
Introduction

Mr. SIDDESHA K

Assistant Professor

Department of ECE

Dr AIT, Bengaluru.

MULTICORE ARCHITECTURE

Course Plan

• Introduction to Multi-Core Architecture

• System Overview of Threading

• Fundamental Concepts of Parallel Programming

• Threading and Parallel Programming
Constructs

• Threading APIs

• Open MP: A Portable Solution for Threading

• Solutions to Common Parallel Programming
problems

Course content

• This course content is organized into three major
sections.

• The first section (Chapters 1–4) presents an
introduction to software threading.

• This section includes background material on, why
chipmakers have shifted to multi-core architectures,
how threads work, how to measure the performance
improvements achieved by a particular threading
implementation.

• Overall understanding why hardware platforms are
evolving in the way that they are and understanding
the basic principles required to write parallel programs.

Course content

• The next section (Chapters 5 and 6) discusses
common programming APIs for writing parallel
programs. We look at different programming
interfaces: Microsoft’s APIs for Win32, MFC, and
.NET; POSIX Threads; and OpenMP.

• The third and final section is a collection of topics
related to multicore programming. Chapter 7
discusses common parallel programming problems
and how to solve them.

Text Books
TEXT BOOK:

1. “Multicore Programming-Increased Performance through
Software Multi–threading”, Shameem Akhter and Jason

Roberts , Intel Press, 2006.

REFERENCE BOOKS:

1. Calvin Lin, Lawrence Snyder, “Principles of Parallel
Programming” Pearson Education, 2009. ISBN-13: 978-
0321487902.

2. Michael J. Quinn ,“Parallel Programming in C with MPI and
OpenMP”, Tata McGraw Hill, 2004. ISBN 13: 9780070582019.

3. David E, Culler, Jaswinder Pal Singh with Anoop Gupta
“Parallel Computer Architecture A Hardware/ Software
Approach”, eBook ISBN: 9780080573076 Hardcover ISBN:
9781558603431.

What is MULTICORE ARCHITECTURE?

• Most technology professionals have heard of the radical
transformation taking place in the way that modern
computing platforms are being designed.

• Intel, IBM, Sun, and AMD have all introduced microprocessors
that have multiple execution cores on a single chip.

• In the future, computing platforms, whether they are desktop,
mobile, server, or specialized embedded platforms are most
likely to be multi-core in nature.

• The fact that the hardware industry is moving in this direction
presents new opportunities for software developers.

• As a result, multi-threading was an effective illusion.

• With modern multi-core architectures, developers are now
presented with a truly parallel computing platform.

Complementary to multi-core

SMT not a “true” parallel processor

“The next logical step from simultaneous
multi-threading (SMT) is the multi-core processor”

Optimal application performance on multi-core architectures will
be achieved by effectively using threads to partition software

workloads.

We’ll take a look at a variety of topics
that are relevant to writing software
for multi-core platforms.

Parallel programming

• Implementing software effectively and efficiently on
parallel hardware platforms.

• These platforms include multi-core processors and
processors that use simultaneous multi-threading
techniques, such as Hyper- Threading Technology (HT
Technology).

• This course will focus on programming techniques
that allow the developer to exploit the capabilities
provided by the underlying hardware platform.

Motivation for Concurrency

• Most end users have a simplistic view of complex computer
systems.

• On the server side, the provider must be able to receive the original

broadcast, encode/compress it in near real-time, and then send it over
the network to potentially hundreds of thousands of clients.

Motivation for Concurrency
• A system designer who is looking to build a computer system capable of

streaming a Web broadcast might look at the system as it’s shown,

• In order to provide an acceptable end-user experience, system designers
must be able to effectively manage many independent subsystems that
operate in parallel.

Parallel Computing Platforms

• In order to achieve parallel execution in software, hardware
must provide a platform that supports the simultaneous
execution of multiple threads.

• Any given computing system can be described in terms of how
instructions and data are processed. This classification system
is known as Flynn’s taxonomy.

The different processor architectures

Assignment questions

1. Differentiate Multi-Core Architectures and
Hyper-Threading Technology.

2. Differentiate Multi-threading on Single-
Core and multithreading on Multi-Core
Platforms.

Understanding Performance

• How do I measure the performance benefit of
parallel programming?

• One metric is to compare the elapsed run time of the
best sequential algorithm versus the elapsed run
time of the parallel program.

• This ratio is known as the speedup and characterizes
how much faster a program runs when parallelized.

• Speedup is defined in terms of the number of
physical threads (nt) used in the parallel
implementation.

Amdahl’s Law

• In 1967 Gene Amdahl proposed a rule known as Amdahl’s Law, examines
the maximum theoretical performance benefit of a parallel solution
relative to the best case performance of a serial solution.

• Amdahl started with the intuitively clear statement that “program
speedup is a function of the fraction of a program that is accelerated and
by how much that fraction is accelerated”.

Speed up part of the program (Only some Instructions)

This result is a speed increase of 8 percent.

• If half of the program is improved 15 percent, then the whole
program is improved by half that amount.

Amdahl’s Law

• In this equation, S is the time spent executing the serial portion of the parallelized
version and n is the number of processor cores.

• Setting n = ∞ in Equation 1.1,

• Decreasing the serialized portion by increasing the parallelized portion is of greater
importance than adding more processor cores.

Amdahl’s Law

• To make Amdahl’s Law reflect the reality of multi-core systems,
system overhead from adding threads should be included:

where H(n) = System overhead from adding threads

• This overhead consists of two portions: the actual operating system
overhead and inter-thread activities, such as synchronization and
other forms of communication between threads.

• Notice that if the overhead is big enough, it offsets the benefits of
the parallelized portion.

• This is very common in poorly architected multi-threaded
applications.

• The important implication is that the overhead introduced by
threading must be kept to a minimum.

Amdahl’s Law Applied to Hyper-Threading
Technology

• Amending Amdahl’s Law to fit HT Technology, then,
you get:

where n = number of logical processors.

• This equation represents the typical speed-up for
programs running on processor cores with HT
Technology performance.

• The value of H(n) is determined empirically and
varies from application to application.

Gustafson’s Law

• Gustafson’s Law has been shown to be equivalent
to Amdahl’s Law.

• However, Gustafson’s Law offers a much more
realistic look at the potential of parallel
computing on multi-core processors.

where N = is the number of processor cores

s= is the ratio of the time spent in the serial
port of the program versus the total execution time.

System Overview of Threading

• When implemented properly, threading can enhance
performance by making better use of hardware resources.

• However, the improper use of threading can lead to degraded
performance, unpredictable behavior, and error conditions
that are difficult to resolve.

• Fortunately, if you are equipped with a proper understanding
of how threads operate, you can avoid most problems and
derive the full performance benefits that threads offer.

• The concepts of threading starts from hardware and works its
way up through the operating system and to the application
level.

• In reality threading can be simple, once you grasp the basic
principles.

Defining Threads

• A thread is a discrete sequence of related
instructions that is executed independently of other
instruction sequences.

• Every program has at least one thread—the main
thread—that initializes the program and begins
executing the initial instructions.

• That thread can then create other threads that
perform various tasks, or it can create no new
threads and simply do all the work itself.

• In either case, every program has at least one thread.
Each thread maintains its current machine state.

System View of Threads

• The thread computational model is having three layers for
threading:

User-level threads: Threads created and manipulated in the
application software.

Kernel-level threads: The way the operating system implements
most threads.

Hardware threads: How threads appear to the execution
resources in the hardware.

Flow of Threads in an Execution
Environment

• In the Defining and Preparing stage, threads are specified by
the programming environment and encoded by the compiler.

• During the Operating stage, threads are created and managed
by the operating system.

• Finally, in the Executing stage, the processor executes the
sequence of thread instructions.

Threading above the Operating System

• In general, application threads can be implemented at the
application level using established APIs.

• The most common APIs are OpenMP and explicit low-level
threading libraries such as Pthreads and Windows threads.

• The choice of API depends on the requirements and the
system platform.

• OpenMP, in contrast, offers ease of use and a more
developer-friendly threading implementation.

• OpenMP requires a compiler that supports the OpenMP API.
Today, these are limited to C/C++ and Fortran compilers.

• To show how threading is used in a program, considered
simple “Hello World” programs that use the OpenMP and
Pthreads libraries.

“Hello World” Program Using OpenMP

/Compiler directive/

// OpenMP program to print Hello World
from multiple threads

// using C language

// OpenMP header
#include <omp.h>

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

// Beginning of parallel region
#pragma omp parallel
{

printf("Hello World... from thread = %d\n",

omp_get_thread_num());
}
// Ending of parallel region

}

“Hello World” Program Using Pthreads

• As can be seen, the OpenMP code has no function that corresponds to thread
creation. This is because OpenMP creates threads automatically in the background.

• In Pthreads, where a call to pthread_create() actually creates a single thread and
points it at the work to be done in PrintHello().

Threads inside the OS

• The key to viewing threads from the perspective of a modern operating
system is to recognize that operating systems are partitioned into two
distinct layers: the user-level partition (where applications are run) and
the kernel-level partition (where system oriented activities occur).

Contd….
• The kernel is the nucleus of the operating system and

maintains tables to keep track of processes and threads.

• Threading libraries such as OpenMP and Pthreads (POSIX
standard threads) use kernel-level threads.

• User-level threads, which are called fibers on the Windows
platform, require the programmer to create the entire
management infrastructure for the threads and to manually
schedule their execution.

• Kernel-level threads provide better performance, and multiple
kernel threads from the same process can execute on
different processors or cores.

User-level Threads

User-level threads are mapped to kernel threads; and so, when they are
executing, the processor knows them only as kernel-level threads.

Contd....
• Below figure shows the relationship between processors,

processes, and threads in modern operating systems.

• A processor runs threads from one or more processes, each of
which contains one or more threads.

• A program has one or more processes, each of which contains
one or more threads, each of which is mapped to a processor
by the scheduler in the operating system.

Various mapping models are used between threads and processors

Many to one (M:1)

In the M:1 model, the library scheduler decides which
thread gets the priority. This is called cooperative multi-
threading.

One to one (1:1)

• The 1:1 model requires no thread-library scheduler overhead
and the operating system handles the thread scheduling
responsibility. This is also referred to as preemptive multi-
threading.

• Linux, Windows 2000, and Windows XP use this preemptive
multithreading model.

M:N Mapping of Threads to Processors

• In the case of M:N, the mapping is flexible.

Threads inside the Hardware

• The hardware executes the instructions from the software levels.

• Instructions of your application threads are mapped to resources and flow down
through the intermediate components-the operating system, runtime
environment, and to the hardware.

• Threading on hardware once required multiple CPUs to implement parallelism:
Multi-core CPUs.

• The CPU might have only one execution engine or core but share the pipeline and
other hardware resources among the executing threads: SMT- concurrent.

What Happens When a Thread Is Created

• As discussed earlier, Every process has at least one
thread. This initial thread is created as part of the
process initialization.

• There also can be more than one thread in a process;
and each of those threads operates independently,
even though they share the same address space and
certain resources.

• In addition, each thread needs to have its own stack
space. These stacks are usually managed by the
operating system.

• Once created, a thread is always in one of four
states: ready, running, waiting (blocked), or
terminated.

Virtual Environment: VMs and Platforms

• One of the most important trends in computing
today is virtualization.

• Virtualization is the process of using computing
resources to create the appearance of a different
set of resources.

• System virtualization creates the appearance of a
different kind of virtual machine, in which there
exists a complete and independent instance of
the operating system.

• The virtualization layer that sits between the host
system and these VMs is called the virtual
machine monitor (VMM). The VMM is also known
as the hypervisor.

System Virtualization

• System virtualization creates a different type of virtual machine.

• A VMM delivers the necessary virtualization of the underlying
platform such that the operating system in each VM runs under the
illusion that it owns the entire hardware platform.

• When an application running in a VM creates a thread, the thread
creation and subsequent scheduling is all handled by the guest
operating system. The virtual processor executes the instructions of
the thread.

Fundamental Concepts of Parallel
Programming

• As discussed in previous lectures, parallel
programming uses threads to enable multiple
operations to proceed simultaneously.

• The entire concept of parallel programming
centers on the design, development, and
deployment of threads within an application and
the coordination between threads and their
respective operations.

• This chapter examines how to break up
programming tasks into chunks that are suitable
for threading.

Contd....

• To move from the linear model to a parallel
programming model, designers must rethink the
idea of process flow.

• Rather than being constrained by a sequential
execution sequence, programmers should
identify those activities that can be executed in
parallel.

• To do so, designers must see their programs as a
set of tasks with dependencies between them.

• Breaking programs down into these individual
tasks and identifying dependencies is known as
decomposition.

Contd....
• A problem may be decomposed in several

ways: by task, by data, or by data flow.

• The below table summarizes these forms of
decomposition.

Task Decomposition

• Decomposing a program by the functions that it performs is
called task decomposition. It is one of the simplest ways to
achieve parallel execution.

• Using this approach, individual tasks are catalogued. If two
of them can run concurrently, they are scheduled to do so
by the developer.

• As a example consider, gardening, task decomposition
would suggest that gardeners be assigned tasks based on
the nature of the activity.

• If two gardeners arrived at a client’s home, one might mow
the lawn while the other weeded.

• Mowing and weeding are separate functions broken out as
such.

• To accomplish them, the gardeners would make sure to
have some coordination between them, so that the weeder
is not sitting in the middle of a lawn that needs to be
mowed.

Contd....

In programming terms,

Contd....

Data Decomposition

• Data decomposition, also known as data-level
parallelism, breaks down tasks by the data they
work on rather than by the nature of the task.

• Programs that are broken down via data
decomposition generally have many threads
performing the same work, just on different data
items.

• For example, consider recalculating the values in
a large spreadsheet. Rather than have one thread
perform all the calculations, data decomposition
would suggest having two threads, each
performing half the calculations, or n threads
performing 1/nth the work.

Contd....

• If the gardeners used the principle of data
decomposition to divide their work, they
would both mow half the property and then
both weed half the flower beds.

• As in computing, determining which form of
decomposition is more effective depends a lot
on the constraints of the system.

• For example, if the area to mow is so small
that it does not need two mowers, that task
would be better done by just one gardener-
that is, task decomposition is the best choice

Contd....

A key aim is to solve problems faster/Performance

Data Flow Decomposition

• Many times, when decomposing a problem, the
critical issue isn’t what tasks should do the work,
but how the data flows between the different
tasks.

• In these cases, data flow decomposition breaks
up a problem by how data flows between tasks.

• The producer/consumer problem is a well known
example of how data flow impacts a programs
ability to execute in parallel.

• Here, the output of one task, the producer,
becomes the input to another, the consumer. The
two tasks are performed by different threads, and
the second one, the consumer, cannot start until
the producer finishes some portion of its work.

Contd....

• Using the gardening example, one gardener
prepares the tools—that is, he puts gas in the
mower, cleans the shears, and other similar
tasks— for both gardeners to use.

• No gardening can occur until this step is
mostly finished, at which point the true
gardening work can begin.

• The delay caused by the first task creates a
pause for the second task, after which both
tasks can continue in parallel.

Contd....

• In common programming tasks, the
producer/consumer problem occurs in several
typical scenarios.

• For example, programs that must rely on the
reading of a file fit this scenario.

• The results of the file I/O become the input to
the next step, which might be threaded.
However, that step cannot begin until the
reading is either complete or has progressed
sufficiently.

Contd....

“Tightly coupled” problems require lots of interaction between their
parallel tasks

Contd....

The producer/consumer(Data Flow Decomposition) has
several interesting dimensions:
• The dependence created between consumer and

producer can cause significant delays if this model
is not implemented correctly.

• If the consumer is finishing up while the producer
is completely done, one thread remains idle while
other threads are busy working away.

• This issue violates an important objective of
parallel processing, which is to balance loads so
that all available threads are kept busy.

• A performance-sensitive design must aim to avoid
situations of threads are in idle while waiting for
related threads.

Implications of Different Decompositions

• Different decompositions provide different
benefits.

• The most common reason for threading an
application is performance, meanwhile, the
choice of decompositions is more difficult.

• In many instances, the choice is dictated by the
problem domain.

• In some cases, the answer comes only through
careful analysis of the constituent activities.

• Ultimately, you determine the right answer for
your application’s use of parallel programming by
careful planning, timing, evaluation and testing.

Challenges You’ll Face

• The use of threads enables you to improve
performance significantly by allowing two or
more activities to occur simultaneously.

• However, developers cannot fail to recognize
that threads add a measure of complexity that
requires thoughtful consideration to navigate
correctly.

• This complexity arises from the inherent fact
that more than one activity is occurring in the
program.

Contd....

Managing simultaneous activities and their possible interaction
leads you to confronting four types of problems:
1. Synchronization is the process by which two or more threads

coordinate their activities. For example, one thread waits for
another to finish a task before continuing.

2. Communication refers to the bandwidth and latency issues
associated with exchanging data between threads.

3. Load balancing refers to the distribution of work across
multiple threads so that they all perform roughly the same
amount of work.

4. Scalability is the challenge of making efficient use of a larger
number of threads when software is run on more-capable
systems. For example, if a program is written to make good use
of four processor cores, will it scale properly when run on a
system with eight processor cores?

Each of these issues must be handled carefully to maximize
application performance. Subsequent chapters describe many
aspects of these problems and how best to address them on multi-
core systems.

Parallel Programming Patterns
• Parallel programming patterns are design patterns to logically

design applications, through Parallel programming/Solve
parallel programming problems.

• Need a “cookbook” that will guide the programmers
systematically to achieve peak parallel performance.

• Provide common vocabulary to the programming comunity.

• A few of the more common parallel programming patterns
and their relationship to the aforementioned decompositions
are shown in below table.

Task-level parallelism

In this pattern, the problem is decomposed into a set of tasks that operate independently.

Problems that fit into this pattern include the so-called embarrassingly parallel problems,
those where there are no dependencies between threads.

Divide and Conquer

• Geometric Decomposition Pattern

• Pipeline Pattern

• Wavefront Pattern

A Motivating Problem: Error Diffusion

• To see how you might apply the discussed methods
to a practical computing problem, consider the error
diffusion algorithm (multi-level image into a binary image) that is
used in many computer graphics and image
processing programs.

• Error diffusion is a technique for displaying
continuous-tone digital images on devices that have
limited color (tone) range. Originally proposed by
Floyd and Steinberg (Floyd 1975).

• The problem seems to break down into a data-flow
decomposition and follow wavefront pattern.

The key points to keep in
mind when developing solutions for parallel computing

architectures

➢ Decompositions fall into one of three categories: task, data,
and data flow.

➢ Task-level parallelism partitions the work between threads
based on tasks.

➢ Data decomposition breaks down tasks based on the data that
the threads work on.

➢ Data flow decomposition breaks down the problem in terms
of how data flows between the tasks.

➢ Most parallel programming problems fall into one of several
well known patterns.

➢ The constraints of synchronization, communication, load
balancing, and scalability must be dealt with to get the most
benefit out of a parallel program.

Many problems that appear to be serial may, through a simple
transformation, be adapted to a parallel implementation.

Threading and Parallel Programming
Constructs

• Here we describe the theory and
practice of the principal parallel
programming constructs that
focus on threading and begins
with the fundamental concepts of
synchronization, critical section,
and deadlock.

Synchronization

• In simple terms, synchronization is used to coordinate
thread execution and manage shared data.

• Two types of synchronization operations are widely used:
mutual exclusion and condition synchronization.

• In the case of mutual exclusion, one thread blocks a critical
section—a section of code that contains shared data—and
one or more threads wait to get their turn to enter into the
section.

• This helps when two or more threads share the same
memory space and run simultaneously.

• Condition synchronization, on the other hand, blocks a
thread until the system state specifies some specific
conditions. The condition synchronization allows a thread
to wait until a specific condition is reached.

Contd....

Contd....

The scope of synchronization is broad. Proper synchronization orders the updates to data and
provides an expected outcome. In Figure 4.2, shared data d can get access by threads Ti and Tj
at time ti, tj, tk, tl, where ti ≠ tj ≠ tk ≠ tl and a proper synchronization maintains the order to
update d at these instances and considers the state of d as a synchronization function of time.
This synchronization function, s, represents the behavior of a synchronized construct with
respect to the execution time of a thread.

Synchronization operations
in an actual multi-threaded implementation

Synchronization Primitives

• Synchronization is typically performed by
different types of primitives:

1. Semaphores
2. Locks
3. Condition variables Assignment
4. Fence
5. Barrier
• The use of these primitives depends on the

application requirements.

Critical Sections

• A section of a code block called a critical section is where
shared dependency variables reside and those shared
variables have dependency among multiple threads.

• Different synchronization primitives are used to keep
critical sections safe.

• With the use of proper synchronization techniques, only
one thread is allowed access to a critical section at any one
instance.

• The major challenge of threaded programming is to
implement critical sections in such a way that multiple
threads perform mutually exclusive operations for critical
sections and do not use critical sections simultaneously.

Contd....

• Minimize the size of critical sections when
practical.

• Each critical section has an entry and an exit
point.

Deadlock

• Deadlock occurs whenever a thread is blocked
waiting on a resource of another thread that
will never become available.

• According to the circumstances, different
deadlocks can occur:

1. self-deadlock,

2. recursive deadlock,

3. lock-ordering deadlock.

Contd....

Contd....

• Avoiding deadlock is one of the challenges of
multi-threaded programming.

• There must not be any possibility of deadlock
in an application.

• One recommendation is to use the
appropriate number of locks when
implementing synchronization.

Messages

• The message is a special method of communication
to transfer information or a signal from one domain
to another.

• For multi-threading environments, the domain is
referred to as the boundary of a thread.

• In general, the conceptual representations of
messages get associated with processes rather than
threads.

• From a message-sharing perspective, messages get
shared using an intra-process, inter-process, or
process-process approach.

Contd....

Message Passing Interface

Threading APIs

• This topic will provide an overview of several
popular thread packages used by developers
today.

1. Threading APIs for Microsoft Windows

2. Threading APIs for Microsoft .NET Framework

3. POSIX Threads

Group activities

OpenMP
A Portable Solution for Threading

• OpenMP plays a key role by providing an easy method for threading
applications without burdening the programmer with the
complications of creating, synchronizing, load balancing, and
destroying threads.

• The OpenMP standard was formulated in 1997 as an API for writing
portable, multithreaded applications.

• The current version is OpenMP Version 2.5, which supports Fortran,
C, and C++. Intel C++ and Fortran compilers support the OpenMP
Version 2.5 standard.

• The OpenMP programming model provides a platform-
independent set of compiler pragmas, directives, function calls, and
environment variables that explicitly instruct the compiler how and
where to use parallelism in the application.

• Many loops can be threaded by inserting only one pragma right
before the loop. The full potential of OpenMP is realized when it is
used to thread the most time consuming loops.

Contd....

• The simplest way to create parallelism in OpenMP is to use
the parallel pragma.

Contd....

ws multiple threads

Contd....

Contd....

• The for loop construct (or simply the loop construct)
specifies that the iterations of the following for loop will
be executed in parallel. The iterations of the loop are
distributed among multiple threads.

• #pragma omp parallel spawns a group of threads,
while #pragma omp parallel for divides loop
iterations between the spawned threads.

Contd....

Contd....

• The OpenMP implementation determines how
many threads to create and how best to manage
them.

• All the programmer needs to do is to tell OpenMP
which loop should be threaded.

• No need for programmers to add a lot of codes
for creating, initializing, managing, and killing
threads in order to exploit parallelism.

• OpenMP compiler and runtime library take care
of these and many other details behind the
scenes.

Challenges in Threading a Loop

The challenges you must identify or restructure the
hot loop according to these challenges before
adding OpenMP pragmas.

➢Loop-carried Dependence

➢Data-race Conditions

➢Managing Shared and Private Data

➢Loop Scheduling and Partitioning

➢Effective Use of Reductions

Loop-carried Dependence

• Even if the loop meets all required criteria and the
compiler threaded the loop, it may still not work
correctly, given the existence of data dependencies
that the compiler ignores due to the presence of
OpenMP pragmas.

• When a statement in one iteration of a loop depends
in some way on a statement in a different iteration of
the same loop, a loop-carried dependence exists.

Contd....

In order for S2 to depend upon S1 , it is necessary for some execution of
S1 to write to a memory location L that is later read by an execution of S2
. This is also called flow dependence. Other dependencies exist when two
statements write the same memory location L, called an output
dependence, or a read occurs before a write, called an anti-dependence.

Contd....

Contd....
Limitations to Parallelism

Contd....

Contd....

• Because OpenMP directives are commands to
the compiler, the compiler will thread the
loop.

• However, the threaded code will fail because
of loop-carried dependence.

• The only way to fix this kind of problem is to
rewrite the loop or to pick a different
algorithm that does not contain the loop-
carried dependence.

Data-race Conditions

• Data-race condition occurs when, multiple threads
attempt to update the same memory location, or
variable, without proper synchronization, after
threading.

Contd....

Contd....

• The following example, in which multiple threads are
updating the variable x will lead to undesirable
results.

• In such a situation, the code needs to be modified via
privatization or synchronized using mechanisms like
Mutexes.

• For example, you can simply add the private(x)

clause to the parallel for pragma to eliminate the
data-race condition on variable x for this loop.

Managing Shared and Private Data

• In writing multithreaded programs, understanding which data
is shared and which is private becomes extremely important,
not only to performance, but also for program correctness.

• OpenMP makes this distinction apparent to the programmer
through a set of clauses such as shared, private, and

default, and it is something that you can set manually.

• With OpenMP, it is the developer’s responsibility to indicate
to the compiler which pieces of memory should be shared
among the threads and which pieces should be kept private.

• When memory is identified as shared, all threads access the
exact same memory location.

• When memory is identified as private, however, a separate
copy of the variable is made for each thread to access in
private.

Contd....

• The following loop fails to function correctly
because the variable x is shared. It needs to be
private.

• Given example below, it fails due to the loop-
carried output dependence on the variable x.

• The x is shared among all threads based on
OpenMP default shared rule, so there is a data-
race condition on the x while one thread is
reading x, another thread might be writing to it.

Contd....

Contd....

Contd....

Contd....

Contd....

Loop Scheduling and Partitioning

• To have good load balancing and thereby achieve optimal
performance in a multithreaded application, you must have
effective loop scheduling and partitioning.

• The ultimate goal is to ensure that the execution cores are busy
most of the time.

• With a poorly balanced workload, some threads may finish
significantly before others, leaving processor resources idle and
wasting performance opportunities.

• In order to provide an easy way for you to adjust the workload
among cores, OpenMP offers four scheduling schemes that are
appropriate for many situations: static, dynamic, runtime, and
guided.

• The Intel C++ and Fortran compilers support all four of these
scheduling schemes.

• In any case, you can provide loop scheduling information via the
scheduling clause, so that the compiler and runtime library can
better partition and distribute the iterations of the loop across the
threads, and therefore the cores, for optimal load balancing.

Contd....

Static
• The schedule(static, chunk-size) clause of

the loop construct specifies that the for loop has
the static scheduling type.

• OpenMP divides the iterations into chunks of
size chunk-size and it distributes the chunks to
threads in a circular order.

• When no chunk-size specified, OpenMP
divides iterations into chunks that are
approximately equal in size and it distributes at
most one chunk to each thread.

• Here are three examples of static scheduling. We
parallelized a for loop with 64 iterations and
we used 4 threads to parallelize the for loop.

Dynamic

• The schedule(dynamic, chunk-size) clause
of the loop construct specifies that the for loop has
the dynamic scheduling type. OpenMP divides the
iterations into chunks of size chunk-size.

• Each thread executes a chunk of iterations and then
requests another chunk until there are no more chunks
available.

• The dynamic scheduling type has higher overhead then
the static scheduling type because it dynamically
distributes the iterations during the runtime.

For example, if the chunk size is specified as 16 with the

schedule(dynamic,16)clause and the total number of

iterations is 100, the partition would be

16,16,16,16,16,16,4 with a total of seven chunks.

Guided
• For the guided scheduling, the way a loop is

partitioned depends on the number of threads (N),
the number of iterations (β0) and the chunk size
(S).

• Threads dynamically grab block of iterations. The size
of the block starts large and shrinks down to size
“chunk” as the calculation proceeds.

• For example, given a loop with β0=800, N= 2, and
S=80, the loop partition is {200, 150, 113,

85, 80, 80, 80, 12}.

• Similar to dynamic scheduling, but the chunk size starts
off large and shrinks in an effort to reduce the amount
of time threads have to go to the work queue to get
more work.

With dynamic and guided scheduling
mechanisms, you can tune your
application to deal with those
situations where each iteration has
variable amounts of work or where
some cores (or processors) are faster
than others.

Runtime

• The runtime scheduling scheme is actually not a
scheduling scheme per se.

• The runtime scheduling type defers the decision
about the scheduling until the runtime.

• When runtime is specified in the schedule clause,
the OpenMP runtime uses the scheduling scheme
specified in the OMP_SCHEDULE environment
variable for this particular for loop.

• Using runtime scheduling gives the end-user
some flexibility in selecting the type of scheduling
dynamically among three previously mentioned
scheduling mechanisms through the
OMP_SCHEDULE environment variable.

Effective Use of Reductions

• OpenMP provides the reduction clause that is used
to efficiently combine certain associative arithmetical
reductions of one or more variables in a loop.

• The following loop uses the reduction clause to
generate the correct results.

• Given the reduction clause, the compiler creates
private copies of the variable sum for each thread, and
when the loop completes, it adds the values together
and places the result in the original variable sum.

Contd....

• How does OpenMP parallelize a for loop declared
with a reduction clause?

• OpenMP creates a team of threads and then shares
the iterations of the for loop between the threads.

• Each thread has its own local copy of the reduction
variable. The thread modifies only the local copy of
this variable.

• Therefore, there is no data race. When the threads
join together, all the local copies of the reduction
variable are combined to the global shared variable.

Contd....

Contd....

How to combine values into a single accumulation
variable (avg)?

Contd....

Minimizing Threading Overhead
• Using OpenMP, you can parallelize loops, regions,

and sections or straight-line code blocks, whenever
dependences do not forbids them being executed
in parallel.

• In addition, because OpenMP employs the simple
fork-join execution model, it allows the compiler
and run-time library to compile and run OpenMP
programs efficiently with lower threading
overhead.

• However, you can improve your application
performance by further reducing threading
overhead.

Contd....

• Consider the following example:

The overhead can be removed by entering a parallel
region once, then dividing the work within the parallel
region. The following code is functionally identical to
the preceding code but runs faster, because the
overhead of entering a parallel region is performed only
once.

Contd....

Work-sharing Sections

• A work-sharing section is a construct used to
handle non-loop code.

• The work-sharing sections construct directs
the OpenMP compiler and runtime to distribute
the identified sections of your application among
threads in the team created for the parallel
region.

• The following example uses work-sharing for

loops and work-sharing sections together
within a single parallel region. In this case, the
overhead of forking or resuming threads for
parallel sections is eliminated.

Contd....

• Here, OpenMP first creates several threads. Then, the iterations of the
loop are divided among the threads.

• Once the loop is finished, the sections are divided among the threads so
that each section is executed exactly once, but in parallel with the other
sections.

• If the program contains more sections than threads, the remaining
sections get scheduled as threads finish their previous sections.

Thank you

