			e Scheme of Teaching and Examination		icaucin			1(101 04	CHC5 202	2 - 202	•)		
VI S	EMESTER			<u> </u>	Teachir	ոց Աօս	rs /Weel	7	Examina	otion			<u> </u>
Sl. No	Course and	d Course Code	Course Title	Teaching Department (TD) and Question Paper Setting Board (PSB)	T Theory		Hractical		Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	IPCC	22EEU601	High Voltage Engineering	EEE	3	0	2		03	50	50	100	4
2	PCC		Digital Signal Processing	EEE	4	0	0		03	50	50	100	4
3	PEC	22EET603x	Professional Elective Course	EEE	3	0	0		03	50	50	100	3
4	OEC	22XXT604x	Open Elective Course		3	0	0		03	50	50	100	3
5	PROJ	22EEP605	Major Project Phase I	EEE	0	0	4		03	100		100	2
6	PCCL	22EEL606	Digital Signal Processing Lab	EEE	0	0	2		03	50	50	100	1
7	AEC/SDC	22EET607x OR 22EEL608x	Ability Enhancement Course/Skill DevelopmentCourse V	EEE	Theory 1	0	s offered 0 is offered		01	50	50	100	1
							actical	1 as a					
					0	0	2						
8	HS	22CDN609	Analytical and Reasoning Skills	Placement Cell	2	0	0			50		50	PP/ NP
9	МС	22NSN610 22PEN610	National Service Scheme (NSS) Physical Education (PE) (Sports and Athletics)	NSS coordinator Physical Education Director	0	0	2			100		100	PP/ NP
		22YON610	Yoga	Yoga Teacher									
			•					ſ	otal	500	300	800	18

	Professional Elective	Course 22XX	T603x
22EET603A	Modern Control Theory	22EET603E	Computer Control of Electrical Drives
22EET603B	Power System Planning	22EET603F	Introduction to Quantum Computing
22EET603C	Energy Auditing and DSM		
22EET603D	Special Electrical Machines		
	Open Elective Co	urse 22XXT60	4x
22EET604A	Green Technology and Sustainability Engineering		
	Ability Enhancement Course / Skill Enhance	ment Course-V	22XXT607x OR 22XXL607x
22EEL607A	Scilab for Power Electronics	22EEL607C	Arduino and Raspberry PI based project
22EEL607B	Basics of VHDL lab		

Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching– Learning hours (L : T : P) can be considered as (3 : 0 : 2) or (2 : 2 : 2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23

National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first Week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the Degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of Degree.

Professional Elective Courses (PEC): A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of Engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering professional electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

Open Elective Courses:

Students belonging to a particular stream of Engineering and Technology are not entitled to the open electives offered by their parent Department. However, they canopt for an elective offered by other Departments, provided they satisfy the prerequisite condition if any. Registration to open electives shall be documented under theguidance of the Program Coordinator/ Advisor/Mentor. The minimum numbers of students' strength for offering Open Elective Course is 10. However, this condition shall not be applicable to class where the admission to the program is less than 10.

Project Phase-I : Students have to discuss with the mentor /guide and with their help he/she has to complete the literature survey and prepare the report and finally define the problem statement for the project work.

Course Title	HIGH V	OLTA	GE ENGINE	EERING			
Course Code	22EEU6	01					
Category	Integrate	d Profe	ssional Core (Course (IPC	C)		
Scheme and Credits			No. of Hours/V	Week		Total teaching	Credits
	L	Т	Р	SS	Total	hours + Lab	
						hours	
	03	00	02	00	05	40+20	04
CIE Marks: 30T+20L	SEE Mar	ks: 50	Total Max. n	narks: 100	Duratio	on of SEE: 03 Hou	irs

- 1. To introduce the need and basics and Applications of high voltage engineering.
- 2. Students will learn the break down mechanisms of insulating media.
- 3. Students will learn the concepts on generation of High AC. DC and impulse voltages and currents.
- 4. To learn techniques of measurement of High AC, DC and impulse voltages and currents
- 5. To gain knowledge in testing of high voltage equipment.

COURSE CONTENT:

UNIT I

08 hours

Introduction: Introduction to HV technology, role of insulation in electrical apparatus, types and applications of insulating materials used in transformers and Bushings and Rotating electrical machines. Need for generating high voltages in laboratory. Industrial applications of high voltages.

Conduction and breakdown in gases: Gas as insulating media, Primary Ionization, Ionization by collision Photo ionization and secondary ionization processes Electron emission due to positive ion impact, electron emission due to Photons electron emission, due to meta stable and neutral atoms. Criteria for gaseous insulation breakdown based on Townsend's theory. Limitations of Townsend's theory. Streamer's theory of breakdown in non-uniform fields. Corona discharges. Breakdown in electro negative gases. Paschen's law and its significance. Time lags of breakdown.

Solid dielectrics: Breakdown in solid dielectrics: intrinsic breakdown, avalanche breakdown, thermal breakdown, and electro mechanical breakdown.

Liquid dielectrics: Breakdown of liquid dielectrics: Liquid as insulation, Suspended particle Theory, Cavity breakdown (Bubble's theory), and Stressed Oil Volume theory. Eco-friendly liquid dielectrics: introduction, Characteristic properties, advantages and disadvantages

UNIT II

08 hours

Generation of HVAC voltages: HV- transformer, need for cascade connection and working of transformers units connected in cascade. Series resonant circuit- principle of operation and advantages. **Generation of HVDC voltages:** Half and full wave rectifier circuits, voltage doubler circuit, Cockroft-Walton type high voltage generator set. Determination of voltage regulation, ripple and optimum number of stages for minimum voltage drop.

UNIT III

08 hours

Generation of impulse voltage and current: Introduction to standard lightning and switching impulse voltages. Analysis of single stage impulse generator-expression for output impulse voltage. Multistage impulse generator, working of modified Marx multi stage impulse generator circuit. Rating of impulse generator. Components of multistage impulse generator. Triggering of impulse generator by three electrode gap arrangement. Trigatron gap and oscillograph time sweep circuits. Generation of switching impulse voltage generation of high impulse current.

UNIT IV

08 hours

Measurement of high voltages: Measurement of high dc voltages using High ohmic resistance in series with micro-ohm meter, generating voltmeter- principle, construction, Standard sphere gap-measurement of HVAC, HVDC, and impulse voltages; factors affecting the measurements. Potential Dividers-Resistance dividers, Capacitance dividers and mixed RC potential dividers.

UNIT V

08 hours

High voltage tests on electrical apparatus: Definitions of terminologies, tests on Insulators, Bushings and Transformers.

Non-destructive testing of equipments: Introduction, Measurement of capacitance and of an insulation sample using high voltage Schering Bridge, Partial discharges, methods of discharge

detection- Straight discharge detection method and Balanced detection method.

S.No	Laboratory Component	No. of	BTL
		Hours	
1.	Motor protection scheme-fault studies.	2	1-4
2.	Spark over characteristics of air insulation subjected to high voltage	2	1-4
	AC/DC with spark over voltage corrected to STP for uniform and non-		
	uniform field configuration.		
3.	Measurement of HVAC and HVDC using standard sphere gap models.	2	1-4
4.	Breakdown strength of transformer oil using oil-testing unit.	2	1-4
5.	Measurement of capacitance and Tano of solid insulating samples.	2	1-4
6.	To determine the operating characteristics of Fuse/Numerical - OV/UV and	2	1-4
	OC relay.		
	Beyond Syllabus		
1.	Demonstration of:	2	1-4
	(i)Cascade connection of transformers.		
	(ii) Demonstration of partial discharge measurement in insulating materia		
2.	Generation of standard lightning impulse voltage and to determine	2	1-4
	efficiency and energy of impulse generator.		
	(b) To determine 50% probability flashover voltage for air insulation subjec		
	to impulse voltage		

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: explain the need for high voltages and currents.

CO2: explain the physics of break down mechanisms of insulating media.

CO3: compare the merits and demerits of generation of high voltage and currents.

CO4: select suitable method for measurement of high voltages.

CO5: explain the method of conducting the high voltage tests on different electrical equipment.

TEXT BOOKS

1. High Voltage Engineering, M.S.Naidu and Kamaraju, 4th edition, TMH, 2008

2. High Voltage Engineering Fundamentals, E.Kuffel and W.S. Zaengl, 2nd edition, Elsevier Press, 2005

REFERENCE BOOKS

1. High Voltage Engineering, R.S. Jha, 2nd edition, Dhanpat Rai & Sons, New Delhi .

2. High Voltage Engineering Theory and Practice, Mazen Abdel-Salam, Hussein Anis, Ahdab El- Morshedy, RoshdyRadwan, 2nd Edition, 2003

ONLINE RESOURCES

- 1. https://www.academia.edu/12268238/High_Voltage_Engineering_CL_Wadhwa_PDF_BOok_Download
- 2. https://www.mv.helsinki.fi/home/tpaulin/Text/hveng.pdf

SCHEME FOR EXAMINATIONS

(i) The question paper will have ten full questions carrying equal marks.

(ii) Each full question will be for 20 marks.

- $({\bf iii})$ There will be two full questions from each module.
- (iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)
- (v) The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO11	PSO2	PSO3
CO1	3	2	1				1			1		1	3	2	1
CO2	3	2	1				1			1		1	2	2	1
CO3	2	3	1			1	1			1		1	3	1	1
CO4	2	1	3			1	1			1		1	2	1	1
CO5	3	2	1				1			1		1	3	1	1

Course Title	DIGITA	L SIG	NAL PRO	CESSING			
Course Code	22EET6	02					
Category	PCC						
Scheme and			No. of Hou	rs/Week		Total teaching	Credits
Credits	L	Т	Р	SS	Total	hours	
	04	00	00	00	04	52	04
CIE Marks: 50	SEE Mar	·ks: 50	Total Ma	x. marks=100	Durati	on of SEE: 03 Ho	ours

- 1. To understand DFT and its properties,
- 2. To learn FFT algorithm to find DFT.
- **3.** To understand the structure of IIR & FIR system
- 4. To learn Analog and Digital IIR filter design.
- 5. To learn digital FIR design.

COURSE CONTENT:

UNIT I

8+5 hours

8+5 hours

7+5 hours

5+5 hours

Discrete Fourier Transforms: Definitions, properties-linearity, shift, symmetry etc, circular convolution – periodic convolution, use of tabular arrays, circular arrays, stock hams's method, linear convolution – two finite duration sequence, one finite & one infinite duration, overlap add and save methods.

UNIT II

Fast Fourier Transforms Algorithms: Introduction, decimation in time algorithm, number of computations, number of multiplications, computational efficiency and decimation in frequency algorithms, inverse decimation in time and inverse decimation in frequency algorithms.

UNIT III

. **Realization of Digital Systems:** Introduction, block diagrams and SFGs, realization of IIR systems- direct form, cascaded, parallel form, realization of FIR systems – direct form, cascade form, linear phase realization.

UNIT IV

Design of IIR Digital Filters: Introduction, impulse invariant & bilinear transformations, all pole analog filters- Butterworth & Chebyshev, design of digital Butterworth & chebyshev.

UNIT V

5+5 hours

Design of FIR Digital Filters: Introduction, windowing, rectangular, modified rectangular, Hamming, Hanning, blackman window.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Determine the Discrete Fourier transforms of a discrete signals.

CO2: Solve DFT using FFT algorithm.

CO3: Determine the structure of FIR & IIR filters.

CO4: Design analog and digital IIR filters.

CO5: Design digital FIR filters.

TEXT BOOKS

- 1. **Digital Signal Processing Principle, Algorithm & application**. Proakis, Pearson, 4th education, 2009.
- 2. Digital Signal Processing. Sanjeet. K. Mitra, TMH, 3rd Edition, 2009.

REFERENCE BOOKS

- 1. Introduction to Digital Signal Processing. Johnny R. Johnson, PHI, 2009
- 2. Discrete Time Signal Processing. Openheim, pearson 2nd Edition 2009
- 3. Digital Signal Processing.S.Salivahanan, A.Vallaraj, C.Gnanapriya, TMH, 2nd Edition, 2010.
- 4. **Digital Signal Processing**. If each or Emmauel- Pearson education, 2nd Edition, 2006.
- 5. Fundamentals of Digital Signal Processing. Ludeman, John Wiley, 3rd Edition, 2008

ONLINE RESOURCES

1. http://www.nptel.ac.in

 $2. https://mrcet.com/downloads/digital_notes/ECE/III\% 20 Year/DIGITAL\% 20 SIGNAL\% 20 PROCESSING.pdf$

SCHEME FOR EXAMINATIONS

(i) The question paper will have ten full questions carrying equal marks.

- (ii) Each full question will be for 20 marks.
- (iii) There will be two full questions from each module.
- (iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)
- (v) The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO	Р	PO	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3						1		1		1	3		1
CO2	3	3						1		1		1	3		1
CO3	3	3						1		1		1	3		1
CO4	3	3	2			1	1	1		1		1	2		1
CO5	3	3	2			1	1	1		1		1	3		1
Streng	gth of o	correla	tion: I	Low-1	, M	edium	-2, H	igh-3							

Course Title	MODE	RN CO	NTROL TH	EORY				
Course Code	22EET6)3A						
Category	Professio	onal Ele	ctive Course	(PEC)				
Scheme and Credits			No. of Hours/	Week		Total teaching	Credits	
	L	Т	Р	SS	Total	hours + Lab		
						hours		
	03	00	00	00	03	40	03	
CIE Marks: SEE Marks: 50 Total Max. marks:100 Duration of SEE: 0.								
40+5(A)+5(GA)								

- 1. Students would be able to design and analyze the system in industrial control.
- 2. Student will get familiar with advanced applications of control system.

COURSE CONTENT:

UNIT I 08 hours State Variable Analysis and Design: Introduction, concept of state, state variables and state model, state modelling of linear systems, linearization of state equations. State space representation using physical variables, phase variables & canonical variables.

UNIT II

Derivation of transfer function from state model, Diagonalization, Eigen values, Eigen vectors, generalized Eigenvectors. Solution of state equation, state transition matrix, and its properties, computation using Laplace transformation. 08 hours

UNIT III

Concept of controllability & observability, methods of determining the same, effect of pole-zero cancellation, duality.

UNIT IV

Pole Placement Techniques: stability improvements by state feedback, necessary & sufficient conditions for arbitrary pole placement, and state regulator design.

UNIT V

08 hours Non-linear systems: Introduction, the behaviour of non-linear systems, common physical non-

linearity-saturation, friction, backlash, dead zone, relay, multivariable non-linearity. Phase plane method, singular points, stability of the nonlinear system, limit cycles, construction of phase trajectories

TEACHING LEARNING PROCESS: Chalk and Talk, PowerPoint presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Understand the fundamentals of state variables for linear and nonlinear systems.

CO2: Construct state space models of SISO and MIMO systems.

CO3: Application of Eigenvalues for derivation of transfer functions and solutions of state equations.

CO4: Perform analysis on Controllability and Observability.

CO5: Improve stability of a given system by state feedback pole placement techniques

TEXTBOOKS

1. Digital control & state variable methods. M. Gopal, 3rd Edition, TMH, 2008

2. Control system Engineering. I. J. Nagarath& M. Gopal, New Age International (P) Ltd, 3rd edition.

REFERENCE BOOKS

- 1. State Space Analysis of Control Systems. Katsuhiko Ogata -PHI
- 2. Automatic Control Systems. Benjamin C. Kuo&FaridGolnaraghi, 8th edition, John Wiley & Sons 2009.
- 3. Modern Control Engineering. Katsuhiko Ogata, PHI,5th Edition, 2010.
- 4. Modern Control Engineering. D. Roy Choudary, PHI, 4th Reprint, 2009.
- 5. Modern control systems. Dorf& Bishop- Pearson education, 11th Edition 2008

ONLINE RESOURCES

- 1. https://www.youtube.com/watch?v=4Yx0P5qNP6M&list=PLhtuA4lvZfQ0zKjxySnARYdKmOE2KVwA
- 2. https://www.youtube.com/watch?v=590Vx7x0lYg&list=PL9ulM52OdvODt bA3 sIQiAqExkmmwQYE

08 hours

08 hours

SCHEME FOR EXAMINATIONS

- (i) The question paper will have ten full questions carrying equal marks.
- (ii) Each full question will be for 20 marks.
- (iii) There will be two full questions from each module.
- (iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)
- (v) The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO11	PSO2	PSO3
CO1	3	3			1					1			3		1
CO2	3	3			1					1			3		1
CO3	3	3			1					1			3		1
CO4	3	3			1					1			3		1
CO5	3	3			1					1			3		1
Streng	Strength of correlation: Low-1, Medium- 2, High-3														

Course Title	POWER	R SYST	EM PLAN	INING									
Course Code	22EET6	03B											
Category			C	ore Elective Co	urse (CEC)							
Scheme and			No. of Hou	rs/Week		Total teaching	Credits						
Credits	L	Т	Р	SS	Total	hours							
	3	0	0	0	03	40	03						
CIE Marks: 50	SEE Mar	ks : 50	Total Max	x. marks = 100	Duratio	on of SEE: 03 Hou	ırs						
(TAA: 40+5+5)													

At the end of the course the students will be able to analyze,

- Structure of power system, grid system, Load fore casting and modeling. 1.
- Integrated and co-generation, power pooling trading, financial planning and tariffs. 2.
- Computer aided planning, greenhouse effect, insulation coordination and reactive power 3. compensation.
- Reliability of power supply, load prediction, power system expansion and management. 4
- 5 Optimization and expansion of power system

UNIT I

8 hours

8 hours

Introduction of Power Planning: National and regional planning, structure of power system, planning tools, electricity regulation, Load forecasting, forecasting techniques, modeling. Text book

UNIT II

Generation Planning: Integrated power generation, co-generation / captive power, power pooling and power trading, transmission & distribution planning, power system economics, power sector finance, financial planning, private participation, rural electrification investment, concept of rational tariffs. Text book

UNIT III

Computer Aided Planning: Wheeling, environmental effects, greenhouse effect, technological impacts, insulation co-ordination, reactive compensation.

Text book & Reference book

UNIT IV

Power Supply Reliability: Reliability planning, system operation planning, load management, load prediction, reactive power balance, online power flow studies, test estimation, computerized management. Power system simulator. Text book & Reference book

UNIT V

Optimal Power System Expansion Planning: Formulation of least cost optimization problem incorporating the capital, operating and maintenance cost of candidate plants of different types (thermal, hydro, nuclear, non-conventional).. Text book & Reference book

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

At the end of the course students will be able to -

- CO1: Plan & model the structure of power system and to know the regulations grid in India
- CO2: Explain finance, tariff, private sector participation and rural electrification.
- CO3: Analyze the environmental effects, greenhouse effect, technological impacts, insulation coordination, in power system planning.
- CO4: Evaluate the reliability, planning, load management, load reactive power balances.
- CO5: Formulate the least cost optimization problem, operating and maintenance cost of candidate plants.

TEXT BOOKS:

A.S.Pabla, Electrical Power System Planning. Macmillan India Ltd, 1998

9

8 hours

8 hours

8 hours

REFERENCE BOOK/WEBSITE LINKS:

S.S. Murthy, Power System Planning and Control ONLINE RESOURCES

ONLINE RESOURCES

- 1. <u>https://www.sciencedirect.com/topics/engineering/power-system-planning</u>
- 2. https://www.scribd.com/document/394022071/Power-System-Planning-Notes

SCHEME FOR EXAMINATIONS

- i. The question paper will have ten full questions carrying equal marks.
- ii. Each full question will be for 20 marks.
- iii. There will be two full questions from each module
- iv. Each full question will have sub-questions (subject to a maximum of four sub-questions)
- v. The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	2	1	2	1		2	2	1				3		1
CO 2	2	2			1			2	1		1	1	3		1
CO 3	3	2	1		1		2	2	1				3		1
CO 4	2	2			1			2	1		2	1	2		1
CO 5	2	2	1		1			2	1		2	1	3		1
Strer	Strength of correlation: Low-1, Medium- 2, High-3														

Course Title	ENERG	Y AUD	ITING A	ND DEMAND	SIDE M	ANAGEMENT							
Course Code	22EET6	03C											
Category	Profession	nal Elect	ive Course	(PEC)									
Scheme and			No. of Hou	rs/Week		Total teaching	Credits						
Credits	L	Т	Р	SS	Total	hours							
	03	00	00	00	03	40	03						
CIE Marks: 50	SEE Mai	EE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours											

1. To enable the students to develop managerial skills regarding energy conservation and energy auditing

2. To facilitate the students to achieve a clear conceptual understanding of energy economic analysis

3. To recognize opportunities for increasing rational use of energy and basics of energy auditing with application on different sectors

4. To explain electrical load management techniques, harmonics and their effects, electricity tariffs and power factor improvement.

5. To understand the basics of demand side management.

Introduction: Energy Situation - World and India, Energy Consumption, Conservation, Codes, Standards and Legislation.

UNIT II

UNIT I

Energy Economic Analysis: The Time Value of Money Concept, Developing Cash Flow Models, Payback Analysis, Depreciation, Taxes and Tax Credit – Numerical Problems 08 hours

UNIT III

Energy Management and Auditing: Introduction, Definition, Principles of Energy Management, Energy Management Strategy, Elements of Energy Audits, Energy Use Profiles, Measurements in Energy Audits, Presentation of Energy Audit Results. 09 hours

UNIT IV

Electrical Equipment and power factor: The Power Triangle, Power Factor, Causes and disadvantages of Low power factor, advantages of High power factor, power factor improvement equipments, importance of power factor, most economical power factor, calculation of power factor Correction & Location of Capacitors, Energy Efficient Motors, Electrical Tariff, Concept of ABT

UNIT V 08 hours Demand Side Management: Introduction to DSM, Concept of DSM, Benefits of DSM, Different Techniques of DSM - Time of Day Pricing, Multi-Utility Power Exchange Model, Time of Day Models for Planning, Load Management, Load Priority Technique, Peak Clipping, Peak Shifting, Valley Filling, Strategic Conservation. Management and Organization of Energy Conservation Awareness Programs.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Understand the energy economics, regulations associated with energy conservation, Management& audit. **CO2:** Analyse the Energy Economic analysis and develop cash flow models.

CO3: Understand the energy management, auditing, tariff & power factor in energy sector.

CO4: Apply energy management strategies, Power factor Correction methods,

CO5: Familiarize with Demand side management and energy conservation in energy sector.

TEXT BOOKS

1. Arry C. White, Philip S. Schmidt, David R. Brown, "Industrial Energy Management Systems", First Edition, Hemisphere Publishing Corporation New York, 1994

"Energy auditing and demand side management", First edition 2012, Gouthami 2. N G Ajjanna, publications,Shimaoga.

3. Wayne C.Turner, —Energy management Hand book, 8th Edition. John Wiley and son

06 hours

08 hours

REFERENCE BOOKS

- 1. D.P.Sen, K.R.Padiyar, IndraneSen, M.A.Pai, "Recent Advances in Control and Management of Energy Systems", Edition, Interline Publisher Bengaluru, 1993
- 2. Ashok V. Desai, "Energy Demand Analysis, Management and Conservation", Wiley Eastern, publisher, 2005
- 3. B R Gupta "Generation of Electrical Energy", S Chand Publishing, 14th Edition 2011
- 4. Umesh Rathore "Energy Management", S K Kataria & Sons, 2nd edition 2014

ONLINE RESOURCES

- 1. <u>https://www.youtube.com/watch?v=iMHAByuOz-E&t=2s</u>
- 2. https://www.youtube.com/playlist?list=PLOzRYVm0a65eZkxiWk8aa-291VFTLKb-Y

SCHEME FOR EXAMINATIONS

- (i) The question paper will have ten full questions carrying equal marks.
- (ii) Each full question will be for 20 marks.
- $({\bf iii})$ There will be two full questions from each module.
- (iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)
- (v) The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					1	1	1					2		1
CO2	2	2					1	1			1	1	2		1
CO3	1					1	2	2		1	2	2			2
CO4	2	2	1				1			1			1		1
CO5		1					2	1		1			1		1
Stren	Strength of correlation: Low-1, Medium-2, High-3														

Course Title	SPECIAL ELECTRICAL MACHINES
Course Code	22EET603D

Category	Core Ele	ective C	Course							
Scheme and			No. of Hou	rs/Week		Total teaching	Credits			
Credits	L	Т	Р	SS	Total	hours				
	3	0	0	0	03	40	03			
CIE Marks:	SEE Mar	ks : 50	Total Max	x. marks $= 100$	Duratio	tion of SEE: 03 Hours				
40+5+5=50										

- 1. To understand the constructional aspects of Special electrical machines
- 2. To understand the speed-torque characteristics of Special electrical machines
- 3. To analyze the necessity of sensors used in Special electrical machines
- 4. To understand the concepts of converters and control schemes of Special electrical machines
- 5. To understand the merits, demerits, and applications of Special electrical machines

UNIT I

a. Stepper Motor: Types of motors, construction, working principle. Term & definitions- Step angle, resolution, slewing, etc. Excitation modes, switching circuits, open and closed loop control, torque equation, speed torque characteristic, digital control of motor, comparison and applications of stepper motors.

b. Switched Reluctance Motor (SRM): Construction, working principle, Inductance profile, pole arc and tooth arc constraints, torque equation, characteristics, power converter circuits, sensors- Hall and Optical, current regulators, sensor less and digital control, merits, demerits and applications.

UNIT II

- a. DC Servo motor: Construction, working principle, Voltage Equation, characteristics transfer function control. Numeric and Applications
- **b.** AC servo motor: Construction, working principle, analysis of two phase motor, torque speed characteristics, transfer function, Numeric and Applications 8 hours

UNIT III

Brushless Permanent Magnet DC (BLDC) Motor: Introduction to PMDC motors. BLDC motors: Classification, construction, principle of operation, types of motor, electronic commutation, emf equation and waveforms, Torque equation, sensors, sensor less and digital control, comparison of brushed and brushless dc motors, merits, demerits and applications.

UNIT IV

8 hours

8 hours

8 hours

Permanent Magnet Synchronous Motor (PMSM): Construction, principle of operation, emf equation, torque equation, sensor less and digital control, phasor and circle diagrams, comparison with conventional motors, applications.

Linear Induction Motor and Axial Flux Machines:

LIM: Construction, types, Principle of operation, thrust equation, and applications.

AFM: Construction, types, Principle of operation, windings, torque and emf equations, applications. **TEACHING LEARNING PROCESS:** Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES

CO1: Able to describe the construction and operation of different special electrical machines.

CO2: Compare merits, demerits of different special electrical machines and their applications.

CO3: Analyse different power converter topologies for operation of special electrical machines.

CO4: Formulate the torque equation and analyze speed –torque characteristics of special electrical machines.

CO5: Develop digital control techniques for the operation and control of special electrical machines.

TEXT BOOKS

1. E.G. Janardhanan, "Special Electrical Machines", First Edition, PHI, 2009

REFERENCE TEXT BOOKS.

- 1. K. Venkataratnam "Special Electrical Machines", First, University Press, 2009
- 2. R.Krishnan, "Switched Reluctance motor Drives Modeling, Simulation" Analysis, Design, and Applications, CRC Press, 2015.
- 3. Miller, T.J.E. "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford, 1989.
- 4. Kenjo, T, "Stepping Motors and their Microprocessor control", Clarendon Press, Oxford, 1989.
- 5. Naser A and Boldea I, "Linear Electric Motors: Theory, Design and Practical Application", Prentice Hall Inc., New Jersey, 1987

ONLINE RESOURCES

- 1. <u>https://onlinecourses.nptel.ac.in/</u>
- 2. https://www.academia.edu/9885014/SPECIAL_ELECTRICAL_MACHINES_NPTEL_NOTES

SCHEME FOR EXAMINATIONS

- (i) The question paper will have ten full questions carrying equal marks.
- (ii) Each full question will be for 20 marks.
- (iii) There will be two full questions from each module.
- (iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)
- (v) The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2							1			3		1
CO2	3	3	2										3		1
CO3	3	3	2							1			3		1
CO4	3	3	2										3		1
CO5	3	3	2										3		1
Stren	Strength of correlation: Low-1, Medium-2, High-3														

Course Title	COMPU	UTER C	CONTROL ()F ELECT	RIC DRIV	/ES	
Course Code	22EET60	3E					
Category	Professio	nal Elec	ctive Course ((PEC)			
Scheme and Credits			No. of Hours/	Week		Total teaching	Credits
	L	Т	Р	SS	Total	hours + Lab	
						hours	

	03	00	00	00	03	40	03
CIE Marks:	SEE Mark	cs: 50	Total Max. m	narks: 100	Duratio	n of SEE: 03 Hou	Irs
40+5(A)+5(GA)							

1. Introduction to modern digital control of drives, different types of sensors and to study the concept of ac machine drives in detail.

2. To learn phase controlled converters, principles of slip power recovery schemes and to know about principle of Vector Control of AC Drives.

3. To learn about Applications of expert system to Drives.

COURSE CONTENT: UNIT I

08 hours

08 hours

08 hours

Review of Micro Controllers in Industrial Drives System: Typical Micro controller's 8 bit 16 bit (only block diagram) Digital Data Acquisition system, voltage sensors, current sensors, frequency sensors and speed sensors.

UNIT II

AC Machine Drives: general classification and National Electrical Manufacturer Association (NEMA) classification, Speed control of Induction motors with variable voltage constant frequency, constant voltage variable frequency, (v/f) constant operation, drive operating regions. Variable stator current operation. Effect of Harmonics.

UNIT III

a) Phase Controlled Converters: Converter controls, Linear firing angle control, cosine wave crossing control, and phase locked Oscillator principle, Electromagnetic Interference (EMI) and line power quality problems, cyclo converters, voltage fed converters, Rectifiers, and Current fed converters.

b) Principles of Slip Power Recovery Schemes: Static Kramer's drive system, block schematic diagram, phasor diagram and limitations, Static Scherbins scheme system using D.C link converters with cyclo converter modes of operation, modified Scherbins Drive for variable source, constant frequency (VSCF) generation.

UNIT IV

08 hours

Principle of Vector Control of AC Drives: Phasor diagram, digital Implementation block diagram, Flux vector estimation, indirect vector control block diagram with open loop flux control, synchronous motor control with compensation.

UNIT V

08 hours

Expert System Application to drives (Only Block Diagram): Expert system shell, Design methodology, ES based P-I tuning of vector controlled drives system, Fuzzy logic control for speed controller in vector control drives, structure of fuzzy control in feedback system.

TEACHING LEARNING PROCESS: Chalk and Talk, PowerPoint presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Learn about Digital Data Acquisition System and all types of sensors in detail.

CO2: Understand the concept of AC Machine Drives operation and characteristics.

CO3: Know about different types of phase controlled converters.

CO4: Learn about digital implementation and principle of vector control of AC drives.

CO5: Learn design methodology of drives and fuzzy logic control feedback system.

TEXTBOOKS

1. Power Electronics & Motor Drives. BimalK.Bose, Elsevier 2006

2. Modern Power Electronics & Drives. Bimal K. Bose, Pearson Education 2003.

REFERENCE BOOKS

1. Advanced Microprocessor and Interfacing. Badri Ram, TMH, 1st Edition.

ONLINE RESOURCES

1. https://www.electrical4u.com/control-of-electrical-drives/

2. https://www.slideshare.net/slideshow/electrical-drives-and-control/250364732

SCHEME FOR EXAMINATIONS

(i) The question paper will have ten full questions carrying equal marks.

(ii) Each full question will be for 20 marks.(iii) There will be two full questions from each module.

(iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)

(v) The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO11	PSO2	PSO3
CO1	3	3			1					1			3		1
CO2	3	3			1					1			3		1
CO3	3	3			1					1			3		1
CO4	3	3			1					1			3		1
CO5	3	3			1					1			3		1
Streng	Strength of correlation: Low-1, Medium-2, High-3														

Course Title	INTROI	DUCTI	ON TO QUA	NTUM C	OMPUTI	ING	
Course Code	22EET6	03F					
Category	PEC						
Scheme and Credits	No. of Ho	urs/Wee	ek 🛛			Total teaching	Credits
	L	Т	Р	SS	Total	+ Lab hours	

	03	00	00	00	03	40	03
CIE Marks: 50	SEE Mark	cs: 50	Total Max. ma	arks:100	Durat	ion of SEE: 03 He	ours

- 1. Theoretical and practical aspects of LASERs and Optical Fibers, including their principles, properties, applications, and associated numerical problems.
- 2. Fundamental concepts of quantum mechanics, including de Broglie hypothesis, wave functions, Schrödinger equation, and applications of these principles.
- 3. Essential principles of quantum information and quantum computing, including the concepts of qubits,

Quantum gates and matrix operations.

4. overview of key concepts in electrical conductivity, superconductivity, and their applications in quantum

Computing.

Understanding of how physics principles are applied in animation and statistical physics for 5. computing, along with key concepts, methods, and example numerical problems.

UNIT I

8 hours LASER: Characteristic properties of a LASER beam, Interaction of Radiation with Matter, Einstein's A and B Coefficients and Expression for Energy Density (Derivation), Laser Action, Population Inversion, Metastable State, Requisites of a laser system, Semiconductor Diode Laser, Laser Printer, Laser Cooling(Qualitative), Optical Fiber : Principle and structure, Propagation of Light, Acceptance angle and Numerical Aperture (NA), Derivation of Expression for NA, Modes of Propagation, RI Profile, Classification of Optical Fibers, Attenuation and Fiber Losses, Applications: Fiber Optic networking, Fiber **Optic Communication.** Numerical Problems

UNIT II

8 hours

Quantum Mechanics: de Broglie Hypothesis and Matter Waves, de Broglie wavelength and derivation of expression by analogy, Phase Velocity and Group Velocity, Heisenberg's Uncertainty Principle and its application (Non-existence of electron inside the nucleus - Non Relativistic), Principle of Complementarity, Wave Function, Physical Significance of a wave function and Born Interpretation, Expectation value, Eigen functions and Eigen Values, Particle inside one dimensional infinite potential well, Quantization of Energy States, Waveforms and Probabilities. Numerical Problems.

UNIT III

8 hours

Principles of Quantum Information & Quantum Computing: Introduction to Quantum Computing, Moore's law & its end, Differences between Classical & Quantum computing. Concept of qubit and its properties. Extension to N qubits. Dirac representation and matrix operations: Matrix representation of 0 and 1 States, Identity Operator I, Applying I to 0 and 1 states, Pauli Matrices and its operations on 0 and 1 states, Explanation of i) Conjugate of a matrix and ii) Transpose of a matrix. Unitary matrix U, Examples: Row and Column Matrices and their multiplication (Inner Product), Probability, and Quantum Superposition, normalization rule. Orthogonality, Orth normality. Numerical Problems

UNIT IV

8 hours

Electrical Conductivity in metals Resistivity and Mobility, Concept of Phonon, Matheissen's rule, Failures of Classical Free Electron Theory, Assumptions of Quantum Free Electron Theory, Fermi Energy, Density of States, Fermi Factor, Variation of Fermi Factor With Temperature and Energy. Numerical Problems. Superconductivity Introduction to Super Conductors, Types of Super Conductors, BCS theory (Qualitative), Quantum Tunneling, High Temperature superconductivity, Josephson Junctions (Qualitative), DC and RF SOUIDs (Qualitative), Applications in Quantum Computing : Charge, Phase and Flux qubits . Numerical Problems.

UNIT V

8 hours

Applications of Physics in computing: Physics of Animation : Taxonomy of physics based animation methods, Frames, Frames per Second, Size and Scale, Weight and Strength, Motion and Timing in Animations, Constant Force and Acceleration, The Odd rule, Odd rule Scenarios, Motion Graphs, Examples of Character Animation : Jumping, Parts of Jump, Jump Magnification, Stop Time, Walking: Strides and Steps, Walk Timing. Numerical Monte Carlo Method : Determination of Value of π . Numerical Problems **TEACHING LEARNING PROCESS:** Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to: **CO1:** Theoretical and practical aspects of LASERs and Optical Fibers, including their principles, Properties, applications, and associated numerical problems.

- **CO2:** Fundamental concepts of quantum mechanics, including de Broglie hypothesis, wave functions, Schrödinger equation and applications of these principles.
- **CO3:** Essential principles of quantum information and quantum computing, including the concepts of Qubits, Quantum gates and matrix operations.
- **CO4:** overview of key concepts in electrical conductivity, superconductivity, and their applications in Quantum Computing.
- **CO5:** Understanding of how physics principles are applied in animation and statistical physics for Computing, along with key concepts, methods, and example numerical problems

TEXT BOOKS

1. Michael A. Nielsen and Isaac L. Chuang . "Quantum Computation and Quantum Information" Cambridge University Press, 2000

2. Phillip Kaye, Raymond Laflamme, and Michele Mosca. "An Introduction to Quantum Computing" Oxford University Press 2007

REFERENCE BOOKS

 Eleanor Rieffel and Wolfgang Polak, "Quantum Computing: A Gentle Introduction" MIT Press, 2011
 Noson S. Yanofsky and Mirco A. Mannucci "Quantum Computing for Computer Scientists" Cambridge University Press 2008

ONLINE RESOURCES:

- 1. <u>https://www.bietdvg.edu/media/department/PHY/data/learning-</u> materials/Module_III__IV_Lasers__Optical_fibers-1.pdf
- 2. <u>https://www.studocu.com/in/document/visvesvaraya-technological-university/bachelor-of-engineering/module-1/65136919</u>
- 3. <u>https://www.studocu.com/in/document/sg-balekundri-institute-of-technology/cse-sgbit/quantum-computing/78116645</u>.

SCHEME FOR EXAMINATIONS

- (i) The question paper will have ten full questions carrying equal marks.
- (ii) Each full question will be for 20 marks.
- (iii) There will be two full questions from each module.

(iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)

(v) The students have to answer five full questions, selecting one full question from each module.

	P	P	P	P	P O5	P	P O7	P	P	PO 10	PO 11	PO 12	PS O1	PS	PS
C	2		2		2	3									
C	1				2	3									
C	2		2		2	3									
C	2		2		2	3									
C O5	2		2		2	2									
Stren	Strength of correlation: Low-1, Medium-2, High-3														

Course Title	GREEN	TECHN	IOLOGY A	AND SUSTAIN	ABILITY	ENGINEERING	
Course Code	22EET6	04A					
Category	Open Ele	ective Co	ourse (OEC	C)			
Scheme and			No. of Hou	rs/Week		Total teaching	Credits
Credits	L	Т	Р	SS	Total	hours	

	03	00	00	00	03	40	03
CIE Marks:	SEE Mar	rks: 50	Total Max	x. marks: 100	Duration	n of SEE: 03 H o	ours
40+5(A)+5(GA)							
COURSE OBJECT	IVE:						
1. To enable the stud	ents to dev	elop skil	ls regarding	g Green technolo	gy and ener	gy auditing	
2. To facilitate the stu	udents to a	chieve a	clear conce	ptual understand	ling of Gree	n technology an	alysis
3. To recognize oppo	rtunities for	or improv	ving Green	technology and i	is sustainabi	lity.	
4. To explain the neo	cessity of S	Sustainab	le Develop	ment			
5. To understand the	concept of	f the subj	ect.				
UNIT I							08 hours
Principles of Green			0	0	•	*	A
make them green sa	ife and eco	onomicall	ly acceptabl	le to the society,	Concepts of	f green chemisti	ry and Process
intensification.							
UNIT II							08
hours							
Green Synthesis a							
reactions, Microway				•		•	
nanotechnology an		-				•	•
pharmaceutical, dye	es, pesticid	es and w	astewater tr	eatment. A gree	ner approacl	n towards all the	
UNIT III							08
hours							
Meaning of Sust		-				·	· ·
dimensions: the eco	•				•	•	0
systems perspective			•	•	sibilities for	major technica	il systems and
for their transformat	tion to mee	et sustain	ability requ	irements			0.0
UNIT IV							08
hours			Classes Dr	o du sti su (CD)	Definition		Dala of CD in
Concepts of Clear		0				•••	
Achieving Sustain							
Management Hiera wastewater, Fluorid							
process: replacement							
· ·		•		fuction of fiyuro	gen cyanide	from process s	tack. Reuse of
liquid industrial was	ste from se	everal ind	iustries.				08
							08
hours Challenges and Pr	nation Im	nlomont	otion. Dog	onsibilities and	notontiala	f companies for	action Green
Challenges and Pr Productivity and er							
technologies and su							
technologies and su	stamable C	levelopm	ent. Case si	uules in Green	comology.	Green laws con	apriance.

00

0.7

40

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Understand the technology of maintaining audit.

0.2

00

00

CO2: Analyse the Green technology and Sustainable Engineering.

CO3: Understand the Challenges and Practical Implementation

CO4: Understand the necessity and application of Green technology.

CO5: Familiarize with Demand side management of Green technology.

TEXT BOOKS

- 1. Introduction to Green Chemistry, Matlack A.S. Publisher: Marcel Dekker, Newyork, 2001.
- 2. Green Chemistry: Theory and Practice, Anastas P.T. and Warner J.C. Oxford University Press, 1998.
- 3. Pollution Prevention: Fundamentals and Practice, Bishop P. L. McGraw-Hill, Boston, 2000.

4. Cleaner Production Audit Environmental System Reviews, Modak P., Visvanathan C. and Parasnis M. Asian Institute of Technology, Bangkok, 1995.

ONLINE RESOURCES

1. https://www.youtube.com/watch?v=iMHAByuOz-E&t=2s

2. https://www.youtube.com/playlist?list=PLOzRYVm0a65eZkxiWk8aa-291VFTLKb-Y

0.2

SCHEME FOR EXAMINATIONS

- (i) The question paper will have ten full questions carrying equal marks.
- (ii) Each full question will be for 20 marks.
- (iii) There will be two full questions from each module.
- (iv) Each full question will have sub-questions (subject to a maximum of four sub-questions)
- (v) The students have to answer five full questions, selecting one full question from each module.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					1	1	1					2		1
CO2	2	2					1	1			1	1	2		1
CO3	1					1	2	2		1	2	2			2
CO4	2	2	1				1			1			1		1
CO5		1					2	1		1			1		1
Stren	gth of	correl	ation:	Low-	1, Me	edium-	2, H	igh-3							

Course Title	DIGITA	L SIGN	NAL PRO	CESSING LA	В		
Course Code	22EEL6	06					
Category	PCCL						
Scheme and			No. of Hou	rs/Week		Total teaching	Credits
Credits	L	Т	Р	SS	Total	hours	
	00	00	02	00	02	24	01

CIE Marks: 50 SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours

COURSE OBJECTIVE:

- 1. To write program for computation of DFT, Circular Convolution & Linear convolution
- 2. To write program to find Impulse response of LTI system.
- 3. To write program for IIR filter design.

4. To write program for FIR filter design

Expt No	Syllabus Contents	No.of Hours	Blooms Taxonomy level.
1	Direct Computation of N-point DFT.	2	L2
2	IIR filter realization using cascade form, Parallel form	2	L3.
3	IIR Filter Design using Butterworth method.	2	L5
4	IIR Filter Design using Chebyshev type 1 prototype.	2	L5
5	FIR Filter Design using rectangular, hamming, window.	2	L5
6	FIR Filter Design using Hanning, Blackman window.	2	L5
7	N-Point Circular Convolution and Proof in frequency domain.	2	L3
8	Circular Convolution, Linear Convolution and Linear Convolution using Circular Convolution.	2	L3
9	Sampling Theorem.	2	L3
10	Impulse response from X[n] and y[n].	2	L3
11	Impulse response from difference equation and response to x[n].	2	L3
12	N-point DFT using decimation in Time and Frequency FFT.	2	L3
	EXPERIMENTS BEYOND SYLLABUS		
1	Design and implementation of a digital IIR filter (Low pass and High pass) to meet given specifications and test with an audio file. Plot the spectrum of audio signal before and after filtering. Following Experiments to be done using DSP kit.	2	L3

Course Outcomes:

CO1: Write & execute the program to find DFT, Circular Convolution & Linear convolution

CO2: Write & execute program to find Impulse response of LTI system

CO3: Differentiate & Write program for FIR & IIR Filter Structures

CO4: Design & Write program for IIR filters.

CO5: Design & Write program for FIR filters

References.

1. DSP lab manual.

Web Links. https://www.azdocuments.in/2020/09/digital-signal-processing.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		1	2			1	1	1		1	3		1

CO2	3	3		1	2			1	1	1	1	3	1
CO3	3	3		1	2			1	1	1	1	3	1
CO4	3	3	3	2	2			1	1	1	1	3	1
CO5	3	3	1	2	2			1	1	1	1	3	1
Stren	gth of	correl	ation:	Low-1	, Mec	lium- 2,	High	ı-3					

Course Title	SCILAB	FOR I	POWER H	ELECTRONI	CS		
Course Code	22EEL60	7A					
Category	Ability En	nhancem	ent Course				
Scheme and		•	No. of Hou	rs/Week		Total teaching	Credits
Credits	L	Т	Р	SS	Total	hours	
	00	00	01	00	02	24	01

CIE Marks: 50	SEE Marks: 50	Total Max. marks=100	Duration of SEE: 03 Hours
---------------	---------------	----------------------	---------------------------

- 1. Understand the main features and importance of the SCILAB mathematical programming environment.
- 2. Understand the simulation of various power electronic devices.
- 3. Understand the simulation of various power electronic converters.
- 4. Understand the Simulation of various power control circuits.
- 5. Analyse the characteristic behavior of power electronic circuits.

S.No	Laboratory Component	No. of hours	BTL
1.	Power Diodes and Switched RLC Circuits	2	L3
2.	Diode Rectifiers	2	L3
3.	Power Transistors	2	L4
4.	DC to DC Converters	2	L4
5.	DC AC Converters	2	L3
6.	Resonant Pulse Inverters	2	L3
7.	Thyristors	2	L3
8.	Controlled Rectififiers	2	L3
9.	AC Voltage Controllers	2	L4
10.	Power Supplies	2	L4
	Experiments beyond the Syllabus		L4
1.	AC and DC Drives	2	L4
2.	Protections of Devices and	2	L4
	Circuits	Σ	

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Apply the main features and importance of the MATLAB/ SCILAB mathematical programming environment.

CO2: Simulate various power electronic devices

CO3:. Simulate various power electronic converters

CO4: Simulate various power control circuits

CO5: Analyse the characteristic behavior of power electronic circuits..

TEXT BOOKS

1. Scilab Textbook Companion for Power Electronics Devices, circuits And Applicationby Muhammad. H. Rashid

REFERENCE BOOKS

1. Scilab Manual for Power Electronics Lab

2. SCILAB(a Free Software to Matlab), Er. Hema Ramachandran and Dr. Achutsankar Nair, S. Chand Publishers, ISBN-10: 8121939704, 201

ONLINE RESOURCES

1. https://www.youtube.com/watch?v=czoZA3raJik&list=PLRN3HroZGu2n0AVwOYb-t5L-mkxZe03Gr

 $2. \ \underline{https://www.youtube.com/watch?v=d2FLcBLUub4\&pp=ygUbc2NpbGFiIHRvIHBvd2VyIGVsZWN0cm9uaWNz}$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1			2								1	1	

CO2	2	1			2							1	1	
CO3	2	2			2							2	2	
CO4	2	2			2							2	2	
CO5	2	3			2							2	2	
Stren	gth of	Strength of correlation: Low-1, Medium-2, High-3												

Course Title	BASICS	BASICS OF VHDL LAB								
Course Code	22EEL6	07B								
Category	Ability E	nhancer	nent Cours	se						
Scheme and			No. of Hou	rs/Week		Total teaching	Credits			
Credits	L	Т	Р	SS	Total	hours				
	00	00	02	00	02	24	01			

CIE Marks: 50 SEE Marks: 50 Total Max. marks=100

Duration of SEE: 03 Hours

COURSE OBJECTIVE:

- 1. To learn the concepts of simplifying Boolean expression
- 2. To understand the concepts of designing and analyzing combinational logic circuits.
- 3. To apply design methods and analysis of sequential logic circuits.
- 4. To understand the concepts of HDL-Verilog data flow and behavioral models for the design of digital systems.

Expt No	Syllabus Contents	No. of Hours	Blooms Taxono my level.
	Introduction to Verilog : Structure of Verilog module, Operators, Data Types, Styles of Description- Data flow description, Behavioral description. Verilog Behavioural description: Structure, Sequential Statements, Case statement, Loop Statements.	02	L1-L2
1	Simplification, realization of Boolean expressions using logic gates/Universal Gates	02	L1-L4
2	To design and implement (a) Adder/Subtractor – Full/half using logic gates. (b) 4-bit Parallel Adder/ subtractor using IC 7483.	02	L1-L4
3	To realize (a)Binary to Gray code conversion and vice versa (b)Priority encoder and 3:8 Decoder using IC74138 (c)One / Two bit comparator	02	L1-L4
4	To realize the following flip-flops using NAND Gates: (a) T type (b) JK Master slave (c) D type	02	L1-L4
5	To design and implement the 3-bit Mod-N synchronous counters using 7476.	02	L1-L4
6	Adder/Subtractor - Full/half using Verilog data flow description	02	L1-L4
7	Flip-flops using Verilog Behavioral description (a) JK type b) SR type c) T type and d) D type	02	L1-L4
8	Counter Up/ Down (Binary), sequential counters using Verilog.	02	L1-L4
Use Fi		tput for	interfacing
1	Verilog program to interface a stepper motor to rotate the motor in specified direction	02	L1-L4
2	Verilog program to interface a Relay	02	L1-L4
3	Verilog program to interface a Waveform generation using DAC	02	L1-L4
4	Verilog program to interface switches and LEDs	02	L1-L4

Course Outcomes:

CO1: Simplify Boolean functions using K-map and Quine-McCluskey minimization technique

CO2: Analyze combinational logic circuits

CO3: Analyze the concepts of Latches and Flip Flops. (SR, D, T and JK).

CO4: Analyze and design the synchronous sequential circuits.

CO5: Implement Combinational circuits & sequential circuits using Verilog descriptions.

References.

- 1. Fundamentals of logic design, by Charles H Roth Jr., Cengage Learning
- 2. Digital Principles and Design Donald D Givone,12threprint, TMH,2008

3. Logic Design, Sudhakar Samuel, Pearson/ Saguine, 2007

Web Links.

- 1. https://nptel.ac.in/courses/108105132
- 2. https://nptel.ac.in/courses/117105080
- 3. https://nptel.ac.in/courses/108103179

	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO 2	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO 3	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO 4	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO 5	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
Stren	gth of (correla	tion:	Low-1,	Med	ium- 2,	Higł	n-3							

Course Title	e	ARDUINO AND RASPBERRY PI BASED PROJECT										
Course Code	e	22EEL607C										
Category		Ability E	Ability Enhancement Course									
Scheme	and			No. of Hou	rs/Week		Total teaching	Credits				
Credits		L	Т	Р	SS	Total	hours	Credits				

CIE Marks: 50	SEE Mai	rks: 50	Total Ma	x. marks=100	Duration	of SEE: 03 Hour	rs
	00	00	02	00	02	26	01

1. To impart necessary and practical knowledge of components of Internet of Things.

2. To develop skills required to build real-time based projects.

Expt No	Syllabus Contents	No.of Hours	Blooms Taxonomy level.
1	 i) To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to 'turn ON' LED for 1 sec after every 2 seconds. ii) To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to 'turn ON' LED when push button is pressed or at sensor detection. 	02	L4
2	i) To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.ii) To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it	02	L4
3	To interface motor using relay with Arduino/Raspberry Pi and write a program to 'turn ON' motor when push button is pressed.	02	L4
4	To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.	02	L4
5	To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.	02	L4
6	Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thing speak cloud.	02	L4
7	Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thing speak cloud.	02	L4
8	To install MySQL database on Raspberry Pi and perform basic SQL queries.	02	L4
9	Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.	02	L4
10	Write a program to create UDP server on Arduino/Raspberry Pi and respond with humidity data to UDP client when requested.	02	L4
	EXPERIMENTS BEYOND SYLLABUS		
1	Write a program to create TCP server on Arduino/Raspberry Pi and respond with humidity data to TCP client when requested.	02	L4
2	Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for temperature data and print it	02	L4

Course Outcomes:

CO1: Understand internet of Things and its hardware and software components

CO2: Interface I/O devices, sensors & communication modules

CO3: Distantly monitor data and control devices.

CO4: Develop real time IoT based projects

References.

- 1. Vijay Madisetti, Arshdeep Bahga, Internet of Things. "A Hands on Approach", University Press
- 2. Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A practical Approach", ETI Labs.
- 3. Pethuru Raj and Anupama C Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

Web Links.

1. https://www.basedash.com/blog/how-to-install-mysql-on-a-raspberry-pi.

2. <u>https://projecthub.arduino.cc/</u>

	PO PO1 PO1													DCO		
	PC)	PO	PO1	PO1	PO1	PSO	PSO	PSO							
	1		2	3	4	5	6	7	8	9	0	1	2	1	2	3
со	1	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO	2	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO	3	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO	4	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
CO	5	3	3	2	2	2	1	-	-	-	-	1	1	2	2	2
Str	Strength of correlation: Low-1, Medium- 2, High-3													•		