Signals and Systems UNIT 2

Convolution Stim
Convolution Sum
Convolution Sum
(Finite Sequences)

Ripal Patel

December 1, 2020

- A class of systems used in signals and systems that are both linear and time-invariant
- A class of systems used in signals and systems that are both linear and time-invariant
- Linear systems are systems whose outputs for a linear combination of inputs are the same as a linear combination of individual responses to those inputs.
- A class of systems used in signals and systems that are both linear and time-invariant
- Linear systems are systems whose outputs for a linear combination of inputs are the same as a linear combination of individual responses to those inputs.
- Time-invariant systems are systems where the output does not depend on when an input was applied. These properties make LTI systems easy to represent and understand graphically.
- Time-invariant systems are systems where the output does not depend on when an input was applied. These properties make LTI systems easy to represent and understand graphically.
- Used to predict long-term behavior in a system
- Time-invariant systems are systems where the output does not depend on when an input was applied. These properties make LTI systems easy to represent and understand graphically.
- Used to predict long-term behavior in a system
- The behavior of an LTI system is completely defined by its impulse response

Ripal Patel

The discrete version of impulse function is defined by

$$
\delta(n)= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

The continuous time version of impulse function,

$$
\delta(t)= \begin{cases}1, & t=0 \\ 0, & t \neq 0\end{cases}
$$

Impulse Response

Time domain representation of LTI System Linear time-invariant systems (LTI systems)
Impulse Response
Convolution Sum

- The impulse response" of a system, $h[n]$, is the output that it produces in response to an impulse input. Definition: if and only if $x[n]=\delta[n]$ then $y[n]=h[n]$

Impulse Response

- The impulse response" of a system, $h[n]$, is the output that it produces in response to an impulse input. Definition: if and only if $x[n]=\delta[n]$ then $y[n]=h[n]$
- Given the system equation, the impulse response can be found out just by feeding $x[n]=\delta[n]$ into the system.

Impulse Response Example

- Consider the system

$$
y[n]=\frac{1}{2}(x[n]+x[n-1])
$$

- Suppose we insert an impulse:

$$
x[n]=\delta[n]
$$

- Then whatever we get at the output, by Definition, is the impulse response. In this case it is

$$
h[n]=\frac{1}{2}(\delta[n]+\delta[n-1])=\left\{\begin{array}{cc}
0.5, & n=0,1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Ripal Patel

Time domain representation of LTI System Linear time-invariant systems (LTI) systems)
Impulse Response
Convolution Sum
Convolution Sum (Finite Sequences) Convolution Sum (Infinite Sequences)

Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference equation representation of LTI systems

where, $\mathrm{h}[\mathrm{n}]=$ impulse response of LTI system $x[n]=$ Input Signal

Ripal Patel

Time domain representation of LTI System

where, $\mathrm{h}[\mathrm{n}]=$ impulse response of LTI system $x[n]=$ Input Signal

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

where, $\mathrm{h}[\mathrm{n}]=$ impulse response of LTI system $x[n]=$ Input Signal

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- input-excitation output-response

Convolution Sum Example

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant
systems (LTI
systems)
Impulse Response
Convolution Sum
(Finite Sequences
Convolution Sum
(Infinite Sequences)
Convolution Integral
Convolution Integral (Finte signals)

Step Response
Differential
and Difference equation representation of LTI systems

Find the response $y[n]$ of following LTI system.

$$
x(n)=[0,1,2,3,1,0] \text { and } h(n)=[0,1,2,2,0]
$$

Convolution Sum (Graphical method)

Ripal Patel

Time domain
representation of LTI System

Linear time-invariant systems (LTI

systems)

Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences
Convolution
Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference
equation
representation
of LTI systems

Convolution Sum (Graphical method)

Ripal Patel

Time domain
representation of LTI System

Linear time-invariant systems (LTI

systems)

Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)

Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference

equation

representation of LTI systems
(2)

Convolution Sum (Graphical method)

Ripal Patel

Time domain
representation of LTI System

Linear time-invariant systems (LTI

systems)

Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference
(1)

(2)

Convolution Sum (Graphical method)

Ripal Patel

Time domain representation of LTI System

Linear time-invariant systems (LTI) systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution Integral
Convolution Integral (Finite signals)

Step Response

Differential
and Difference

equation

representation of LTI systems

(2)

Convolution Sum (Graphical method)

Ripal Patel

Time domain representation of LTI System

Linear time-invariant systems (LTI systems)
Impulse Response
Convolution Sum
Convolution Sum (Finite Sequences) Convolution Sum (Infinite Sequences)

Convolution

 IntegralConvolution Integral (Finite signals)

Step Response
Differential
and Difference

equation

representation of LTI systems

(2)

(3b)
$\mathrm{n}=2 \mathrm{~h}(2-k) \mid$

- $y(n)=[\ldots 0,1,4,9,11,8,2,0, \ldots]$

Convolution Sum (Analytical method)

Ripal Patel

Time domain
representation of LTI System
Linear time-invariant systems (LTI
systems)
Impulse Response
Convolution Sum
Convolution Sum (Finite Sequences)

Convolution Sum

(Infinite Sequences)
Convolution
Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference
equation
representation of LTI systems

- Size of $x(n)=A=4$, Size of $h(n)=B=3$

Length of $y(n)=A+B-1=4+3-1=6$

Convolution Sum (Analytical method)

Ripal Patel

Time domain
representation of LTI System

- Size of $x(n)=A=4$, Size of $h(n)=B=3$ Length of $y(n)=A+B-1=4+3-1=6$
- $\mathrm{x}(\mathrm{n})$ is starting from 0 index $n_{1}=0$
$\mathrm{h}(\mathrm{n})$ is starting from -1 index $n_{2}=-1$
$n_{1}+n_{2}=-1$, range of $\mathrm{n}=-1$ to 4

Convolution Sum (Analytical method)

- Size of $x(n)=A=4$, Size of $h(n)=B=3$

Length of $y(n)=A+B-1=4+3-1=6$

- $x(n)$ is starting from 0 index $n_{1}=0$
$\mathrm{h}(\mathrm{n})$ is starting from -1 index $n_{2}=-1$
$n_{1}+n_{2}=-1$, range of $\mathrm{n}=-1$ to 4
- For $\mathrm{n}=-1$

$$
\begin{gathered}
y[-1]=\sum_{k=0}^{3} x[k] h[-1-k]= \\
x[0] h[-1]+x[1] h[-2]=(1 \times 1)+(2 \times 0)=1
\end{gathered}
$$

Convolution Sum (Analytical method)

- Size of $x(n)=A=4$, Size of $h(n)=B=3$

Length of $y(n)=A+B-1=4+3-1=6$

- $x(n)$ is starting from 0 index $n_{1}=0$
$\mathrm{h}(\mathrm{n})$ is starting from -1 index $n_{2}=-1$
$n_{1}+n_{2}=-1$, range of $n=-1$ to 4
- For $\mathrm{n}=-1$

$$
\begin{gathered}
y[-1]=\sum_{k=0}^{3} x[k] h[-1-k]= \\
x[0] h[-1]+x[1] h[-2]=(1 x 1)+(2 x 0)=1
\end{gathered}
$$

- For $\mathrm{n}=0$

$$
y[0]=\sum_{k=0}^{3} x[k] h[0-k]=
$$

$$
x[0] h[0]+x[1] h[-1]+x[2] h[-2]=(1 \times 2)+(2 x 1)+(3 \times 0)=4
$$

Convolution Sum (Analytical method)

Time domain representation of LTI System
systems (LTI systems)
Impulse Response

- Size of $x(n)=A=4$, Size of $h(n)=B=3$

Length of $y(n)=A+B-1=4+3-1=6$

- $x(n)$ is starting from 0 index $n_{1}=0$
$\mathrm{h}(\mathrm{n})$ is starting from -1 index $n_{2}=-1$
$n_{1}+n_{2}=-1$, range of $n=-1$ to 4
- For $\mathrm{n}=-1$

$$
\begin{gathered}
y[-1]=\sum_{k=0}^{3} x[k] h[-1-k]= \\
x[0] h[-1]+x[1] h[-2]=(1 \times 1)+(2 x 0)=1
\end{gathered}
$$

- For $\mathrm{n}=0$

$$
y[0]=\sum_{k=0}^{3} x[k] h[0-k]=
$$

$$
x[0] h[0]+x[1] h[-1]+x[2] h[-2]=(1 \times 2)+(2 x 1)+(3 \times 0)=4
$$

- Likewise for all the values of n

$$
y(n)=[\ldots 0,1,4,9,11,8,2,0, \ldots]
$$

Convolution Sum (Analytical method)

Ripal Patel

Time domain

$$
\begin{aligned}
& x_{1}(n)=[\underset{\uparrow}{1}, 2,3] \\
& x_{2}(n)=[2,1,4]
\end{aligned}
$$

$$
y[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]
$$

- Size of $x_{1}(n)=A=3$, Size of $x_{2}(n)=B=3$ Length of $y(n)=A+B-1=3+3-1=5$

Convolution Sum (Analytical method)

$$
y[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]
$$

- Size of $x_{1}(n)=\mathrm{A}=3$, Size of $x_{2}(n)=\mathrm{B}=3$ Length of $y(n)=A+B-1=3+3-1=5$
- $x_{1}(n)$ is starting from 0 index $n_{1}=0$
$x_{2}(n)$ is starting from 0 index $n_{2}=0$ $n_{1}+n_{2}=0$, range of $\mathrm{n}=0$ to 4

Convolution Sum (Analytical method)

Ripal Patel

Time domain
representation
of LTI System

- For $\mathrm{n}=0$

$$
\begin{gathered}
y[0]=\sum_{k=0}^{2} x_{1}[k] x_{2}[-k]= \\
x[0] x_{2}[0]+x_{1}[1] x_{2}[-1]+x_{1}[2] x_{2}[-2] \\
=(1 \times 2)+(2 \times 0)+(3 \times 0)=2
\end{gathered}
$$

Convolution Sum (Analytical method)

Ripal Patel

Time domain representation of LTI System

- For $\mathrm{n}=0$

$$
\begin{gathered}
y[0]=\sum_{k=0}^{2} x_{1}[k] x_{2}[-k]= \\
x[0] x_{2}[0]+x_{1}[1] x_{2}[-1]+x_{1}[2] x_{2}[-2] \\
=(1 \times 2)+(2 \times 0)+(3 \times 0)=2
\end{gathered}
$$

- Likewise for all the values of $n y(n)=[2,5,12,11,12]$

Time domain
representation
of LTI System
Linear time-invariant systems (LTI systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution
Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference
equation
representation of LTI systems

Convolute the given sequences
$x_{1}[n]=\alpha^{n} u[n]$ and $x_{2}[n]=\beta^{n} u[n]$

- $y[n]=x_{1}[n] * x_{2}[n]$

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant systems (LTI
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference equation
representation of LTI systems

Convolute the given sequences $x_{1}[n]=\alpha^{n} u[n]$ and $x_{2}[n]=\beta^{n} u[n]$

- $y[n]=x_{1}[n] * x_{2}[n]$
- $=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]$

Time domain
representation
of LTI System

Convolute the given sequences $x_{1}[n]=\alpha^{n} u[n]$ and $x_{2}[n]=\beta^{n} u[n]$

- $y[n]=x_{1}[n] * x_{2}[n]$
- $=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]$
- $=\sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n-k} u[n-k]$

Time domain

Convolute the given sequences $x_{1}[n]=\alpha^{n} u[n]$ and $x_{2}[n]=\beta^{n} u[n]$

- $y[n]=x_{1}[n] * x_{2}[n]$
- $=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]$
- $=\sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n-k} u[n-k]$
- $=\sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n} \beta^{-k} u[n-k]$

Time domain

Convolute the given sequences

$$
x_{1}[n]=\alpha^{n} u[n] \text { and } x_{2}[n]=\beta^{n} u[n]
$$

- $y[n]=x_{1}[n] * x_{2}[n]$
- $=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]$
- $=\sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n-k} u[n-k]$
- $=\sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n} \beta^{-k} u[n-k]$
- $=\beta^{n} \sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{-k} u[n-k]$

Time domain

Convolute the given sequences

$$
x_{1}[n]=\alpha^{n} u[n] \text { and } x_{2}[n]=\beta^{n} u[n]
$$

- $y[n]=x_{1}[n] * x_{2}[n]$
- $=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]$
- $=\sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n-k} u[n-k]$
- $=\sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{n} \beta^{-k} u[n-k]$
- $=\beta^{n} \sum_{k=-\infty}^{\infty} \alpha^{k} u[k] \beta^{-k} u[n-k]$
- $=\beta^{n} \sum_{k=-\infty}^{\infty}\left(\frac{\alpha}{\beta}\right)^{k} u[k] u[n-k]$

Ripal Patel

Time domain representation of LTI System Linear time-invariant systems (LTI systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum (Infinite Sequences)

Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential and Difference equation
representation of LTI systems

Time domain representation of LTI System Linear time invariant systems (LTI systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum (Infinite Sequences)

Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential and Difference equation
representation of LTI systems

- $u[k] u[n-k]=1,0 \leq k \leq n, n \geq 0$

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant systems (LTI)
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution
Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference equation
representation of LTI systems

Convolute the given sequences $x_{1}[n]=\alpha^{n} u[n]$ and $x_{2}[n]=\beta^{n} u[n]$

- $=\beta^{n} \sum_{k=0}^{n}\left(\frac{\alpha}{\beta}\right)^{k}$

Convolution Sum

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant systems (LTI
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)

Convolution

Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference equation representation of LTI systems

Convolute the given sequences

$$
\begin{aligned}
& x_{1}[n]=\alpha^{n} u[n] \text { and } x_{2}[n]=\beta^{n} u[n] \\
& \quad \bullet=\beta^{n} \sum_{k=0}^{n}\left(\frac{\alpha}{\beta}\right)^{k}
\end{aligned}
$$

$$
=\beta^{n}\left[\frac{\left(\frac{\alpha}{\beta}\right)^{n+1}-1}{\left(\frac{\alpha}{\beta}\right)-1}\right]
$$

Convolution Sum

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant systems (LTI
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)

Convolution

Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference
equation
representation of LTI systems

Convolute the given sequences

$$
\begin{aligned}
& x_{1}[n]=\alpha^{n} u[n] \text { and } x_{2}[n]=\beta^{n} u[n] \\
& \quad \bullet=\beta^{n} \sum_{k=0}^{n}\left(\frac{\alpha}{\beta}\right)^{k}
\end{aligned}
$$

$$
=\beta^{n}\left[\frac{\left(\frac{\alpha}{\beta}\right)^{n+1}-1}{\left(\frac{\alpha}{\beta}\right)-1}\right]
$$

$$
\frac{1}{\beta-\alpha}\left[\beta^{n+1}-\alpha^{n+1}\right]
$$

Convolution Sum

Time domain

The system is characterized by an impulse response

$$
h[n]=\left(\frac{3}{4}\right)^{n} u[n]
$$

Find the step response of the system. Also evaluate the output of the system at $n= \pm 5$

- $y[n]=x[n] * h[n]=h[n] * x[n]$

Convolution Sum

Time domain

The system is characterized by an impulse response

$$
h[n]=\left(\frac{3}{4}\right)^{n} u[n]
$$

Find the step response of the system. Also evaluate the output of the system at $n= \pm 5$

- $y[n]=x[n] * h[n]=h[n] * x[n]$
- $=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$

Convolution Sum

Time domain

The system is characterized by an impulse response

$$
h[n]=\left(\frac{3}{4}\right)^{n} u[n]
$$

Find the step response of the system. Also evaluate the output of the system at $n= \pm 5$

- $y[n]=x[n] * h[n]=h[n] * x[n]$
- $=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$
- $=\sum_{k=-\infty}^{\infty}\left(\frac{3}{4}\right)^{k} u[k] u[n-k]$

Convolution Sum

The system is characterized by an impulse response

$$
h[n]=\left(\frac{3}{4}\right)^{n} u[n]
$$

Find the step response of the system. Also evaluate the output of the system at $n= \pm 5$

- $y[n]=x[n] * h[n]=h[n] * x[n]$
- $=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$
- $=\sum_{k=-\infty}^{\infty}\left(\frac{3}{4}\right)^{k} u[k] u[n-k]$
- $=\sum_{k=0}^{n}\left(\frac{3}{4}\right)^{k}$

Convolution Sum

Time domain representation of LTI System

The system is characterized by an impulse response

$$
h[n]=\left(\frac{3}{4}\right)^{n} u[n]
$$

Find the step response of the system. Also evaluate the output of the system at $n= \pm 5$

- $y[n]=x[n] * h[n]=h[n] * x[n]$
- $=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$
- $=\sum_{k=-\infty}^{\infty}\left(\frac{3}{4}\right)^{k} u[k] u[n-k]$
- $=\sum_{k=0}^{n}\left(\frac{3}{4}\right)^{k}$
- $=\frac{\left(\frac{3}{4}\right)^{n+1}-1}{\frac{3}{4}-1}$

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant
systems (LTI
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution
Integral
Convolution Integral (Finite signals)

- Convolution Integral between two continuous signals $x(t)$ and $h(t)$

$$
y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant systems (LTI
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution
Integral
Convolution Integral (Finite signals)

- Convolution Integral between two continuous signals $x(t)$ and $h(t)$

$$
y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

- $y(t))=x(t) * h(t)=h(t) * x(t)$

Convolution Integral (Graphical Methods)

Suppose the input $x(t)$ and impulse response $h(t)$ of a LTI system are given by

$$
\begin{gathered}
x(t)=2 u(t-1)-2 u(t-3) \\
h(t)=u(t+1)-2 u(t-1)+u(t-3)
\end{gathered}
$$

Ripal Patel

Time domain representation of LTI System Linear time-invariant systems (LT]

systems)

Impulse Response
Convolution Sum
Eonvolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference
equation
representation of LTI systems
$h(t)$

Convolution Integral

Ripal Patel

Time domain

representation of LTI System

Linear time-invariant systems (LTI)
systems)
Impulise Response
Convolution Sum
Convolution Sum
(Finite Scquences)
Convolution Sum
(Infinite Sequences)
Convolution

Integral

Convolution Integral (Finite signals)

Step Response
Differential
and Difference

equation

representation of LTI systems

Convolution:

(a)

(b)

(c)

Convolution Integral (Analytical Methods)

Ripal Patel

Time domain
representation
of LTI System

Linear time-invariant

systems (LTI
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution

Integral

Convolution Integral (Finite signals)

$$
\begin{aligned}
& x(t)=e^{-2 t} u(t) \\
& h(t)=u(t+2)
\end{aligned}
$$

- $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

Convolution Integral (Analytical Methods)

Ripal Patel

Time domain
representation
of LTI System

Linear time-invariant

- $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$
- $\int_{-\infty}^{\infty} e^{-2 \tau} u(\tau) u(t-\tau+2) d \tau$

Step Response

$$
\begin{aligned}
& x(t)=e^{-2 t} u(t) \\
& h(t)=u(t+2)
\end{aligned}
$$

Convolution Integral (Analytical Methods)

Ripal Patel

Time domain

- $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$
- $\int_{-\infty}^{\infty} e^{-2 \tau} u(\tau) u(t-\tau+2) d \tau$
- Case 1: $t+2<0$, do not overlap hence zero.

Convolution Integral (Analytical Methods)

Ripal Patel

Time domain

- $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$
- $\int_{-\infty}^{\infty} e^{-2 \tau} u(\tau) u(t-\tau+2) d \tau$
- Case 1: $t+2<0$, do not overlap hence zero.
- Case $2=\int_{0}^{t+2} e^{-2 \tau} x 1 d \tau$

Convolution Integral (Analytical Methods)

Ripal Patel

- $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$
- $\int_{-\infty}^{\infty} e^{-2 \tau} u(\tau) u(t-\tau+2) d \tau$
- Case 1: $t+2<0$, do not overlap hence zero.
- Case $2=\int_{0}^{t+2} e^{-2 \tau} x 1 d \tau$
- $=\left[\frac{e^{-2 \tau}}{-2}\right]_{0}^{t+2}=\frac{1}{2}-\frac{1}{2} e^{-2(t+2)}$

Convolution Integral (Analytical Methods)

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant
systems (LTI
systems)
Impulse Response
Convolution Sum
Gonvolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution

Integral

Convolution Integral (Finite signals)

- $x(t)=1, t=1,2,3$

$$
\begin{gathered}
x(t)=2 u(t-1)-2 u(t-3) \\
h(t)=u(t+1)-2 u(t-1)+u(t-3)
\end{gathered}
$$

Convolution Integral (Analytical Methods)

Ripal Patel

Time domain

Convolution

Integral

Convolution Integral (Finite signals)

$$
\begin{gathered}
x(t)=2 u(t-1)-2 u(t-3) \\
h(t)=u(t+1)-2 u(t-1)+u(t-3)
\end{gathered}
$$

- $x(t)=1, t=1,2,3$
- $h(t)=\left\{\begin{array}{rll}1 & \text { for } & 1 \leq t \leq 3 \\ -1 & \text { for } & -1 \leq t<1 \\ 0 & & \text { otherwise }\end{array}\right.$

Convolution Integral (Analytical Methods)

Ripal Patel

Time domain

Convolution

- $x(t)=1, t=1,2,3$
- $h(t)=\left\{\begin{array}{rll}1 & \text { for } & 1 \leq t \leq 3 \\ -1 & \text { for } & -1 \leq t<1 \\ 0 & & \text { otherwise }\end{array}\right.$
- $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

Convolution Integral

Ripal Patel

Time domain representation of LTI System Linear time－invariant systems（LTI systems）
Impulse Response
Convolution Sum

Convolution Sum

 （Finite Sequences） Convolution Sum （Infinite Sequences）Convolution Integral
Convolution Integral （Finite signals）

Ripal Patel

Time domain representation of LTI System Linear time-invariant systems (LTI systems)
Impulse Response
Convolution Sum
Gonvolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential
and Difference equation
representation of LTI systems

Convolution Integral

Ripal Patel

Time domain representation of LTI System
systems)
Impulse Response
Convolution Sum
Convolution Sum (Finite Sequences) Convolution Sum (Infinite Sequences)

Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential and Difference equation representation of LTI systems

Characterizes the response to sudden changes in input.

$$
\begin{aligned}
s[n] & =h[n] * u[n] \\
& =\sum_{k=-\infty}^{\infty} h[k] u[n-k]
\end{aligned}
$$

$\mathrm{u}[\mathrm{n}-\mathrm{k}]$ exist from $-\infty$ to n

$$
s[n]=\sum_{k=-\infty}^{n} h[k]
$$

$\mathrm{h}[\mathrm{k}]$ is the running sum of impulse response.

Step Response for Continuous time system

Time domain

$$
s(t)=\int_{-\infty}^{t} h(\tau) d \tau
$$

Relation b/w step response and impulse response.

$$
\begin{gathered}
h(t)=\frac{d}{d t} s(t) \\
h[n]=s[n]-s[n-1]
\end{gathered}
$$

Eg. Step response of an RC ckt

$$
h(t)=\frac{1}{R C} e^{-\frac{1}{k c} u(t)}
$$

Time domain
representation
of LTI System
Linear time-invariant systems (LTI systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution
Integral
Convolution Integral
(Finite signals)
Step Response
Differential
and Difference

equation

representation
of LTI systems

Find the step response for LTI system represented by impulse response $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$.
Ans:

$$
\begin{aligned}
s[n] & =\sum_{k=-\infty}^{n} h[k] \\
s[n] & =\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k} \\
& =\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}, n \geq 0
\end{aligned}
$$

Ripal Patel

Time domain
representation
of LTI System
Linear time-invariant
systems (LTI
systems)

$$
h(t)=t u(t)
$$

Ans:

Convolution Sum

(Finite Sequences)
Convolution Sum
(Infinite Sequences)

Convolution
Integral
Convolution Integra (Finite signals)

Step Response
Differential
and Difference

$$
\begin{aligned}
& s(t)=\int_{-\infty}^{t} h(\tau) d \tau \\
& s(t)=\int_{0}^{t} \tau d \tau \\
& =\frac{t^{2}}{2}, t \geq 0
\end{aligned}
$$

Differential and Difference equation representation

Time domain representation of LTI System

Linear constant coefficient differential equation:

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=\sum_{k=0}^{M} b_{k} \frac{d^{k}}{d t^{k}} x(t)
$$

Linear constant coefficient difference equation:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Order of the equation is (N, M), representing the number of energy storage devices in the system.
Often $\mathrm{N}>\mathrm{M}$ and the order is described using only ' N '.

Differential and Difference equation representation

Time domain representation of LTI System

Second order difference equation:

$$
y[n]+y[n-1]+\frac{1}{4} y[n-2]=x[n]+2 x[n-1]
$$

Difference equation are easily arranged to obtain recursive formulas for computing the current o / p of the system.

$$
\begin{gather*}
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k] \tag{1}\\
y[n]=\frac{1}{a_{0}} \sum_{k=0}^{M} b_{k} x[n-k]-\frac{1}{a_{0}} \sum_{k=1}^{N} a_{k} y[n-k]
\end{gather*}
$$

(1) Shows how to ${ }^{k}=00$ bain $y[n]$ from present and past values of the input.

Recursive evaluation of difference equation

Ripal Patel

Time domain representation of LTI System

Find the first two o/p values $y[0]$ and $y[1]$ for the system described by $y[n]=x[n]+2 x[n-1]-y[n-1]-\frac{1}{4} y[n-2]$. Assuming that the input is $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$ and the initial conditions are $\mathrm{y}[-1]=1$ and $\mathrm{y}[-2]=-2$.

$$
\begin{array}{ll}
y[0]=\times[0]+2 \times[-1]-y[-1]-\frac{1}{4} y[-2] & y[0]=x[1]+2 \times[0]-y[0]-\frac{1}{4} \mathrm{y}[-1] \\
y[0]=1+2 \times 0-1-\frac{1}{4} \times(-2)=\frac{1}{2} & y[1]=\frac{1}{2}+2 \times 1-\frac{1}{2}-\frac{1}{4} \times(1)=1 \frac{3}{4}
\end{array}
$$

Solving Differential and Difference equations

Ripal Patel

Time domain representation of LTI System

Output of LTI system described by differential or difference equation has two components
y^{h} - homogeneous solution
y^{p} - particular solution
Complete solution

$$
y=y^{h}+y^{p}
$$

Eg.
A system is described y the difference equation

$$
\begin{aligned}
& y[n]-1.143 y[n-1]+0.4128 y[n-2]=0.0675 x[n]+0.1349 x[n-1]+0.675 x[n-2] \\
& y-1]=1 \text { and } y[-2]=2,
\end{aligned}
$$

Homogeneous Solution for CT system

Ripal Patel

Time domain

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=\sum_{k=0}^{M} b_{k} \frac{d^{k}}{d t^{k}} x(t)
$$

Set all terms involving input to zero

Solution

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=0
$$

$$
y^{h}(t)=\sum_{i=1}^{N} c_{i} e^{r_{i} t}
$$

r_{i} are the N roots of the characteristic equation

Time domain

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Set all terms involving input to zero

$$
\sum_{k=0}^{N} a_{k} y[n-k]=0
$$

Solution

$$
y^{h}[n]=\sum_{i=1}^{N} c_{i} r_{i}^{n}
$$

r_{i} are the N roots of the characteristic equation.

Homogeneous Solution Example

Time domain representation of LTI System Linear time-invariant systems (LTI systems)
Impulse Response
Convolution Sum
Convolution Sum (Finite Sequences) Convolution Sum (Infinite Sequences)

Convolution Integral
Convolution Integral (Finite signals)

Step Response
Differential and Difference equation
representation of LTI systems

RC ckt depicted in figure is described by the differential equation $y(t)+R C \frac{d}{d t} y(t)=x(t)$. Determine the homogenous solution.

The homogenous equation is

$$
\begin{equation*}
y(t)+R C \frac{d}{d t} y(t)=0 \tag{1}
\end{equation*}
$$

Characteristic equation

$$
\begin{gathered}
\left(1+R C r_{1}\right)=0 \\
r_{1}=-\frac{1}{R C}
\end{gathered}
$$

Homogenous solution of the system is

$$
y^{h}(t)=c_{1} e^{-\frac{1}{R C} t}
$$

Homogeneous Solution Example

Ripal Patel

Time domain representation of LTI System

Determine the homogenous solution.
$\frac{d^{2}}{d t^{2}} y(t)+5 \frac{d}{d t} y(t)+6 y(t)=$ $2 x(t)+\frac{d}{d t} x(t)$
Ans:
Homogenous equation
$\frac{d^{2}}{d t^{2}} y(t)+5 \frac{d}{d t} y(t)+6 y(t)=0$
Homogenous solution

$$
y^{h}(t)=\sum_{i=1}^{N} c_{i} e^{r_{i} t}
$$

$$
y^{h}(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

To find r_{1} and r_{2} solve CE.
Put $\frac{d^{n}}{d t^{n}} y(t)=r^{n}$
(1) becomes

$$
\begin{gathered}
r^{2}+5 r+6=0 \\
r=-3,-2 \\
y^{h}(t)=c_{1} e^{-3 t}+c_{2} e^{-2 t}
\end{gathered}
$$

Homogeneous Solution Example

Ripal Patel

Time domain representation of LTI System Linear time-invariant systems (LT)
$y[n]-\frac{1}{4} y[n-1]-\frac{1}{8} y[n-2]=x[n-1]$

Ans:

Set input to zero
$y[n]-\frac{1}{4} y[n-1]-\frac{1}{8} y[n-2]=0$
$\mathrm{N}=2$

$$
y^{h}[n]=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}
$$

(1) Becomes

$$
1-\frac{1}{4} r^{-1}-\frac{1}{8} r^{-2}=0
$$

$$
N=2
$$

$$
\begin{gathered}
r^{2}-\frac{1}{4} r-\frac{1}{8}=0 \\
r=\frac{1}{2},-\frac{1}{4} \\
y^{h}[n]=c_{1}\left(\frac{1}{2}\right)^{n}+c_{2}\left(-\frac{1}{4}\right)^{n}
\end{gathered}
$$

Step Response

Differential and Difference equation

Solution of difference or differential equation for a given input. Assumption : output is of same general form as the input.

CT System	
Input	Particular solution
1	c
t	$c_{1} t+c_{2}$
$e^{-a t}$	$c e^{-a t}$
$\cos (\omega t+\Phi)$	$c_{1} \cos (\omega t)+c_{2} \sin (\omega t)$

DT System

Input	Particular solution
1	c
n	$c_{1} n+c_{2}$
α^{n}	$c \alpha^{n}$
$\cos (\Omega n+\Phi)$	$c_{1} \cos (\Omega n)+c_{2} \sin (\Omega n)$

Time domain representation of LTI System

Linear time-invariant systems (LTI)
systems)
Impulse Response
Convolution Sum
Convolution Sum
(Finite Sequences)
Convolution Sum
(Infinite Sequences)
Convolution
Integral
Convolution Integral (Finte signals)

Step Response
Differential
and Difference equation
representation of LTI systems

The End

