIVES:

- Understand the different object-oriented concepts and implement basic programs
- Develop applications using inheritance and interface concepts
- Apply multithreading programming concepts and handling errors efficiently
- Able to Design client server application in java

UNIT I: Java Programming Fundamentals

The Java Language, The Key Attributes of Object-Oriented Programming, A First Simple Program, Handling Syntax Errors

Introducing Data Types and Operators: Java's Primitive Types, Literals, A Closer Look at Variables, The Scope and Lifetime of Variables, operators, Shorthand Assignments, Type conversion in Assignments, Using Cast, Operator Precedence, Expressions.

More Data Types and Operators: Arrays, Multidimensional Arrays, Alternative Array Declaration Syntax, Assigning Array References, Using the Length Member, The For-Each Style for Loop, Strings, The Bitwise operators.

UNIT II: Introducing Classes, Objects and Methods

Class Fundamentals, How Objects are Created, Reference Variables and Assignment, Methods, Returning from a Method, Returning Value, Using Parameters, Constructors, Parameterized Constructors, The new operator Revisited, Garbage Collection and Finalizes, The this Keyword.

A Closer Look at Methods and Classes: Controlling Access to Class Members, Pass Objects to Methods, How Arguments are passed, Returning Objects, Method Overloading, Overloading Constructors, Recursion, Understanding Static, Introducing Nested and Inner Classes, Var args: Variable-Length Arguments.

Inheritance: Inheritance Basics, Member Access and Inheritance, Constructors and Inheritance, Using super to Call Superclass constructors, Using super to Access Superclass Members, Creating a Multilevel Hierarchy, When are Constructors Executed, Superclass References and Subclass Objects, Method Overriding, Overridden Methods support polymorphism, Why Overridden Methods, Using Abstract Classes, Using final, The Object Class.

UNIT III: Interfaces

08 hours

08 hours

Interface Fundamentals, creating an Interface, implementing an Interface, Using Interface References, Implementing Multiple Interfaces, Constants in Interfaces, Interfaces can be extended, Nested Interfaces, Final Thoughts on Interfaces.

Packages: Package Fundamentals, Packages and Member Access, Importing Packages, Static Import

Exception Handling: The Exception Hierarchy, Exception Handling fundamentals, The Consequences of an Uncaught Exception, Exceptions Enable you to handle errors gracefully, using Multiple catch clauses, Catching subclass Exceptions, try blocks can be nested, Throwing an Exception, A Closer look at Throwable, using finally, using throws, Java's Built-in Exceptions, New Exception features added by JDK 7, Creating Exception Subclasses.

UNIT IV: Multithreaded Programming

08 hours

Multithreading fundamentals, The Thread Class and Runnable Interface, Creating Thread, Creating Multiple Threads, Determining When a Thread Ends, Thread Priorities, Synchronization, using Synchronization Methods, The Synchronized Statement, Thread Communication using notify(), wait() and notify All(), suspending, Resuming and stopping Threads.

Enumerations, Auto boxing and Annotations: Enumerations, Java Enumeration are class types, The Values() and Valueof() Methods, Constructors, methods, instance variables and enumerations, Auto boxing, Annotations (metadata)

Applets: Applet basics, A complete Applet Skeleton, Applet Initialization and Termination, A key Aspect of an Applet Architecture, Requesting Repainting, using the status window, Passing parameters to Applets

UNIT V: Networking with Java.net

08 hours

Networking fundamentals, The Networking classes and Interfaces, The InetAddress class, The Socket Class, The URL class, The URL Connection Class, The HttpURL Connection Class.

Exploring Collection Framework: Collections Overview, The Collection Interfaces, The collection Classes. The Arrays Class

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- CO1: Demonstrate the basic object-oriented concepts & apply them to create java applications
- **CO2:** Apply inheritance and interface concepts to design java applications
- CO3: Design java applications with multithreading concepts and demonstrate the error handling concepts
- CO4: Design client server applications.

TEXT BOOKS

- 1. Java Fundamentals, A comprehensive Introduction by Herbert Schildt, Dale Skrien. Tata McGraw Hill Edition 2013.
- 2. Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007. (Chapter 17)

REFERENCE BOOKS

1. Java 6 Programming, Black Book, KoGenT ,Dreamtech Press, 2012

2. Java 2 Essentials, Cay Hortsmann, second edition, Wiley

EBOOKS/ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	2	1	1	1	1							
CO	2	1	2	1	1							
CO		1	2	1	1							
CO		1	2	2	1			2		3	3	
Strength of correlation: Low-1, Medium-2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 **Department of Master of Computer Applications** Scheme and Syllabus – 2024 - 2026

Semester	Ι												
Course Title	WEB T	WEB TECHNOLOGIES											
Course Code	MCAT1	2											
Category	Professi	onal Cor	e Course(PC	C)									
Scheme and		1	No. of Hours/W	Veek		Total	Credits						
Credits	L	Т	Р	SS	Total	teaching hours							
	03	00	00	00	03	40	03						
CIE Marks: 50	SEE Ma	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours											

COURSE OBJECTIVES:

- To create web pages using HTML5 and Cascading Style Sheets.
- To build dynamic web pages using Bootstrap & JavaScript. •
- To demonstrate structured and unstructured data and handling them.
- To develop different approaches of Server-side scripts using PHP.

UNIT I: Introduction to Web & HTML5

Introduction to HTML5 tags, Basic syntax and structure, Images, Hyper-links, Lists, Tables, forms. HTML5 elements- Layouts, canvas, media, audio and video,

Cascading Style Sheets-Syntax, selectors, Styles-colors, background, text, fonts, icons, links, box model, span and div tags

UNIT II: Bootstrap components

Introduction to Bootstrap-Bootstrap file structure, Basic HTML Template, Global Styles, Default Grid System - Basic Grid HTML, Offsetting Columns, Nesting Columns, Fluid Grid Systems, Container Layouts. Responsive Design.

Bootstrap Layout Components: Dropdown Menus, Forms, Button Groups, Navigation Elements, Navbar, Breadcrumbs, Alerts, Progress Bars, Media Objects

UNIT III: Java Script

Introduction to Javascript, Screen output and keyboard input, controls statements, Arrays and functions, pattern matching

The Document Object Model, DOM-methods, Elements Access in Java Script, Element Access, Events and Event Handling-onclick(), onload(), Java Script validations

UNIT IV: Server-side scripting

Introduction to PHP, Overview of PHP, Primitives, operations and expressions, Output, Control statements, Arrays, Functions, Pattern matching, Form handling, Files handlers. Building Web applications with PHP- Using databases, tracking users- cookies, sessions.

UNIT V: Handling structured and Unstructured data

06 hours

08 hours

10 hours

08 hours

08 hours

XML- Introduction, syntax, Document structure, Document Type Definitions, Namespaces, XML schema, displaying raw XML documents

Handling structured and unstructured data store: Introduction to JSON, Array literals, Object literals, mixing literals, JSON Syntax, JSON data types, JSON Encoding and Decoding, JSON versus XML.

COURSE OUTCOMES:

CO1: Describe the basic constructs of the web concepts.

CO2: Apply the knowledge of designing web application that use asynchronous communication.

- CO3: Design Single page web applications using JavaScript frameworks.
- CO4: Design an interactive web page with server side scripting language for real world problems.

TEXT BOOKS

- 1. Bootstrap Essentials, Snig Bhaumik, PACKT publishing
- 2. Robert W. Sebesta: Programming the World Wide Web, 7th Edition, Pearson Education, 2012.
- 3. Steven Holzner: Ajax: A Beginner's Guide, Tata McGraw Hill, 2011

REFERENCE BOOKS

- 1. Amos Q. Haviv," MEAN Web Development", Packt Publishing, 2014.
- 2. Nicholas C Zakas et al: Professional AJAX, Wiley India, publications

EBOOKS/ONLINE RESOURCES

- 1. https://www.w3schools.com
- 2. https://www.tutorialspoint.com

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					1						2	
CO2		2		1	1						3	
CO3		3		2	1		1				1	
CO4					2						1	
Stren	gth of c	correlat	tion: L	ow-1,	Mediu	m- 2,	High-3					

Dr Ambedkar Institute of Technology, Bengaluru-56

Department of Master of Computer Applications

Scheme and Syllabus - 2024 - 2026

Course Title	COMP	COMPUTER NETWORKS											
Course Code	MCAT	MCAT13											
Category	Professi	ional C	ore Cours	e (PCC)									
Scheme and			No. of Ho	urs/Week		Total	Credits						
Credits	L	Т	Р	SS	Tot	teaching							
					al	hours							
	03	00	00	00	03	40	03						
CIE Marks: 50	SEE Ma	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours											

COURSE OBJECTIVES:

- Learn the architecture of networks and layers.
- Understand the functions of various protocols.
- Simulate a network architecture.

UNIT I: Architecture and Physical Layer

Introduction, Uses of Computer Networks, Network Hardware, Network Software: Protocol Hierarchies, Reference Models: The OSI Reference Model, The TCP/IP Reference Model Physical Layer-Digital Modulation, multiplexing, encoding

8 hours

8 hours

8 hours

8 hours

8 hours

UNIT II: Data Link Laye

Data Link Layer-Data Link Layer Design issues, Error Detection codes, Stop and Wait protocol, Sliding Window Protocols: 1-bit sliding, go-back 'N', Selective repeat, Medium Access Control-The Channel Allocation Problem: Multiple Access Protocols-ALOHA, CSMA - Ethernet

UNIT III: Network Layer

The Network Layer- Network Layer Design issues, Routing algorithms- Optimality Principle -Shortest Path Algorithm, Distance Vector Routing, Flooding, Multicast routing protocol

UNIT IV: Internet Protocols and Quality Control

Internetworking, IPv4, IPv6, ICMP, ARP, Congestion Control Algorithms, Quality of Service

UNIT V: Network Simulation using NS

Introduction to simulator, NAM, Trace file structure, Simulating a TCP network, simulating a UDP network, Simulating a Lan Topology, Transferring a file, Simulating a wireless LAN, Analyzing the network error

COURSE OUTCOMES:

CO1: Understand the architecture of networks and the layering

CO2: Identify the design issues and the significance of various protocols and their services

CO3: Demonstrate the algorithms to improve the quality of network

CO4: Analyze the performance characteristics of a network with a simulator tool

TEXT BOOKS

- 1. Tanenbaum, A., Computer Networks, 3rd ed., Prentice-Hall, 1996
- 2. Jan L Harrington, Network Security: A Practical Approach, Morgan Kauffman, 2005

REFERENCE BOOKS

- 1. Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6thEdition, PHI 2014, ISBN-10: 0130183806
- 2. Uyless Black "Computer Networks, Protocols, Standards and Interfaces" 2nd Edition PHI ,ISBN-10: 8120310411.

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		3									
CO2	2		3							1		
CO3			3							1		
CO4	1		2		3							

Dr Ambedkar Institute of Technology, Bengaluru-56

Department of Master of Computer Applications <u>Scheme and Syllabus - CBCS - 2024 - 2026</u>

Course Title	MATHEN	MATHEMATICAL FOUNDATIONS FOR COMPUTER APPLICATIONS											
Course Code	MCAT14												
Category	Basic Scie	Basic Science Course (BSC)											
Scheme and		1	No. of Hour	s/Week		Total teaching	Credits						
Credits	L	Т	Р	SS	Total	hours							
	03	00	00	00	03	40	03						
CIE Marks: 50	SEE Mark	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours											

COURSE OBJECTIVES:

- To understand fundamental concepts of sets, relations, functions, logic, statistics and probability theory
- To acquire mathematical concepts like matrix algebra, logic and proofs.
- To apply statistical concepts and probability distributions for different real-world problems.

UNIT I: Matrix Algebra

Rank of a matrix-Row Echelon Form and Normal form, Solving system of equations -Gauss Elimination, Eigen values and Eigen vectors, Cayley - Hamilton theorem - Inverse of a matrix Linear Programming Problem-Applications, Types, Solving Linear Problems-Simplex method.

UNIT II: Sets, Relations & Functions

Basic definitions, Venn diagrams and set operations, Principle of inclusion and exclusion Relations- Properties of relations, Matrices of relations, Equivalence relations

Functions – Injective, subjective and bijective, Function compositions, Pigeon Hole Principle

UNIT III: Mathematical Logic

Propositions and logical operators, Truth table, Propositions generated by a set Logical equivalenceconverse, inverse and contrapositive, logical implications, Quantifiers, Rules of Inference

UNIT IV: Statistics

Descriptive Statistics, Measure of Central Tendency -Mean, Median and Mode, Quartiles, Measure of Dispersion -Range, Median, Absolute deviation about median, Variance and Standard deviation, Skewness and Kurtosis, Correlation-Pearson correlation, Spearman & Kendall Rank correlation. Curve fitting: Curve fitting by the method of least square-fitting the curves of the form Y=ax+b, $y=ab^x$, $y=ax^2+bx+c$

UNIT V: Probability Distributions and Graph theory

Theory of probability-Binomial distribution, Poisson distribution, Exponential Distribution

Graphs and Graphs models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, The Konigsberg Bridge problem.

8 hours

8 hours

8 hours

8 hours

8 hours

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- CO1: Demonstrate basic concepts of matrix algebra, set theory, functions, relations, graphs, statistics and probability theory used for solving problems.
- CO2: Examine the mathematical concepts like Linear algebra, probability distributions, statistics and graph representations for different domains of data science.
- CO3: Apply concepts of mathematics, probability, statistics & graph theory concepts to computer applications
- CO4: Implement various mathematical concepts gained to analyse the problems arising in practical situations.

TEXT BOOKS

- 1. Grimaldi, R.P and Ramana, B.V. "Discrete and Combinatorial Mathematics", 5th Edition, Pearson Education, 2006.
- 2. Theory and Problems of Probability, Seymour Lipschutz and Marc lars Lipson, 2 nd Edition Schaum's Outline Series, ISBN: 0-07-118356-6.
- 3. Larsen, Richard J., and Morris L. Marx: An Introduction to Mathematical Statistics and its Applications, Pearson Education, 2017.

REFERENCE BOOKS

- 1. Discrete Mathematics & its Applications, Kenneth H Rosen, 7 th Edition, 2010, McGraw-ISBN10: 0073383090, ISBN-13: 978-0-073383095.
- 2. Trembley, J.P. and Manohar, R, "Discrete Mathematical Structures with Applications to Com Science", Tata McGraw Hill, New Delhi, 2007.

EBOOKS/ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org
- 3. https://physicsworld.com/

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2											
CO2	1	2	3										
CO3	3	1	2	2									
CO4	3	2	2	1									
Stren	Strength of correlation: Low-1, Medium- 2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - CBCS – 2024-2026

Semester	Ι												
Course Title	DATA S	DATA STRUCTURES AND ALGORITHMS											
Course Code	MCAU	MCAU15											
Category	Integrat	Integrated Professional Core Course(IPCC)											
Scheme and			No. of Hou	rs/Week		Total teaching	Credits						
Credits	L	Т	Р	SS	Total	hours							
	03	00	02	00	05	40+24	04						
CIE Marks:	SEE Ma	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours											
30+20=50													

COURSE OBJECTIVES:

- Understanding Fundamental Data Structures..
- Analyze data structures and algorithms to solve the problems and evaluate their solutions.
- Demonstrate different Applications of data structures.
- Study the algorithms or program code segments that contains iterative constructs
- Analyze the asymptotic time complexity of the algorithm or code segments.

UNIT I: Introduction to Data Structures and Algorithms08 hoursIntroduction to stacks, Applications of Stack. Queues, Circular Queue, Linked Lists: BasicOperations, Implementations, Singly Linked List, Linked list implementations of stacks, Example oflist operations, Circular Linked List: Inserting, deleting and searching elements in a List, DoubleLinked List.

UNIT II: Binary Trees

Basic concepts, Binary trees and its properties, operations on Binary Trees, Binary tree Traversals, Binary Search Tree (BST): insertions and deletions operation on BST.

UNIT III: Algorithm Analysis and Algorithmic Paradigms

Notion of Algorithms, Asymptotic Notations and Basic efficiency classes, Mathematical analysis of Recursive and Non-recursive algorithms **Divide-and-Conquer:** Merge sort, Quicksort, Binary Search

UNIT IV: Algorithm Design Techniques

The General method, Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm, Warshall's and Floyd's Algorithms.

UNIT V: Graph Algorithms.

The Knapsack Problem, **Decrease-and-Conquer: Depth** First and Breadth First Search, **Backtracking:** n-Queens problem

Lab Component:

2 hours / week per batch

08 hours

08hours

08 hours

08 hours

- 1. Design a program to perform different operations on STACK of integers.
- 2. Develop a program to convert an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, %(Remainder), ^ (Power) and alphanumeric operands.
- 3. Implement the insert and delete operations on Circular QUEUE of Characters (Array Implementation of Queue with maximum size MAX).

- 4. Perform an operation on Singly Linked List (SLL) of Student Data with the fields: USN, Name, Branch, Semester, Mobile number.
- 5. Design a program to perform different operations on Doubly Linked List (DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo.
- 6. Perform the following operations on Binary Search Tree (BST) of Integers: Create, traverse and delete operations.
- 7. Write a program to find the shortest paths in a weighted graph using Floyd-warshall algorithm and compute its time complexity
- 8. Write a program to find the shortest paths using Dijkstra Algorithm compute its time complexity.
- 9. Design a program to implement Quick Sort compute its time complexity.
- 10. Design a program to implement Merge sort compute its time complexity.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation.

COURSE OUTCOMES:

CO1: Demonstrate the implementation of Stack, Queue and List for real world applications.

CO2: Analyze algorithms and solve real time problems using various algorithm design techniques. CO3: Apply the asymptotic notations to show the performance of the algorithm or code segments. CO4: Solve the optimization problems by recommending an efficient algorithm.

TEXT BOOKS:

- **1.** Richard F Gilberg and BehrouzAForouzan: Data Structures A Pseudocode Approach with C,Cengage Learning, 6 the Indian Reprint 2009.
- **2.** Anany Levitin: Introduction to the Design and Analysis of Algorithms, Pearson Education, 2nd Edition

REFERENCE BOOKS:

- 1. Yedidyah Langsam and Moshe J. Augenstein and Aaron M Tenenbaum: Data Structures using C and C++, 2ndEdition, Pearson Education Asia, 2002.
- 2. NanjeshBennur, Dr.Manjaiaha DH, Dr. C.K. Subbaraya: C programming skills and Data Structures primer, First Edition, IPH Publication, 2017.
- 3. Coremen T.H., Leiserson C.E., and Rivest R.L.: Introduction to Algorithms, PHI 1998.
- 4. Horowitz E., Sahani S., Rajasekharan S.: Computer Algorithms, Galgotia Publication 2001.

SCHEME FOR EXAMINATIONS:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2							
CO2	3	2										
CO3	3			2	3							
CO4	3	2	2		2							
Strength of correlation: Low-1, Medium- 2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - CBCS – 2024 -2026

Semester	Ι										
Course Title	Fundam	Fundamentals of C Programming									
Course Code	MCAU1	MCAU16									
Category	Integrated	Integrated Professional Core Course (IPCC)									
Scheme and			No. of Hou	rs/Week		Total teaching	Credits				
Credits	L	Т	Р	SS	Total	hours					
	03	00	02	00	05	40+24	04				
CIE Marks:	SEE Mar	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours									
30+20=50											

COURSE OBJECTIVES:

- Provide students with the formal notations for solving a problem and make them learn the syntax of C language, thereby writing code with good programming style.
- Understand and appreciate the use of arrays, strings, functions, structures and Union in C.
- Exploring the pointers and data file processing

UNIT I: Algorithms and Flowcharts 8 hours Introduction to Algorithms, Definition of flowcharts, symbol of flowcharts, Algorithms & flow charts using input statements, output statements, compute statements, and conditional statements and iterative statements. **UNIT II: Arrays and Strings** 8hours Handling one-dimensional and two-dimensional arrays – dynamic arrays Handling Strings: String operations and string functions – handling arithmetic operations in strings **UNIT III: User Defined Functions** 8 hours User defined functions: Elements, Handling function calls - Arrays and Functions **UNIT IV: Structures and Unions** 8 hours Handling structures - array of structures - structures within structures, structures and functions. **UNIT V: Pointers and File Management** 8 hours Understanding pointers - chain of pointers - pointers and arrays - pointer and character strings - array of pointers, pointer as functions Lab Component: 2 hours / week per batch **1.** Write a C program to find the roots of a quadratic equation. 2. Write a C program to generate Fibonacci Series. 3. Write C programs that use both recursive and non-recursive functions i) To find the factorial of a given integer. ii) To find the GCD (greatest common divisor) of two given integers. 4. Write a C program that uses functions to perform the following: i) Addition of Two Matrices ii) Multiplication of Two Matrices. 5. Write a C program to determine if the given string is a palindrome or not. 6. Write a C program which copies one file to another.

- 7. Write C programs that implements the Selection sort method to sort a given array of integers in ascending order.
- 8. Write C programs that implements the Bubble sort method to sort a given array of integers in ascending order
- **9.** Write C programs that uses non recursive function to search for a key value in a given list of integers using Linear search
- **10.** Write C programs that uses non recursive function to search for a key value in a given list of integers using Binary search.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- **CO1: Understand the fundaments of programming.**
- **CO2: Develop Problem-Solving Skills**
- CO3: Design programs using structure and union.
- CO4: Design programs using pointers and data file processing

TEXT BOOKS

- 1. VikasGupta:" Computer Concepts & C Programming", Dreamtech Press 2013. ISBN-13:9788177229981/ISBN-10:8177229982
- 2. Jacqueline Jones & Keith Harrow: Problem Solving with C, 1st Edition, Pearson 2011.
- 3. R S Bichkar, Programming with C, University Press, 2012.
- 4. V Rajaraman: Computer Programming in C, PHI, 2013.

REFERENCE BOOKS

- 1. Behrouz A Forouzan, Richard F Gilberg: Computer Science-A Structured Approach Using C, 3rd Edition, Cengage Learning,2013
- 2. M G Venkateshmurthy: Programming Techniques through C, Pearson Education, 2017
- 3. Ivor Horton: Beginning C from Novice to professional, 7th Edition, Springer, 2014

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12
CO1	3	2	3		3					1		
CO2	3	3	3	2	3				2			2
CO3	3	3	3	2	3				2			2
CO4		3		2					1			2
Strength of correlation: Low-1, Medium- 2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 - 2026

Semester	Ι										
Course Title	OBJECT	OBJECT ORIENTED PROGRAMMING USING JAVA LAB									
Course Code	MCAL1	MCAL17									
Category	Professio	Professional Core Course Lab (PCCL)									
Scheme and		Ν	lo. of Hours/We	eek		Total teaching	Credits				
Credits	L	Т	Р	SS	Total	hours					
	00	00 00 02 00 02 26 01									
CIE Marks: 50	SEE Ma	SEE Marks: 50 Total Max. Marks=100 Duration of SEE: 03 Hours									

COURSE OBJECTIVES:

- Design & develop the fundamentals of Object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
- Design & Develop exception handling and multithreading concepts.
- Develop efficient Java applets and applications using OOP concepts

1	-) Weiter - LAVA Descent to demonstrate Constructor Original disconsistent Mode of
1.	a) Write a JAVA Program to demonstrate Constructor Overloading and Method
	Overloading.
	b) Write a JAVA Program to implement Inner class and demonstrate its Access protection.
2.	Write a program in Java for String handling which performs the following:
	i) Checks the capacity of String Buffer objects.
	ii) Reverses the contents of a string given on console and converts the resultant string in
	upper case.
	iii) Reads a string from console and appends it to the resultant string of (ii).
3.	a) Write a JAVA Program to demonstrate multi-level Inheritance.
	b) Simple Program on Java for the implementation of Multiple inheritance using interfaces
	to calculate the area of a rectangle and triangle.
4.	Write a JAVA program which has
	i) A Class called Account that creates account with 500Rs minimum balance, a
	deposit()method to deposit amount, a withdraw() method to withdraw amount and also
	throws Less Balance Exception if an account holder tries to withdraw money which
	makes the balance become less than 500Rs.
	ii) A Class called LessBalanceException which returns the statement that says withdraw
	amount (Rs) is not valid.
	iii) A Class which creates 2 accounts, both account deposit money and one account tries
	to withdraw more money which generates a LessBalanceException take appropriate action
	for the same.
5.	Write a java program to handle the following system exceptions ArrayIndexOutOfBound,
	FileNotFound and NumberFormat Exception.

6.	a) Write a JAVA program using Synchronized Threads, which demonstrates Producer
	Consumer concept.
	b) Design a program to create two threads, one thread will print odd numbers and second
	thread will print even numbers between 1 to 10 numbers
7.	Write a JAVA program to implement a Queue using user defined Exception Handling (also
	make use of throw, throws).
8.	Complete the following:
	i. Create a package named shape.
	ii. Create some classes in the package representing some common shapes like Square,
	Triangle, and Circle.
	iii. Import and compile these classes in other program.
9.	Write a JAVA program which has
	i). A Interface class for Stack Operations
	ii). A Class that implements the Stack Interface and creates a fixed length Stack.
	iii).A Class that implements the Stack Interface and creates a Dynamic length Stack.
	iv). A Class that uses both the above Stacks through Interface reference and does the Stack
	operations that demonstrates the runtime binding.
10.	Write a JAVA program which uses Datagram Socket for Client Server Communication for
	multiple systems
TEAC	CHING LEARNING PROCESS: power point presentation, animations, videos

COURSE OUTCOMES:

CO1: Design and Develop Java programming language and runtime environment and implement the multithreading and client-side programming.

SCHEME FOR EXAMINATIONS

Student has to pick one question from a lot of 12 questions **MAPPING of COs with POs**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	2	1	1	1	1					2	2	
Streng	Strength of correlation: Low-1, Medium-2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 -2026

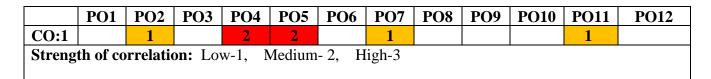
Semester	Ι									
Course Title	WEB TH	ECHNO	LOGIES LA	AB						
Course Code	MCAL1	8								
Category	Professio	Professional Core Course Lab(PCCL)								
Scheme and		Ν	No. of Hours	/Week		Total teaching	Credits			
Credits	L	Т	Р	SS	Total	hours				
	00	00	02	00	02	26	01			
CIE Marks: 50	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours									

COURSE OBJECTIVES:

- To design web pages using Bootstrap framework and add effects with jQuery.
- To create web pages using XHTML and Cascading Style Sheets.
- To build dynamic web pages using JavaScript.
- To develop different approaches of Server-side scripts using PHP.
- To design asynchronous web applications using Ajax.

1.	Create an HTML page that provides information about your department. The HTML page must use the following tags: a) Text Formatting tags b) Horizontal rule c) Meta element d) Links e) Images f) Tables g)list h)frames i)
2.	Develop and demonstrate the different types style sheets. Use HTML page that contains at least three paragraphs of text, listed elements and a table with four rows and four columns.
3.	Design a web page using Bootstrap layout components such as Carousel, Cards, Collapse.
4.	Design a webpage with Home tab and Sign-in links using Tabs/navs. Apply modal for Sign In page and an image for Home tab.
5.	Create a HTML document that describes the form for taking orders for popcorn. Text boxes are used at the top of the form to collect the buyer's name and address. These are placed in a borderless table to force the text box align vertically. A second table to collect actual order. Each row of this table names a product, displays the price, and uses text box with size 2 to collect the quantity ordered using td> tag. The payment method is input by the user through one of four radio buttons. Provide provision for submission of order and clear the order form.
	Sample Output

	Welcome to Millennium Popcorn Sales	Gyn	nnasti	cs Boost	er Club	-
	Buyer's Name:		-			
	Street Address:		1			
	City, State, Zip:					
	1	······	-	1		
	Product Name		Quantity			
	Unpopped Popcorn (1 lb.)	\$3.00				
	Caramel Popcorn (2 lb. canister)	\$3.50				
	Caramel Nut Popcorn (2 lb. canister)					
	Toffey Nut Popcorn (2 lb. canister)	\$5.00				
	Payment Method:					
		C Che	ck			
	Submit Order Clear Order Form					-
4.	Write JavaScript to validate the following	ıg field	s of the	Registration	n page.	
	First Name (Name should contain alphab Password (Password should not be less the E-mail id (should not contain any name@domain.com) Mobile Number (Phone number should of Last Name and Address (should not be F	han 6 d inva contain	character lid and 10 digit	s' length). must fol		
5.	a) Write a PHP program to store current on' date-time on the web page upon reopb) Write a PHP program to store pa on each refresh, and to show the count or	ening ge vie	of the sa	me page.	1 1	
6.	Create HTML form with Name of Lie Number, Make & Model, Year of Regist Retrieve and display the data based on na	ration.				-
7.	Create a HTML form using Bootstrap w text fields. On submitting, store the value data for the same.					
8.	Demonstrate the working of JSON Struc	ctures v	with HTI	ЛL.		


TEACHING LEARNING PROCESS: power point presentation, animations, videos

COURSE OUTCOME:

CO1: Design and Develop interactive asynchronous web application with server-side script.

SCHEME FOR EXAMINATIONS

Student has to pick one question from a lot of 8 questions

Dr Ambedkar Institute of Technology, Bengaluru-56 **Department of Master of Computer Applications** Scheme and Syllabus - 2024 - 2026

Course Title	MATHEMATICS BRIDGE COURSE FOR MCA									
Course Code	MCAT19	MCAT19								
Category	Non-Cred	it Man	datory Co	ourse (NCMC)						
Scheme and		l	No. of Hour	s/Week		Total teaching	Credits			
Credits	L	Т	Р	SS	Total	hours				
	03	00	00	00	03	40	0			
CIE Marks: 50	SEE Mark	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours								

COURSE OBJECTIVES:

- To understand fundamental concepts of sets, relations, functions, logic, statistics and probability theory
- To acquire basic mathematical concepts like matrix algebra, logic and proofs.
- To memorize fundamental statistical concepts and probability distributions.

UNIT I: Matrices and Determinants

Types of Matrices, Algebra of Matrices, Symmetric and Skew Matrices, Properties of Matrices, Elementary row and column operations. Determinant of square matrix(up to 3x3 matrices)-Definition, properties of determinant, minors, cofactors

UNIT II: Sets and Relations

Introduction. Representation of sets, Types of Sets, Finite set, Infinite set, equivalent set, disjoint set, Subset, Power set. Venn diagram. Set operations: Union, Intersection, Complement of a set, Difference, Symmetric Difference. Laws of set theory. Cartesian product of sets, Relations and properties.

UNIT III: Sequence and Series

Introduction, Sequences, Series, Arithmetic Progression, Sum of Finite number of terms in A.P., Arithmetic Means, Geometric Progression, sum to n terms of G.P. Geometric Mean, relation between A.M and G.M.

UNIT IV: Statistics

Descriptive Statistics, Measure of Central Tendency -Mean, Median and Mode, Quartiles, Measure of Dispersion -Range, Median, Absolute deviation about median, Variance and Standard deviation, **Skewness and Kurtosis**

UNIT V: Probability Theory

Probability: Introduction, random experiments, sample space, events and algebra of events. Definitions of Probability - classical, and axiomatic. Conditional Probability, laws of addition and multiplication, independent events, theorem of total probability, Bayes' theorem and its applications. TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

8 hours

8 hours

8 hours

8 hours

8 hours

COURSE OUTCOMES:

- **CO1:** Demonstrate basic concepts of matrix algebra, set theory, relations, statistics and probability theory used for solving problems.
- **CO2:** Examine the mathematical concepts like Linear algebra, probability distributions, statistics.
- CO3: Determine the sum of the first n terms of an arithmetic and Geometric series.
- **CO4:** Implement various fundamental mathematical concepts find the probability of simple and compound events.

TEXT BOOKS

- **1.** Grimaldi, R.P and Ramana, B.V. "Discrete and Combinatorial Mathematics", 5th Edition, Pearson Education, 2006.
- **2.** Theory and Problems of Probability, Seymour Lipschutz and Marc lars Lipson, 2 nd Edition Schaum's Outline Series, ISBN: 0-07-118356-6.
- **3.** Larsen, Richard J., and Morris L. Marx: An Introduction to Mathematical Statistics and its Applications, Pearson Education, 2017.

REFERENCE BOOKS

- 1. Discrete Mathematics & its Applications, Kenneth H Rosen, 7 th Edition, 2010, McGraw-Hill, ISBN10: 0073383090, ISBN-13: 978-0-073383095.
- **2.** Trembley, J.P. and Manohar, R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill, New Delhi, 2007.

EBOOKS/ONLINE RESOURCES

- 1. https://archive.nptel.ac.in/courses/111/105/111105134/
- 2. https://archive.nptel.ac.in/courses/111/105/111105121/

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Η	Μ											
CO2	Η	Μ	L										
CO3	L	Н	Μ	Μ									
CO4	L	Μ	Μ	Н									
Streng	Strength of correlation: Low-1, Medium- 2, High-3												

Dr. Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 -2026

Semester	II										
Course Title	РҮТНО	PYTHON PROGRAMMING									
Course Code	MCAT2	1									
Category	Professi	Professional Core Course (PCC)									
Scheme and		1	No. of Hou	rs/Week		Total	Credits				
Credits	L	Т	Р	SS	Total	teaching					
						hours					
	03	00	00	00	03	40	3				
CIE Marks: 50	SEE Mar	·ks:50	Total Ma	x. marks=100	0 Duration of SEE: 03 Hours						

COURSE OBJECTIVE:

- Understand and learn the basics of Python Programming
- Demonstrate the python data structure and database connectivity
- Demonstrate data analytics concept using Numpy, pandas and data visualization
- Demonstrate database connectivity and object-oriented programming concepts

UNIT I: Python Basic Concepts and Programming	08 hours
Introduction to Python programming: Features of Python, Execution of a Python Prog	gram, Data
types in Python, operators, Control Statements, Functions	
UNIT II: Python Data Collections	08 hours
Strings: Creating and storing strings, string operations, formatting Strings.	
Lists: Basic List operations, Built in functions used on lists, List Comprehensions.	
Tuples and Sets: Basic Operations on Tuples, Functions to Process Tuples.	
Sets: Set Methods, set operations.	
Dictionaries: Operations on Dictionaries, Dictionary Methods.	
UNIT III: Numpy, Pandas and Data Visualization	08 hours
Numpy: The Numpy Array, N-dimensional array operations and manipulations. Data pro-	ocessing
using arrays.	
Pandas: Essential Functionality, Data frames, computing descriptive statistics, Time series	es analysis
with pandas.	
Data Visualization: Matplotlibs package-plotting graphs-controlling Graph-Adding Text	t- More
Graph types. Data Visualization with Seaborne.	
UNIT IV: Files and Database Connectivity, Regular Expressions	08 hours
Files and Database Connectivity: File Processing in python, Types of Databases Used v	with Python,
working with MySQL Database: Using MySQL from Python, Retrieving All Rows from	m a Table,
Inserting Rows into a Table, Deleting Rows from a Table, Updating Rows in a Table, Cre	eating
Database Tables through Python	
Regular Expressions: Sequence Characters in Regular Expressions, Quantifiers in Regular	lar
Expressions, Special Characters in Regular Expressions, Using Regular Expressions on F	iles.

UNIT V: Object oriented Programming

Object oriented Programming: Basics of OOPS, Encapsulation, Inheritance, polymorphism. Magic Methods.

Decorators: Understanding Decorators, Decorator Syntax, Decorators Functions, Decorator classes. Context Managers: Context manager syntax, when you should write context managers. **Generators:** Understanding Generators, Generator syntax, Generator Examples.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

CO1: Understand the Fundamentals of Python programming

CO2: Demonstrate various features of python programming for building applications.

CO3: Apply python programming for designing the applications efficiently.

CO4: Design and Develop applications to be deployed in real world scenarios.

TEXT BOOKS

- 1. Core Python Programming: 2017 Edition, R. Nageswara Rao, DreamTech Publication.
- 2. Python for Data Analysis 2nd Edition, O'Reilly Publications
- 3. Practical Programming: An introduction to Computer Science Using Python, second edition, Paul Gries, Jennifer Campbell, Jason Montojo, The Pragmatic Bookshelf.
- 4. Core Python Programming, Wesley J Chun, 3rd Edition, Pearson Education.

REFERENCE BOOKS

- 1. Professional Python, Sneeringer, Luke, 2016, John Wiley & Sons, ISBN -978-1-119-07085-6.
- 2. Mastering Python Fundamentals with ease, Asha Gowda Kare Gowda, Bhargavi K, Lambart Academic Publishing
- 3. Introduction to Python Programming, Gourishankar S, Veena A, CRC Press/Tyler and Francies.

SCHEME FOR EXAMINATIONS

Question Paper Pattern:

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2								
CO2	2	3	3	3	1							
CO3	2	2	3	2	1					2	2	
CO4	2	2	3	3	1					3	3	
Strength of correlation: Low-1, Medium- 2, High-3												

Dr. Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 -2026

Semester	II											
Course Title	SOFTWA	RE EN	GINEER	ING								
Course Code	MCAT22											
Category	Profession	Professional Core Course (PCC)										
Scheme and		1	No. of Hour	s/Week		Total teaching	Credits					
Credits	L	Т	Р	SS	Total	hours						
	03	00	00	00	03	40	03					
CIE Marks: 50	SEE Marks: 50Total Max. marks=100Duration of SEE: 03 Hours											

COURSE OBJECTIVE:

- Classify various software requirement process and tools
- Build software Design and Architecture using software notations and tools
- Understand, how to implement the software project using software tools and Methodologies
- Test the software and measure the quality of Software

UNIT I: Requirements Engineering

Software requirements Fundamentals, Requirements process, Requirements elicitation, Requirements Analysis, Requirements specification, Requirements validation, Practical consideration, Requirement tools

UNIT II: Software Architecture and Design

Software Design Fundamentals, Key Issues in Software Design, Software structure and Architecture, User Interface design, Software design quality analysis and evaluation, Software design notations, Software design strategies and Methods, Software design tools

UNIT III: Software Implementation Methods and Tools

Software implementation Fundamentals, Managing software Implementation, Practical considerations, software Implementation Tools, software implementation Technologies, Product Documentation, Formal software Implementation methods

UNIT IV: Software Testing and Software Quality

Software Testing:

Software Testing Fundamentals, Test levels, Test Techniques, Test related measures, Test process, testing tools

Software Quality:

Software Quality fundamentals, Software quality management processes, practical considerations, Software Quality tools

UNIT V: Software Project Management

Initiation and Scope definition, Software project planning, software project implementation plans, Review and evaluation, software closure activities, software engineering measurement, Software management tools

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations,

COURSE OUTCOMES:

8hours

8hours

8hours

8hours

.

- CO1: Understand the importance of Software Engineering and Management, Tools and methodologies
- CO2: Design software by using software design notations and design tools
- CO3: Implement the software using methods and tools
- CO4: Develop the quality Software using efficient project management

TEXT BOOKS

- 1. Software Engineering, 10th Edition Ian Sommerville, University of St. Andrews, Pearson, 2016
- 2. Software Engineering: A Practitioner's Approach, 8/e by Bruce R. Maxim and Roger S. Pressman, 2019
- 3. Fundamentals of Software Engineering, Rajib Mall, 4th Edition, PHI, 2014

REFERENCE BOOKS

- 1. Object oriented software engineering, Stephan R . Schach, Tata McGraw Hill, 2008
- 2. Applying UML and Patterns, Craig Larman, , 3rd edition, Pearson Education, 2005.

EBOOKS/ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

SCHEME FOR EXAMINATIONS

Each full question consists of 20 marks. Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					3	2						
CO2					3			2				
CO3					3							2
CO4						2	1		1		3	
Strength	n of cor	relatio	n: Lov	v-1, M	edium- 2	2, Higl	n-3			-		

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications <u>Scheme and Syllabus – 2024 -2026</u>

Semester	II						
Course Title	DATA SC	CIENCE	E				
Course Code	MCAT23						
Category	Profession	al Core	Course (PC	CC)			
Scheme and		1	No. of Hour	s/Week		Total teaching	Credits
Credits	L	Т	Р	SS	Total	hours	
	03	00	00	00	03	40	03
CIE Marks: 50	SEE Mark	s: 50	Total Ma	x. marks=100	Durati	on of SEE: 03 Ho	ours

COURSE OBJECTIVES:

- To understand the concepts of Data science.
- To apply the inferential statistics after preprocessing techniques are used.
- To implement modelling methods for real world problems.
- Analyzing data from files and visualizing graphical presentations using tableau.

UNIT I: Introduction to Data Science

Introduction, Evolution of data science, Applications, Data science process – roles, stages in data science project – components of the Data Science lifecycle, data analytics, Understanding Data and Types of Data, Fundamentals of Big Data-Big Data Definition and Characteristics, Big Data vs. Traditional Data, Big Data Storage Systems

UNIT II: Data Pre-processing and Data Wrangling

Data Pre-processing: Data Cleaning, stripping out extraneous information, Find and treat missing values, Identify and treat outliers

Data Wrangling: Grouping, merging, combining, concatenating, Reshaping(pivoting), Data Transformation –Mapping

UNIT III: Hypothesis Testing

Inferential Statistics-Measurement scales, Point estimates, Confidence Interval, Central limit theorem, Normalizing data using z-score, Normal Distributions

Inferential Statistics-Hypothesis testing: t-test, ANOVA test.

UNIT IV: Data Analytics

Understanding Linear regression, making prediction-hypothesis on regression coefficients, Adding best fit. Multiple Linear Regression, Polynomial Regression, Model Evaluation

UNIT V: Data Analytics & Data Visualization

Classification- K-Nearest Neighbor Classifier, Bayes Theorem, Naive Bayes Classifier, Model Evaluation-Confusion Matrix

Tableau-Introduction, Architecture of Tableau, dimension Vs measure, data types, data filters, Tableau calculations, function used in tableau, Maps, Building a Dashboard.

8 hours

8 Hours

8 hours

8 hours

COURSE OUTCOMES:

- CO1: Outline the role of data science and the significance of exploratory data analysis (EDA) in data science.
- CO2: Illustrate data preprocessing techniques and perform statistical analysis using python.
- CO3: Apply basic data science algorithms for predictive modelling and analyse using visualization tool.
- CO4: Formulate and use appropriate models of data analysis and visualize them.

TEXT BOOKS

- 1. Joel Grus, Data Science from Scratch, O'Reilly Media, 2015.
- 2. David Dietrich, Barry Heller," Data Science & Big Data Analytics: Discovering, Analysing, Visualizing and Presenting Data", Wiley,2015
- **3.** Joshua N. Milligan, Blair Hutchinson, Mark Tossell and Roberto Andreoli, Learning Tableau 2022 Fifth Edition, O'Reilly Media

REFERENCE BOOKS

- 1. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013.
- 2. Ryan Sleeper, Practical Tableau, O'Reilly Media, Inc., Copyright © 2018
- 3. Communicating Data with Tableau, Ben Jones, O'Reilly Media, Inc.,

EBOOKS/ONLINE RESOURCES

- 1. https://archive.nptel.ac.in/courses/106/106/106106212/
- 2. https://www.youtube.com/watch?v=tA42nHmmEKw
- 3. https://www.youtube.com/watch?v=ua-CiDNNj30

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3										
CO2	1	2		3	2							
CO3		2		3	3		3			2		
CO4	1			2	3		3			2	2	2
Stren	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus – 2024 - 2026

Semester	II												
Course Title	DATABA	SE MAI	NAGEMEN	Г									
Course Code	MCAU24	ACAU24											
Category	Integrate	ntegrated Professional Credit Course (IPCC)											
Scheme and]	No. of Hours	s/Week		Total	Credits						
Credits	L	Т	P	SS	Total	teaching hours							
	02	00	02	00	05	26+26	03						
CIE Marks: 30+20=50	SEE Mar	ks: 50	Total Max	x. marks=100	Duratio	on of SEE: 03 H	ours						

COURSE OBJECTIVES:

- Understand and implement the processes of database management system.
- Apply the SQL Query, Database Design
- Interpret RDBMS concept and managing multiple transactions, recovery techniques in case of Transaction failures

UNIT 1: Introduction 6 Hours Characteristics of Database approach, Actors on the Scene, Workers behind the scene, Advantages of using DBMS approach, Data models, schemas and instances, Three -schema architecture and data independence, Database languages and interfaces, the database system environment UNIT-2: Entity-Relationship Mat 5 Hours Conceptual Database using high level conceptual data models for Database Design, A Sample Database Application, Entity types, Entity sets Attributes and Keys Relationship types, Relationship Sets, Roles and Structural Constraints Weak Entity Types. Construction of ER diagram: Sample case studies **UNIT 3: Introduction to SQL** 5 Hours Overview of the SQL Query Language, SQL Data Definition, Basic structure of SQL Queries, Additional Basic Operations, Null values, Aggregate Functions, Queries using where, group by, order by **UNIT 4: Working on SQL Queries and normalization** 5 hours Working with subqueries, SQL joins, Complex queries, Handling views - Data control language commands **UNIT 5: Normalization and Transaction Management** 5 Hours Informal Design Guidelines for Relation Schemas, Functional dependencies, Normal Forms based

on Primary Keys, General Definitions of 2nd and 3rd Normal Forms, Boyce Codd Normal Forms Transaction Concept, ACID Properties - A Simple Transaction Model, Transaction model states, Serializability

PRACTICAL COMPONENT

List of Laboratory programs (2 hours/week per batch)

Consider the following relational tables:

1.	Doctor(docid integer(5), docname varchar(25), specialization varchar(20), experience
2.	integer(2), dob varchar(10)) Patient(<u>pid</u> integer(5), pname varchar(25), dob date, date_of_admission date)
3.	Staff(<u>staffid</u> integer(5), sname varchar(25), designation varchar(25), date_of_joining date, on_contract boolean default value 0)
4.	Room(<u>roomid</u> integer(5), type varchar(25), AC boolean)
5.	Treated_by(docid, pid, treatment_for varchar(10), consultant_fees integer(4))
6.	Occupied_at(pid, roomid)
7.	Supervising(staffid, roomid)
1.	Demonstrate the DDL commands.
	• Update the doctor table to change the domain of dob to date.
	 Add a field 'address' to patient table.
	• Add a field 'age' to patient table.
	• Demonstrate deletion of a field in a table.
	• Demonstrate removal of a table.
2.	Demonstrate the DML commands to
	• Insert data to the above fields.
	• Update the contract of all staffs to permanent.
	• Delete the data of all patients admitted before 2005.
	• Update the designation of all staffs who had joined after 2020 to Senior_Level_staff.
	• Update the AC field of all rooms of type "VIP" to value 1.
3.	Apply Querying techniques to fetch data from single table. Sample queries as follows:
	• Fetch the details of all doctors.
	• Fetch the age of all patients.
	• Fetch the details of the doctors and age of all doctors with more than 10 years of experience.
	 Fetch the details of all staffs who are not permanent.
	• Find the average experience of doctors specialized in cardiology.
	• Find the total number of senior level staffs who had joined in the year 2019.
4.	Apply querying techniques to fetch data from multiple tables. Sample queries as follows:
	• Find the id and name of patients and doctors treating them.
	• Find the names of patients, doctors and disease treated for.
	• Fetch the patient details and treatment taken for and fees charged.
	• Find the patients who are treated by doctor 'Dilip'.
	• Find the doctors who are treating the patient 'Ranjith'.
	 Find the patients who are treated by cardiologists. Find the details of the patients and the rooms they are ecoupying
	Find the details of the patients and the rooms they are occupying.Find the details of the patients occupied in AC rooms.
	Find the details of the patients who are treated by the doctor with highest experience.
5.	Demonstrate the implementation of joins in SQL. Sample queries as in Q.No.4.
5. 6.	Demonstrate the implementation of views in SQL. Sample queries as in Q.No.4.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- **CO1: Demonstrate on the fundamentals of data models.**
- CO2: Build ER diagrams and structures for various real-time systems and apply querying techniques.
- CO3: Apply normalization techniques in designing databases.
- CO4: Implement and analyze the process of transactions to handle multiple transactions.

TEXT BOOKS

- 1. Elmasri and Navathe: Fundamentals of Database Systems, 5th Edition, Addison -Wesley, 2011
- 2. Silberschatz, Korth and Sudharshan Data base System Concepts,6th Edition, Tata McGraw Hill, 2011

REFERENCE BOOKS

- 1. C.J. Date, A. Kannan, S. Swamynatham: An Introduction to Database Systems, 8th Edition, Pearson education,2009
- 2. Raghu Ramakrishnan and Johannes Gehrke: Database management Systems, 3rd Editionon, McGra Hill, 2003

EBOOKS/ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2												
CO2	2	3	3	3	3								
CO3	2	3	3	3	3		Н			2	2		
CO4			2		1		1	н		2	2		
Streng	Strength of correlation: Low-1, Medium- 2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 -2026

Semester	II													
Course Title	CLOUD E	CLOUD ESSENTIALS												
Course Code	MCAU25	MCAU251												
Category	Integrate	Integrated Professional Elective Course (IPEC)												
Scheme and		No. of Hours/Week Total teaching Credits												
Credits	L	Т	Р	SS	Total	hours								
	02	00	02	00	04	26+24	3							
CIE Marks: 30+20=50	SEE Mark	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours												

COURSE OBJECTIVES:

- Understand the different cloud computing concepts.
- To work with virtualized environment.
- Explore different cloud services such as Amazon, Salesforce.
- Identify different cloud case studies.
- Leverage the prominent Cloud computing technologies available in the market place.

UNIT I: Cloud Computing Overview:

Cloud Computing Overview, Definition of Cloud Computing, Characteristics of Cloud Computing Types of Cloud Environments: Public, Private, and Hybrid Cloud. Cloud Service Models: IaaS, PaaS, SaaS, Cloud Deployment Model- Public clouds, Private clouds, Hybrid clouds, Community clouds, Open challenges.

UNIT II: Cloud Architecture and Design:

Overview of Cloud Architecture, Components of Cloud Infrastructure: Compute, Storage, Networking, Security, Best Practices in Cloud Architecture, Designing for High Availability and Fault Tolerance Cloud Scalability and Elasticity. Familiarize the services by AWS - Compute services, Storage services, Communication services and Additional services.

UNIT III: Cloud Networking:

Key Networking Concepts in the Cloud: VPC, Subnets, Routing, Peering, VPN, Understanding Cloud Load Balancing and Content Delivery Networks (CDN), Public and Private IPs in Cloud Network Security (e.g., Security Groups, Firewalls).

UNIT IV: Cloud Security and Billing:

Understanding Shared Responsibility Model in Cloud Security, Cloud Security Principles: Identity & Access Management (IAM), Encryption, Network Security, Regulatory Compliance (e.g., GDPR, HIPAA), Introduction to Cloud Cost Models: Pay-as-you-go, Reserved Instances, Spot Instances Cloud Pricing Calculator and Estimating Costs, Budgeting and Setting up Alerts for Cloud Costs.

UNIT V: Cloud Case Studies & Future of Cloud Computing:

Industry Case Studies of Successful Cloud Adoption- Salesforce-CRM, Emerging Trends in Cloud Computing: Edge Computing, Serverless, AI/ML Integration, The Role of Cloud in Digital Transformation, Cloud-native Applications and Micro services, The Future of Cloud Security and Compliance.

05 hours etworking,

06 hours

05 hours

05 hours

PRACTICAL COMPONENT List of Laboratory programs (2 hours/week per batch)

- 1. Familiarize the services by AWS
- 2. Creating user login
- 3. Creating Linux, Windows virtual machines instance using EC2
- 4. Run simple applications on EC2 Instance
- 5. Creating Storage using S3.
- 6. Demonstrate Database application on AWS
- 7. Create a web application to enter the students' details like name, USN, semester, section and CGPA to a database on Salesforce cloud platform.
- 8. Create a web application to implement an online cart for adding items to a shopping cart and deleting it.
- 9. Create a web application to enter the faculty details like faculty ID, faculty name, and salary to a database and calculate the income tax to be paid by the faculty at the end of financial year.
- 10. Develop Blood donation registration app with an object which records donors' name, age and blood group as parent relationship and another object containing hemoglobin level, donated or not details (if age>18) child relationship.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos Hands-on Sessions: All the above discussed concepts are demonstrated in the lab.

COURSE OUTCOMES:

CO1: Explain the fundamental principles of cloud computing and its related Concepts.

- **CO2:** Analyze Prominent Cloud computing technologies available in the marketplace.
- **CO3:** Apply suitable applications to leverage the strength of cloud computing.

CO4: Develop the applications of cloud Computing that can harness the power of cloud computing

TEXT BOOKS:

- 1. Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wiley, 2011.
- 2. Enterprise Cloud Computing Technology, Architecture, Applications, Gautam Shroff, Cambridge University Press, 2010.
- 3. Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010

REFERENCE BOOKS

1. Cloud Computing: A Hands-On Approach by Arshdeep Bahga and Vijay Madisetti, 2014.

E-BOOKS/ONLINE RESOURCES

1. http://www.nptel.ac.in

2. https://en.wikipedia.org

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	P	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				3					3		
CO2	2		2								2	2
CO3	2		2		3			2			2	2
CO4	2		2								3	3
Strengt	Strength of correlation: Low-1, Medium-2, High-3											

Dr. Ambedkar Institute of Technology, Bengaluru-56 Master of Computer Applications Scheme and Syllabus - 2024 -2026

Semester	II													
Course Title	BIG DA	TA ANA	LYTICS											
Course Code	MCAU2	MCAU252												
Category	Integrate	ntegrated Professional Elective Course (IPEC)												
Scheme and		No. of Hours/Week Total Credits												
Credits	L	T	Р	SS	Total	teaching hours								
	02	00	02	00	04	26+24	3							
CIE Marks: 30+20=50	SEE Ma	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours												

COURSE OBJECTIVES:

- To study fundamental concepts about data and its identification
- To analyse the design of Hadoop Distributed Files system.
- To understand and analyse MapReduce technique for solving BigData problems.
- To study different hadoop related tools like Pig, Hive and HBase.

UNIT I: Introduction to BigData

6 hours

5 hours

5 hours

5 hours

Introduction, Applications, Basic Nomenclature, Analysis Process Model, Analytical model Requirements, cloud and Big Data – Predictive Analytics, CrowdSourcing Analytics, Inter-and Trans-Firewall Analytics.

Hadoop Fundamentals

Data, Data Storage and Analysis, Grid Computing, Volunteer Computing, A Brief History of Hadoop, Apache Hadoop and the Hadoop Ecosystem.

UNIT II: The Hadoop Distributed File system

The Design of HDFS, HDFS Concepts, Blocks, Name nodes and Data nodes, HDFS Federation, HDFS High-Availability, The Command Line Interface, Basic File system Operations, Hadoop File systems Interfaces, TheJavaInterface, ReadingDatafroma HadoopURL, Reading Data Using the File System API, Writing Data, Directories, Querying the File system, Deleting Data, Data Flow Anatomy of a File Read ,Anatomy of a File Write

UNIT III: MapReduce

A Weather Dataset, Data Format, Analyzing the Data with Unix Tools, Analyzing the Data with Hadoop, Map and Reduce, Working of Map Reduce - Anatomy of a Map Reduce Job Run, Failures, Shuffle and Sort, Task Execution Map Reduce Formats- Input Formats, Output Formats

UNIT IV: NOSQL and Hadoop Tool

Introduction to NoSQL, Key-value pair databases, Document databases, Column family databases, Graph databases.

Hadoop Tool-Pig

Pig – Grunt – pig data model – Pig Latin – developing and testing Pig Latin scripts, Pig Latin–Structure, Statements, Expressions, Types, Schemas, Functions, Macros, User- Defined Functions – A Filter UDF, An Eval UDF, A Load UDF.

UNIT V: Hadoop Tool-Hive

Hive–Architecture, data types and file formats–HiveQLdatadefinition–HiveQLdatamanipulation– HiveQLqueries.Tables–ManagedTablesandExternalTables, Partitions and Buckets, Storage Formats, Joins, Sub queries, Views. Implementation of case studies.

PRACTICAL COMPONENT

List of Laboratory programs (2 hours/week per batch)

- 1. Hadoop Installation.
- 2. Installation of VMWare to setup the Hadoop environment and its ecosystems.
- 3. Implement the following file management tasks in Hadoop: Adding files and directories ii. Retrieving files iii. Deleting files
- 4. Installation of PIG. Write Pig Latin scripts sort, group, join, project, and filter your data.
- 5. Installation of HIVE.
 - Use Hive to create, alter, and drop databases, tables, views, functions.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

CO1: Explain Bigdata Technology and Basic Nomenclature.

CO2: Analyse Hadoop ecosystem and the design of Hadoop Distributed File system.

CO3. Develop and run a MapReduce application

CO4: Recommend Hadoop related tools to perform bigdata analytics.

Text Books:

- 1. BartBaesens, "Analytics BigData World: The Essential Guide to Data Science and its Applications" Wiley
- 2. TomWhite, "Hadoop: The Definitive Guide", 3rdEdition, O'Reilly, 2012
- 3. E.Capriolo, D.Wampler, and J.Rutherglen, "Programming Hive", O'Reilley, 2012.
- 4. AlanGates, "Programming Pig", O'Reilley, 2011
- 5. ShankarTiwari, Professional NOSQL" O'Reilley

Reference Books:

1. Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

LEVEL	OF C	O-PO M	IAPPIN	IG TAB	LE							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		3										
CO2		2	3		2							
CO3					2			3		1		
CO4					1			2		2	3	

Dr Ambedkar Institute of Technology, Bengaluru-56 **Master of Computer Applications** Scheme and Syllabus – 2024 - 2026

Semester	II												
Course Title	GO Prog	grammi	ng										
Course Code	MCAU2	MCAU253											
Category	Integrat	Integrated Professional Elective Course (IPEC)											
Scheme and		No. of Hours/Week Total Credits											
Credits	L T P SS Total teaching hours												
	02	00	02	00	04	26+24	3						
CIE Marks: 30+20=50	SEE Ma	rks:50	Total Ma	x. marks=100	Durat	ion of SEE: 03 H	ours						

COURSE OBJECTIVES:

- Learn the fundamentals of Go programming language •
- Understand the handling of various data structures in Go •
- Apply Go routines and packages to build parallel systems •
- Design and implement runtime projects •

LINIT I .

UNIT I : 6 Hours
GO: Getting started – Go Primer: Variables, Functions, Looping E numerations,
Structures, Methods, Interfaces, Numbers, Go Error, object-oriented programming concepts
UNIT II: 5 Hours
Generic and Specialized Generic Data Structures, Arrays - Slices - Strings, Collections:
Maps, Lists
UNIT III: 5 Hours
Race condition, Mutual Exclusion: sync. Mutex, Read/Write Mutexes: sync. RWMutex. Memory
synchronization, Lazy Initialization: sync. Once, The Race Detector Example: Concurrent
Non-Blocking Cache, Goroutines and Threads
UNIT IV: 5 Hours
Concurrency with Shared Variables
Semaphores and Threads, Reflection and Low-level Programming
UNIT V: 5 Hours
The Go test Tool, Test Functions, Benchmark functions, profiling -
Implementation Connecting to servers, Distributing Go, Serving Objects, Calling Remote
procedures
PRACTICAL COMPONENT
1. Develop an application using GO Program on Enumeration 2) Interface 3) Methods
2. Develop an application using GO Program on 1) structures 2) GO error 6) Functions
3. Demonstrate a Program on Strings 2) Arrays 3) slice 4) Maps
4. Demonstrate Reflection
5. Develop an application to demonstrate Goroutines and Channels
6. Design an application to implement Concurrency

Develop server-side application 7.

8.	Develop concurrent clock server
9.	WAP in Go to create buffered channel, store few values in it and find channel capacity and
	length. Read values from channel and find modified length of a channel
10.	Write a go program that creates a slice of integers, checks numbers from slice are even or odd and further sent to respective go routines through channel and display values received by go
	routines.
TEA	CHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

, P Р μ

COURSE OUTCOMES:

CO1: Understand the language features of Go and gain an insight in their implementation **CO2:** Analyze the language features for critical design decisions

- **CO3:** Apply Go tools to handle concurrent programming
- **CO4:** Implement Go tools to build applications for massively parallel systems

TEXT BOOKS

- 1. The GO Programming Language by David Chisnall published by Addision Wesley
- 2. The GO Programming Language by Alan A. A. Donovan, Brian W. Kernighan published by Addision Wesley

REFERENCE BOOKS

- 1. An Introduction to Programming in GO by Caleb ISBN: 978-1478355823
- 2. Learning GO by Miek Gieben

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

COURSE	COURSE OUTCOMES MAPPING WITH PROGRAM OUTCOMES											
LEVEL OF CO-PO MAPPING TABLE												
CO/PO	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			3									
CO1	1	3	2	3	3							
CO2	2	3	L	3	3							
CO3		3	2	3	3			1				
CO4		3	2	3	3			1		1		

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus – 2024 -2026

Course Title	SOFTW	SOFTWARE ARCHITECTURE								
Course Code	MCAT2	MCAT261								
Category	Professi	Professional Elective Course (PEC)								
Scheme and		No. of Hours/Week Total Credits								
Credits	L	Т	Р	SS	Tot	teaching				
					al	hours				
	03	03 00 00 00 03 40 03								
CIE Marks: 50	SEE Ma	rks: 50	Total Max. marks=100 Dura			tion of SEE: 03	3 Hours			

COURSE OBJECTIVES:

- Designed to understand emerging field of software architecture in software development and the critical need for the development of such architectures.
- Develop ability to perform the analyses necessary to formulate effective software architectures.
- Analyze Software Engineering problems in terms of architectural thinking.
- Apply the architectural concepts of platform, framework, pattern in architecting applications.

UNIT I: Introduction to software architecture	8 hours
Introduction and Context of Software Architecture. The Architecture Business Cycle. What	software
architecture is and what it is not; What makes a "good" architecture? What it is and what i	t is not?
Other points of view. Architectural patterns, Reference Models and Reference Archi	tectures.
Importance. Architectural structures and views	
UNIT II: Quality Attributes	8 hours
Quality attribute scenarios in practice. System quality attributes. Achieving Quality a	attributes:
Availability; Modifiability; Performance; Security; Testability; Usability, Business Qualities	
UNIT III: Applying Tactics	8 hours
Applying Tactics: Availability tactics, Interoperability tactics; Modifiability tactics; Per	formance
tactics; Security tactics; Testability tactics; Usability tactics	
UNIT IV: Architectural Styles	8 hours
Architectural styles: Pipes and Filters, Data Abstraction and OO organization, Event-based,	implicit
Invocation, Layered Systems, Repositories, Interpreters, Process Control	
Architectural Patterns - I: From Mud to structure; Layers; Pipes and filters; Blackboard	
UNIT V: Applying architectural patterns	8 hours

Architectural Patterns – II: Distributed systems: Broker; Interactive systems: Model-view-control

Case Studies: Keyword to context, Instrumentation Software, Mobile Robotics

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- CO1: To acquire the knowledge of the context and importance of software architecture and quality maintenance
- CO2: To apply the knowledge of various architectural tactics in multiple scenarios to enhance software quality
- **CO3:** To comprehend an architectural style as patterns
- CO4: To analyze and apply architectural style in multiple contexts

TEXT BOOKS

- 1. Len Bass, Paul Clements, Rick Kazman, "Software Architecture in Practice" 3rd Edition ISBN-13: 978-0321815736, ISBN-10: 9780321815736
- 2. Frank Buschmann, RegineMeunier, et al "Pattern Oriented Software Architecture" 2nd Edition John Wiley & Sons, ISBN-10: 8120310411

REFERENCE BOOKS

 Nick Rozanski, Eoin Woods "Software Systems Architecture working with stake holders using viewpoints and perspectives" I edition ISBN-published by Addison Wesley 13: 978-0321112293, ISBN-10: 0321112296

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		3									
CO2	1		3					3				
CO3	1				3			3				
CO4	1		2					3		2		

Dr Ambedkar Institute of Technology, Bengaluru-56 **Master of Computer Applications** Scheme and Syllabus - 2024 - 2026

Semester	II	II								
Course Title	SOFT C	SOFT COMPUTING								
Course Code	MCAT2	262								
Category	Professio	Professional Elective Course (PEC)								
Scheme and			No. of Hou	rs/Week		Total	Credits			
Credits	L	Т	Р	SS	Total	teaching				
						hours				
	03	03 00 00 00 03 40 03								
CIE Marks: 50	SEE Ma	rks: 50	Total Ma	x. marks=100	Duration of SEE: 03 Hours					

COURSE OBJECTIVES:

- Define and understand important concepts in soft computing •
- To gain insight onto Fuzzy Logic
- To gain knowledge in machine learning through GA (Genetic Algorithm)
- Analyze the various soft computing techniques

UNIT I: Introduction

8 hours

8 hours

8 hours

What is Soft Computing? Difference between Hard and Soft computing, Requirement of Soft computing, Major Areas of Soft Computing, Applications of Soft Computing, ANN, BNN, First generation NN, perceptron, illustrative problems

UNIT II: Artificial Neural Networks

ADALINE, MADALINE, ANN: (2nd generation NN), Introduction, BPN, KNN, HNN, BAM, RBF, SVM and illustrative problems.

UNIT III: Fuzzy Logic

Fuzzy Set theory, Fuzzy versus Crisp set, Fuzzy Relation, Fuzzification, Minmax Composition, Defuzzification Method, Fuzzy Logic, Fuzzy Rule based systems, Predicate logic, Fuzzy Decision Making, Fuzzy Control Systems, Fuzzy Classification.

UNIT IV: Genetic Algorithms

Introduction to Hypothesis, basic Concepts concerning testing of Hypothesis, Procedure and Flow diagram for Hypothesis, Measuring the power of a Hypothesis test, Testing of Hypotheses: Parametric test: z-test, t-test :one sample mean and two sample mean, Non parametric test-Chi Square.

UNIT V: Swarm Intelligent System

Introduction, Background of SI, Ant Colony System, Working of ACO, Particle Swarm Intelligence (PSO).

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

CO1: Apprehend soft computing techniques.

CO2: Apply the learned techniques to solve realistic problems

CO3: Differentiate soft computing with hard computing techniques

CO4: Design a fuzzy expert system and apply Genetic Algorithms for various applications **TEXT BOOKS**

8 hours

- 1. Soft Computing: N.P.Padhy and S.P Simon, Oxford University Press 2015
- 2. Principles of soft computing: Sivanandam, Deepa S.N, Wiley India, ISBN 13:2011

REFERENCE BOOKS

- 1. Artificial Intelligence and Expert Systems Development by D W Rolston-Mc Graw hill.
- 2. Introduction to Neural Networks Using Matlab 6.0: S.N. Sivanandam, S.Sumathi,S.N. Deepa, Tata McGraw-Hill Publishing Company Limited New Delhi

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2					1		
CO2		3	3	3	1				2	2		
CO3		3		3				2		2		
CO4	3	3		3					1			
Streng	Strength of correlation: Low-1, Medium- 2, High-3											

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 -2026

Semester	II									
Course Title	SOFTWAI	SOFTWARE TESTING AND AUTOMATION.								
Course Code	MCAT26	3								
Category	Profession	Professional Elective Course (PEC)								
Scheme and]	No. of Hour	s/Week		Total teaching	Credits			
Credits	L	Т	Р	SS	Total	hours				
	03	03 00 00 00 03 40 03								
CIE Marks: 50	SEE Mark	s: 50	Total Max	on of SEE: 03 Ho	urs					

COURSE OBJECTIVES:

- The process of Software Testing Life Cycle and Types of Testing
- Differentiate between Manual Testing and Automation in Testing
- Design Test Cases using the testing tool Selenium IDE and Web Driver.
- Identify different web Elements and apply them to design test cases.

UNIT I: Introduction to Testing:

Introduction and Fundamentals of Testing, Myths and Facts of Software Testing, Quality Assurance and Quality Control, Testing Objectives, Software Testing Life Cycle (STLC), Test Planning, Test-case Design Technique. Types of Testing- White Box testing, Black Box Testing, Integration Testing, Regression Testing, Validation Testing, Alpha Testing, Beta Testing, Acceptance Testing. Defect Management: Defect Management Process.

UNIT II: User Interface Testing:

Fundamentals of Test Automation, Manual Testing Vs Test Automation, Selenium –WebDriver: Introduction to WebDriver, Installation of Selenium WebDriver, Creating the Scripts in WebDriver, Web Element Locators, Xpath, id, LinkText, CSS Selector, Class Name, TagName WebDriver Commands: Browser Commands, getUrl(), getTitle(), getPageSource(),close(),Quit(), Navigation Commands, backward(0,forward(),to(),refresh() WebElements Commands, Isselected(), IsEnabled(), getAttribute(), getText(),notify(), sendKeys(), submit(), wait().

UNIT III: Handling Web Elements

CheckBox and Radio Button Operation, Multiple select Operations: DropDown, Handle Alert in WebDriver : dismiss(), accept(), getText(), sendKey(), Popup window handling in Web Drivers, getWindowHandle(), Wait commands in Web Drivers, Mouse Event using Action commands, Handling Multiple Windows.

UNIT IV: Application Programming Interface (API) Testing:

Client and Server Architecture, Layers of Web Applications, Application Programming Interface(API), web services, Postman Tool- Introduction to Postman, Sending API Requests, Collections, Variables, Scripts. Mock Servers -Introduction to Mock Servers, setting up Mock server, Get Response in Mock Server Postman API- Introduction to Postman API, Continuous Integration Branching and Looping.

UNIT V: Database Testing:

08 hours

08 hours

08 hours

08 hours

Overviews, Types, Process, stages, Scenarios, Objects, data Integrity, Data Mapping, Tools, Backup, security Recovery, Performance, challenges.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos Hands-on Sessions: All the above discussed concepts are demonstrated in the lab.

COURSE OUTCOMES:

- CO1: Analyze the process of Software Testing Life Cycle and types of Testing.
- **CO2:** Demonstrate Manual Testing and Automation in Testing
- CO3: Design Test Cases for User Interface Testing.
- CO4: Design Test Cases for Application Programming Interface (API) Testing and Data base Testing.

TEXT BOOKS

- 1. Rex Black: Advanced Software Testing—Vol. 1, Shroff Publishers, 2011.
- 2. Srinivasan Desikan Gopalaswamy: Software Testing Principles and Practices,5th Edition, Pearson Education, 2007.
- 3. David Burns: Selenium 2 Testing Tools: Beginner's Guide, PACKT PUBLISHING, 2012.

REFERENCE BOOKS

- 1. Rex Black: Advanced Software Testing—Vol. 2, Shroff Publishers, 2011
- 2. Gundecha Unmesh: Selenium Testing Tools Cook Book, PACKT PUBLISHING, 2012

EBOOKS/ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org

SCHEME FOR EXAMINATIONS

- Each full question consists of 20 marks.
- Questions are set covering all the topics under each module

	P	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2				3					3		
CO2	2	3	2									
CO3	2	3		3	3			2				
CO4	2	3	2	2							2	2
Strength of correlation: Low-1, Medium-2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 -26

Semester	II										
Course Title	РҮТНО	PYTHON PROGRAMMING LAB									
Course Code	MCAL2	27									
Category	PCCL										
Scheme and		No.	of Hours/Weel	k		Total	Credits				
Credits	L	Т	Р	SS	Total	teaching hours					
	-	-	02	00	02	26	1				
CIE Marks: 50	SEE N	Marks:50	Total Max	. marks=100	D	uration of SEE: 03	Hours				

COURSE OBJECTIVES:

- Learn basics concepts of python programming.
- Implement advanced programs in python based on the knowledge gained.

		List of Programs
1.	Demonst	arate a python program on
	i)	Control statements
		i) Control statements
		a) Quadratic equation program
		b) Prime number generation
		c) Sum the digits
		d) Evaluate 1/2+2/3+3/4n/n+1
		e) Count the number of ovels, consonants, numbers, uppercase letters,
		lowercase letters, numeric characters, white space characters.
	ii)	Functions
		a) calculate the sum of the positive integers of $n+(n-2)+(n-4)$ (until $n-x = < 0$).
		b)Sum of natural numbers
		c) Lambda functions
2.		rate string operations
		tring functions tring reverse without library function
		Count the number of words in the string
		source are number of words in the sump
3.	Demonst	rate list operations and list comprehension
4.		rate operations on dictionary
		imulate language dictionary
	11) P	hone book modification using dictionary

	iii) Country capital programming using dictionary
6.	Demonstrate File handlingi)count the number of words, characters and linesii)count the keywords from the source fileiv)reverse the contents of the filev)insert the contents in the specified linevi)Convert the file contents to upper casevii)read n lines from the beginning and n lines from the end of the fileviii)copy the contents from one file to another file
5.	Demonstrate Object oriented Conceptsi)Access protectionii)Inheritanceiii)overridingiv)Operator overloading
7.	Develop a program to manipulate data using database connectivity.
10.	Data frame manipulation
11.	Develop a program using Numpy
12.	Implement a python program to demonstrate
	Data visualization with various Types of Graphs

COURSE OUTCOMES:

CO: Design and develop an application using Python Programming for real world scenario.

SCHEME FOR EXAMINATIONS

In the practical Examination each student has to pick one question from a lot of all the 13 questions. MAPPING of COs with Pos

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО	3	3	2	3	2			3	3			

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications <u>Scheme and Syllabus - CBCS – 2024 -2026</u>

Semester	II												
Course Title	DATA SCIENCE LAB												
Course Code	MCAL28	MCAL28											
Category	Professiona	Professional Core Course Lab (PCCL)											
Scheme and		Ν	No. of Hour	s/Week		Total teaching	Credits						
Credits	L T		Р	SS	Total	hours							
	00	00	01	00	01	26	01						
CIE Marks: 50	SEE Marks: 50		Total Ma	x. marks=100	Duration of SEE: 03 Hours								

COURSE OBJECTIVES:

- To apply the inferential statistics after preprocessing techniques are used.
- To implement modelling methods for real world problems.
- Analyzing data from files and visualizing graphical presentations using tableau.

	List of Laboratory programs (2 hours/week per batch)									
10 lab	sessions+ 1 repetition class+ 1 Lab Assessment.									
•	Python shall be used as an analytical tool to read, preprocess, analyse and visualize the data.									
Table	au shall be used for data visualization.									
1.	Demonstrate the working of merge with inner, outer, left and right joins in python on a									
	sample dataset.									
	Implement Group, Join, replace, concatenate on any given dataset.									
2.	Perform one sample t-test and ANOVA test for a given scenario.									
3.	Identify Outliers and implement different ways to treat outliers.									
4.	Develop Python script to identify and treat missing values on a sample dataset.									
5.	Formulate linear regression model for any data set and compare the analysis with polynomial									
	regression.									
	Implement Multiple Linear Regression and evaluate the model for a sample dataset.									
6.	Write a program to implement k-Nearest Neighbour algorithm to classify any given data set.									
	Print both correct and wrong predictions.									
7.	Write a program to implement the naïve Bayesian classifier for a sample training data set									
	stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.									
8.	Demonstrate different types of charts using Tableau.									

9.	Implement aggregate functions in Tableau on a given dataset.
10	Implement Maps for a real-life scenario.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

- CO1: Illustrate data preprocessing techniques and perform statistical analysis using python.
- CO2: Apply basic data science algorithms for predictive modelling and analyse using visualization tool.

SCHEME FOR EXAMINATIONS

• Student has to pick one question from a lot of given programs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2		3	3		3			2		
CO2	1			2	3		3			2	2	2
Strength of correlation: Low-1, Medium-2, High-3												

Dr Ambedkar Institute of Technology, Bengaluru-56 Department of Master of Computer Applications Scheme and Syllabus - 2024 -26

Course Title	MINI PROJECT												
Course Code	MCAM	MCAM29											
Category	PBLC	PBLC											
Scheme and]	No. of Hou	ırs/Week		Total	Credits						
Credits	L	Т	Р	SS	То	teaching							
					tal	hours							
	-	02	02	00	04	13+13	2						
CIE Marks: 50	orks: 50 SEE Marks:		Total M	ax.	Du	Duration of SEE: 03 Hours							
	50		marks=2	100									

Mini project using the following technologies:

Mobile application development/IOT/ Django frame work

COURSE OBJECTIVES:

- Learn the basics of the Framework
- Build applications using database
- Learn to develop web application/mobile app development

	PART - A							
	Demonstrate the following concept using Android							
1.	Exploring layouts, widgets							
2.	Android activity life cycle							
3.	Intents in Android and Shared preferences							
4.	Sending SMS and EMAIL							
5.	Fragments & Animations							
6.	Databases and content providers							
7.	Sensors and location-based services							
8.	Audio playback and image capture							
	OR							
	Demonstrate the following concept using IOT							
1.	TO interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn							
	ON LED for 1 sec after every 2 seconds.							
2.	To interfaceDHT11 sensor with Arduino /Raspberry Pi and write a program to print temperature and humidity readings.							
3.	To interface motor using relay with Arduino /Raspberry and write a program to turn on Motor when push button was pressed							
4.	To interface Bluetooth with Arduino /Raspberry and write a program to send sensor data to smartphone using Bluetooth.							
5	Write a program on Arduino /Raspberry pi to to retrieve temperature and humidity data from things speak cloud.							

	OR								
	Demonstrate the following concept using Django Framework								
1.	Django installation and setup environment								
2.	Integrating HTML or Bootstrap in Django								
3.	Form handling with validation in Django								
4.	Develop calculator using Django framework								
5.	Django Database connectivity with SQLite or MySQL								
6.	Implement Django Admin operations								
7.	Django REST API(CRUD operation)								
8.	Develop registration page in Django								
Note 1: Student has to pick one question from the above list									

PART B- MINI-PROJECT

Students should be able to build a complete project using multiple features learnt in Part – A with user interfaces and database connectivity and the Project should be deployed .The project work should be carried out with team strength of maximum two.

NOTE:

- 1. In the examination, one exercise from part A is asked for 20 marks.
- 2. The mini project under part B has to be evaluated for 30 marks.
- A team of two students must develop the mini project.
 However during the examination, each student must demonstrate the project individually.
- 4. The team must submit a brief project report (25-30 pages) that must include the following
 - Introduction
 - Requirement Analysis
 - Software Requirement Specification
 - Analysis and Design
 - Implementation
 - Testing
- 5. The report must be evaluated for 5 Marks. Demonstration and Viva for 15 Marks.
- 6. Project report duly signed by the Guide and HOD need to be submitted during examination.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES:

CO: Design and develop applications for real world scenarios.

SCHEME FOR EXAMINATIONS

- 1. In the examination, one exercise from part A is to asked for 20 marks
- 2. Mini project student group size is limited to two students only.
- 3. The mini project under part B has to be evaluated for 30 marks.
- 4. Project report duly signed by the Guide and HOD, need to be submitted during

LEVEL OF CO-PO MAPPING TABLE												
CO /	PO1	PO2	PO	PO	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	2	2	3	3	2	3	3		1	2		