

Electronics Devices (19EC31)

Dr. Shilpa K,C Assistant Professor Dept. of Electronics and Communication Engineering Dr.AIT

Introduction

Introduction

Energy Level Diagram in an Atom

- Electron capacity = 2(n²)
- n = energy level

Energy Sublevel Diagram

n = energy level

s,p,d,f = subshells

Sublevels and electrons in the subshell

n	sublevels inside the energy leve
1	S
2	s, p
3	s, p, d
4	s, p, d, f
5	s, p, d, f

Sublevels	Electrons capacity
S	2 electrons
р	6 electrons
d	10 electrons
f	14electrons

Atomic Data Representation

4f 5f Sp

1s 2s 2p 3s 3p 4s 3d 4p 5s

Examples of Atomic Data Representation

SL.NO	Compound	Atomic Weight	Data Representation
1	Sodium (Na)	11	$1s^{2} 2s^{2}2p^{6} 3s^{2}$ Electrons capacity $1s^{2} 2s^{2}2p^{6} 3s^{2}$ $1s^{2} 2s^{2}2p^{6} 3s^{2}$ Energy levels

Examples of Atomic Data Representation

SL.NO	Compound	Atomic Weight	Data Representation
1		11	
	Sodium (Na)		
2	Chlorine (Cl)	17	
3.	Oxygen (0_2)	08	
4.	Nitrogen	07	
5	Zinc	30	
6.	Iron	26	

Aided By Govt. of Karnataka

Examples of Atomic Data Representation

SL.NO	Compound	Atomic Weight	Data Representation
1.	Sodium (Na)	11	$1s^2$ $2s^22p^6$ $3s^2$
2.	Chlorine (Cl)	17	$1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^5$
3.	Oxygen (0_2)	08	$1s^2$ $2s^22p^4$
4.	Nitrogen	07	$1s^2 2s^2 2p^3$
5.	Zinc	30	$1s^2 2s^2 2p^6 3s^2 \ 3p^6 \ 4s^2 \ 3d^{10}$
6.	Iron	26	$1s^2$ $2s^22p^6$ $3s^2$ $3p^6$ $4s^2$ $3d^6$

HALF CONTRACT OF C

Chemical Bonding

Chemical Bonds-

Are the forces that holds atoms together to make a molecule or compound.

Ionic Bonding

Ionic Bonding – *Connects between Metal & Non-Metal*

Sodium(Na) is a Metal Chlorine (Cl) is a Non-Metal

Ionic Bonding

Ionic Bonding

Ionic Bonding

Na $^+ \longrightarrow$ Cation

 $Cl^- \longrightarrow Anion$

The atoms that have charges are called *Lons*

The Ions have opposite charges , hence <u>Electrostatic attractive</u> <u>forces bonds</u> the atoms together

Electronics Devices (19EC31) Class 2

Dr. Shilpa K,C Assistant Professor Dept. of Electronics and Communication Engineering Dr.AIT

Covalent Bonding

<u>Sharing of electron</u>s between atoms of the same kind E.g. Formation of H_2 , Cl_2 , O_2 , etc.

<u>Sharing of electrons</u> between atoms of different kind . E.g. Formation of CH_4 , H_2O etc.

Covalent Bonding – Connects between Non-Metal & Non-Metal

H – atomic number $1 - 1s^1$

Covalent Bonding

Two oxygen <u>atoms</u> will each share two electrons to form two <u>covalent bonds</u> and make an oxygen <u>molecule</u> (O_2) . O – atomic nu

This is a picture of an oxygen molecule.

O – atomic number 8 – $1s^2 2s^2 2p^4$

Sharing of electrons between atoms of different kind . E.g. Formation of CH_4 , H_2O , HF , HCl etc.

- $H atomic number 1 1s^1$
- F atomic number 9 $1s^2 2s^2 2p^5$

9/3/2020

Dr. Ambedkar Institute of Technology

Covalent Bonding

This is a picture of a hydrogen chloride molecule.

A CONTRACT OF CONTRACT

H – atomic number $1 - 1s^1$

 $\begin{array}{c} \text{CI} & - \text{ atomic number } 17 - \\ 1s^2 & 2s^2 & 2p^6 & 3s^2 & 3p^5 \end{array}$

Covalent Bonding

Bonds between hydrogen and oxygen atoms in *a water molecule*

H н н н-о 2H 0

<u>Sharing of</u> **Electrons** bonds the atoms together In Covalent Bonding

Metallic Bonding

<u>Metallic Bonding</u> - The bond produced due to the combination of <u>electrostatic force of attraction</u> between the electrons and the positive nuclei of metal atoms

Metallic Bonding –

Connects between

Metal & Metal

Sodium(Na) is a Metal

Valence electrons are 1 in outer most orbit

Metallic Bonding

Zinc is a Metal

Atomic number of Zinc is **30**

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$

Valence electrons are 2 in outer most orbit

Metallic Bonding

Iron is a Metal

Atomic number of Iron (Fe) is **26**

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

Valence electrons are 2 in outer most orbit

Metallic Bonding

Atomic number of Iron (Fe) is **26**

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

Valence electrons are 2 in outer most orbit

Metallic Bonding

- Properties of Metals
- 1. They are also called as Sea of Electrons
- 2. High Conductivity
- 3. High Ductility -- Can be drawn into fine wires
- 4. High Malleability --- Can be bend any shapes

Comparsion of the 3 Chemical Bonding

Ionic Bonding	Covalent Bonding	Metallic Bonding
Bonding between Metal and Non Metal	Bonding between Non Metal and Non Metal	Bonding between Metal and Metal
Electrostatic attraction between positive and negative ions	Sharing of electrons between atoms of the same kind or different kinds	<u>Electrostatic force of</u> <u>attraction</u> between the electrons and the positive nuclei of metal atoms

Thank You

ъУ

HAVE A NICE DAY