Network Theory(19EC33) 2020-21

Class-1: Overview of Syllabus and Introduction to Network Theory

MOHANKUMAR V. ASSISTANT PROFESSOR
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DR. AMBEDKAR INSTITUTE OF TECHNOLOGY, BENGALURU-56

E-MAIL: VMOHANKUMAR.EC@DRAIT.EDU.IN

Overview of Syllabus

- Subject Title : Network Theory
- Subject code : 19EC33
- Credits: 04
- Total number of Contact hours : $\mathbf{5 2}$ hours
- Number of teaching hours per week: 04 hours
- 3-CIE's, 25 marks each
- Final CIE=Sum of two best CIE marks and reduced it to $\mathbf{4 0}$ marks +5 marks Assignment +5 marks Group Activity.
- Assignments - Problems
- Group Activity - PSPICE Simulation

Overview of Syllabus...

Pre-requisites:

- Engineering Mathematics
- Basic Electrical Engineering

Objectives:

- Different types of Electrical Elements and their characteristics.
- Circuit Analysis Techniques such as Circuit simplification, loop analysis and node analysis.
- Different Network Theorems and its applications,.
- Concepts of Resonance and its importance.
- Study of dynamic behavior(Transient and steady state response) of electrical systems using initial conditions
- Applications of Laplace Transforms to electrical systems.
- Two port networks and its importance in the analysis of electrical circuits.

Overview of Syllabus...

Contents:

Unit-I:

Ch-1: Basic Circuit Concepts
Unit-II:
Ch-1: Network Theorems
Ch-2: Resonant Circuits

Unit-III:

Ch-1: Transient Behaviour and Initial Conditions
Unit-IV:
Ch-1: Laplace Transforms
Unit-V:
Ch-1: Two Port Network Parameters

Network Theory (19EC33)

Overview of Syllabus...

Outcomes:

- Apply the network reduction techniques to simplify the electrical circuits and analyze electrical circuits using loop and nodal analysis.
- Apply the network theorems to find the load quantities, explain the resonant parameters and the analyze the circuit.
- Explain and find the transient behavior of electrical circuits with initial conditions.
- Apply the Laplace Transforms for the analysis of electrical circuits.
- Define, explain and find the two port network parameters of electrical circuits and derive the relationship between one parameter to other parameter.

Pre-Requisite for:

- Electronic Circuits
- Communications
- Power Electronics
- Text Books:
- Charles K Alexander and Mathew N O Sadiku, "Fundamentals of Electric Circuits", 3rd edition, Tata McGraw-Hill, 2009.

Network Theory (19EC33)

Introduction

Definition: Network Theory

Theory: A set of Principles or Ideas are used to perform an activity (In this context activity is to study and analysis of a Networks).

Network (Electrical): Interconnection or combination of electrical elements is called an electrical network, generally network.

Network Theory: Set of principles or ideas are used to study the behaviour of electrical networks.

Circuit and Network:

Network- Open loop or Closed Loop
Circuit- Closed Loop

Network

Network/Circuit

All circuits are networks but all networks are not circuits

Introduction...

Electrical Elements

Electrical Elements

Introduction...

Basic principles

1. Current: Rate of change of Charge is called current, it is denoted as " I " and unit is Amperes.

$$
I=\frac{d Q}{d t}
$$

1. Voltage: Rate of change of Flux is called Voltage, it is denoted as " V " and unit is volts.

$$
V=\frac{d \emptyset}{d t}
$$

1. Power: Product of Voltage and Current is called Power, it is denoted as " P " and unit is watts.

$$
P=V \times I
$$

Branch: A Path of element is connecting between two nodes is called Branch.
Node: Two or more elements connected at a Point/Junction is called as a Node.
Ohm's law: Ohm's law states that the voltage across an element is directly proportional to the current flowing through that element.

$$
\text { i.e., } V \alpha I
$$

Introduction...

Passive Elements

1. Resistor[R]:

- A resistor opposes the flow of electric current.
-Resistors dissipate energy in the form of heat.
-Resistors exhibit negative temperature effects.
- Obeys ohm's Law

$V \alpha I, V=R I$ ohms.
Where, R is the Proportionality constant called Resistance measured in Ohms, Resistors are in Series
V is the Voltage and I is the Current.
-If Resistors are connected in Series. $R_{\text {eq }}=\sum_{i=1}^{n} R_{i}$
-If Resistors are connected in Parallel. ${\frac{1}{R_{e q}}}=\sum_{i=1}^{n} \frac{1}{R_{i}}$

- Power $P=V x I \Rightarrow \frac{V^{2}}{R} \Rightarrow I^{2} R$ Watts

Introduction...

Resistors are connected in Star form.
Resistors are connected in Delta form.

- Star to Delta conversion

$$
R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{1}} ; R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{2}} ; R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{3}} .
$$

- Delta to Star conversion

$$
R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}} ; R_{2}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} ; R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}
$$

Introduction...

2. Capacitor [C]:

- Capacitors stores energy in the form of Electrostatic Field.
- $Q=C V$
- $\mathrm{v}(\mathrm{t})=\frac{1}{C} \int i(t) . d t ; \mathrm{i}(\mathrm{t})=\mathrm{C} \frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}}$.
- $E=\frac{1}{2} C V^{2}$ Joules.

Circuit Symbol

- $C_{e q}=\frac{1}{\sum_{i=1}^{n} 1 / C_{i}} ;$ If the Capacitors are connected in Series.
- $C_{e q}=\sum_{i=1}^{n} C_{i}$; If the Capacitors are connected in Parallel.
- Star to delta and delta to star conversion is applicable to capacitors, only if it is in Reactance form.
- Capacitive Reactance $X_{C}=\frac{1}{2 \pi f C}$ Ohms.

Introduction...

3. Inductor [L]:

- Inductors stores energy in the form of Electro Magnetic Field.
- $\varphi=L I$
- $\mathrm{v}(\mathrm{t})=\mathrm{L} \frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt}} ; \mathrm{i}(\mathrm{t})=\frac{1}{L} \int v(t) . d t$.
- $E=\frac{1}{2} L I^{2}$ Joules.

Circuit Symbol

- $L_{e q}=\sum_{i=1}^{n} L_{i} ;$ If the Inductors are connected in Series.
- $L_{e q}=\frac{1}{\sum_{i=1}^{n} 1 / L_{i}}$; If the Inductors are connected in Parallel.
- Star to delta and delta to star conversion applicable to Inductors also, only if it is in Reactance form.
- Inductive Reactance, $X_{L}=2 \pi f L$ Ohms.

Basic Concepts

Basic Concepts......

Independent Ideal Sources

Sources which maintains a constant value and does not affected by any other quantity

1. Ideal Voltage Source

Source which maintains a constant voltage, and its is independent of the current drawn from it. These sources are having zero internal Impedance/Resistance.

2. Ideal Current Source

Source which maintains a constant current, and its is independent of the terminal voltage. These sources are having Infinite internal Impedance/Resistance.

Ideal Voltage Source

Figure C
Ideal Current Source

Network Theory (19EC33)

Basic Concepts...

Independent Practical Sources

Sources having some internal resistance or impedance are called practical sources.

1. Practical Voltage Source

Due to internal impedance or resistance voltage drop takes place and it causes terminal voltage to reduce.

$$
V_{A B}=V-I r
$$

2. Practical Current Source

Current drop takes place.

$$
I_{A B}=I-\frac{V_{A B}}{r}
$$

Practical Current Source

Circuit Simplification

Simplification

- Ideal Voltage sources in series- Can be replaced by a single voltage source.
- Equivalent voltage is the sum or difference of individual voltages source values.

Series Aiding Voltages
(Voltage Addition)

Series Opposing Voltages (Voltage Subtraction)

Circuit Simplification

Simplification

- Ideal Current sources in parallel - Can be replaced by a single current source.
- Equivalent current is the sum or difference of individual current source values.

Circuit Simplification

Simplification

- Ideal Voltage Sources in Parallel and Ideal current sources in Series

Source Transformation

Source Transformation

- It is a process of converting practical voltage source into practical current source.
- Used for circuit/ network simplifications
- Not applicable to ideal sources.

$$
I=\frac{V}{R}
$$

Current source to Voltage source

$$
V=I R
$$

Source Transformation

Key Points

1. Source Transformation is applicable to Practical sources only.
2. Ignore the resistors that are connected across ideal voltage sources.
3. Ignore the resistors that are connected in series with ideal Current sources.
4. While converting practical current source into practical voltage source, polarity of voltage source is always positive terminal at the arrow head and negative terminal at the other side.
5. While converting practical voltage source into practical current source, polarity of current source i.e., arrow head of current source must be indicated at the positive terminal of the voltage source.

Source Transformation

Procedure to simplify the electrical networks/Circuits

1. Identify the load element, remove the load element and name the load terminals as A and B or X and Y etc.
2. Reduce the ideal voltage sources, that are connected in series.
3. Reduce the ideal current sources, that are connected in parallel.
4. Apply Source transformation.
5. Apply Source shifting.
6. Repeat the steps 2 to 5 until simplified form is obtained between the load terminals.
7. Connect the load element and find the load current or load voltage or power delivered or absorbed by the load element.

Examples

1) Obtain Single practical netage locara $b^{\ln } A^{4 B}$ in electiscal nowore thown in tigure.

Examples

1) Obtain Single practical vetage locioce fas in $\mathrm{b}^{\ln } \mathrm{A}^{4 B}$ electiscal nowore thown in figure.

Examples

Examples

Ponvers practical Canent lourc ints pratical witage lource.

Examples

convals practical Canent lourle ints practical witage lource.

Examples

onvels practical Canent lours into pratical witoge lource.

Examples

Examples

Examples
2) Obtain Single practical witage lource between $A \& B$ IE now shown is figure.

Examples
2) Obtain Single practical nitage lource blàen $A \& B$ ue nuw shown in figule.

Convert batte pratical wortage lowres inte practical current pourtes.

Examples
 curcent lourtes.

Examples

le-arange it alements

Examples

Examples

3. Obtain the single practical current source between the terminals A and B

Examples

3. Obtain the single practical current source betwrean the terminals A and B

Examples

3. Obtain the single practical current source betwrean the terminals A and B

Examples

3. Obtain the single practical current source betwrean the terminals A and B

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples

4. Practice Problem

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Key Points

1. Source Transformation is applicable to Practical sources only.
2. Ignore the resistors that are connected across ideal voltage sources.
3. Ignore the resistors that are connected in series with ideal Current sources.
4. While converting practical current source into practical voltage source, polarity of voltage source is always positive terminal at the arrow head and negative terminal at the other side.
5. While converting practical voltage source into practical current source, polarity of current source i.e., arrow head of current source must be indicated at the positive terminal of the voltage source.

Procedure to simplify the electrical networks/Circuits

1. Identify the load element, remove the load element and name the load terminals as A and B or X and Y etc.
2. Reduce the ideal voltage sources, that are connected in series.
3. Reduce the ideal current sources, that are connected in parallel.
4. Apply Source transformation.
5. Apply Source shifting.
6. Repeat the steps 2 to 5 until simplified form is obtained between the load terminals.
7. Connect the load element and find the load current or load voltage or power delivered or absorbed by the load element.
8. Obtain the single practical current source between the terminals A and B

Examples

4. Find the current through 10 Ohm resistor for the circuit shown in figure using source transformation.

ese-live?

Revistori and current in poralale

$$
\begin{aligned}
& R_{y}=\text { all } 1.2 \\
& I_{\varphi}=1.56+2.5 \mathrm{~A}
\end{aligned}
$$

Resistors and current sources ale $R_{0}=$ all 1.2 in parallel

$$
P_{G}=1.56+2.5 \mathrm{~A}
$$

$$
I_{L}=4.06\left(\frac{1.05}{10+1.05}\right)
$$

(\because (want division formal)

$$
\therefore I_{L}=0.385 \mathrm{~A}
$$

OR

Examples

5. Simplify the network shown in figure.

Source Shifting

Voltage Source Shifting

Source Shifting
Current Source Shifting

Examples

5. Simplify the network shown in figure.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples

6. Find the Current IL in the circuit shown in figure.

Identify the load element and remove it, then name the load terminals

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples

Apply Voltage source shifting for 10 V source

Convert voltage sources $[(10 \mathrm{~V}, 5 \Omega),(5 \mathrm{~V}, 10 \Omega)]$ into current sources

Examples

Combine Current sources (1A, 0.5 A) and parallel Resistors ($5 \Omega, 10 \Omega$)

Combine Voltage sources ($8.33 \mathrm{~V}, 18 \mathrm{~V}$) and Series Resistors ($6 \Omega, 3 \cdot 33 \Omega$)

Examples

Re-arranging the elements
Convert voltage sources $[(10 \mathrm{~V}, 10 \Omega)$, (26.33 V, 9.33 Ω)] into current sources

Combine Current sources (1A, 2.82 A) and parallel Resistors ($9.33 \Omega, 10 \Omega$)

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples

Connect the load element across $\mathbf{A B}$

Apply current division formula

$$
\begin{gathered}
I_{L}=3.82\left(\frac{4.82}{4.82+10}\right) \\
I_{L}=1.24 \mathrm{~A}
\end{gathered}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Star to delta and delta to start conversion

DELTA AND STAR CONNECTED RESISTORS

Pi (π) network

R2

Tee (T) network

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Delta to Star Conversion Formula

Delta to Start Conversion

$$
\begin{aligned}
R_{A} & =\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}} \\
R_{B} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}} \\
R_{C} & =\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}
\end{aligned}
$$

NOTE: Denominator is common

Star to delta Conversion Formula

Star to Delta Conversion

R2

$$
\begin{aligned}
& R_{1}=\frac{R_{A} R_{B}+R_{B} R_{C}+R_{C} R_{A}}{R_{C}} \\
& R_{2}=\frac{R_{A} R_{B}+R_{B} R_{C}+R_{C} R_{A}}{R_{A}} \\
& R_{3}=\frac{R_{A} R_{B}+R_{B} R_{C}+R_{C} R_{A}}{R_{B}}
\end{aligned}
$$

NOTE: Numerator is common

NOTE: Star to delta and delta to start conversion applicable to Capacitors and Inductors also, but should be in reactance format.

Examples

7. Convert the given network into equivalent star network

$$
\begin{gathered}
R_{1}=\frac{5 x 10}{5+10+15} \Rightarrow 1.667 \Omega \\
R_{2}=\frac{10 \times 15}{5+10+15} \Rightarrow 5 \Omega \\
R_{3}=\frac{5 \times 15}{5+10+15} \Rightarrow 2.5 \Omega
\end{gathered}
$$

Examples

8. Convert the given network into equivalent Delta network

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples

9. Find the equivalent resistance between the terminals A and B

Examples

Combine the Series connected resistors

Examples

Examples

$$
R_{A B}=3.69 \Omega
$$

Examples

10. Find the equivalent resistance between the terminals A and B

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples

$$
\begin{aligned}
& R_{1}=R_{6}=\frac{4.5 \times 7.5}{4.5+7.5+3}=2.25 \Omega \\
& R_{2}=R_{5}=\frac{7.5 \times 3}{4.5+7.5+3}=1.5 \Omega \\
& R_{3}=R_{4}=\frac{4.5 \times 3}{4.5+7.5+3}=0.9 \Omega
\end{aligned}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples

Examples

11. Find the equivalent resistance between the terminals A and B

$$
R_{1}=R_{2}=R_{3}=\frac{10 \times 10}{10+10+10}=\frac{10}{3} \Omega
$$

Examples

$$
R_{A B}=10 \Omega
$$

Network Analysis Techniques

Network Analysis: To study the behaviour (Finding the voltages, currents) of electrical circuits.

Types:

1. Mesh Analysis
2. Node Analysis

Terminologies and definitions

Loop: Any closed path
Example: A-B-E-F-A, B-C-D-E-B, E-D-G-F-E, A-B-C-D-E-F-A, A-B-C-D-G-F-A, A-B-E-D-G-F-A and B-C-D-E-F-G-D.

Mesh: Closed path without closed loops inside it.
Example: A-B-E-F-A, B-C-D-E-B and F-E-D-G-F
Node: Point or junction where two or more elements are connected together.

Example: A, B, C, D, E, F and G.
Fundamental Node: Point or Junction where current is dividing.
Example: B, E, D and F.

Note:

1. All meshes are loops and vice-versa is not true.
2. All fundamental nodes are nodes and vice-versa is not true

Network Analysis Techniques

KVL: Kirchhoff's Voltage Law

Statement:

Algebraic sum of the voltages in any Loop is equal to zero.

$$
\text { i.e. }, \sum V_{\text {loop }}=0
$$

OR

Algebraic sum of the voltages applied is equal to the algebraic sum of the voltage developed across the elements in a loop.

$$
\text { i.e., } \sum V_{\text {Applied }}=\sum V_{\text {drop }}
$$

Example:
KVL to loop ABEFA

$$
-V_{1}+R_{0} I_{1}+R_{1} I_{2}+R_{2} I_{5}=0
$$

OR

$$
V_{1}=R_{0} I_{1}+R_{1} I_{2}+R_{2} I_{5}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Analysis Techniques

KCL: Kirchhoff's Current Law

Statement:

Algebraic sum of the branch Currents meeting at a node is equal to zero.

$$
\text { i.e. }, \sum I_{\text {node }}=0 ;
$$

OR
Algebraic sum of the Current entering the node is equal to the algebraic sum of the currents leaving the node.

$$
\text { i.e., } \sum I_{\text {Entering }}=\sum I_{\text {leaving }}
$$

Example:
At Node B
Apply KCL

$$
\begin{aligned}
& \quad I_{1}-I_{2}-I_{3}=0 \\
& \quad \text { OR } \\
& I_{1}=I_{2}+I_{3}
\end{aligned}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples:

1. Find the branch currents and voltages for the electrical circuit shown in figure.

$$
\begin{gathered}
-10+5 I_{1}+15 I_{2}=0---(1) \\
10 I_{3}+20 I_{4}-15 I_{2}=0---(2) \\
I_{3}=I_{4}---(3) \\
I_{1}=I_{2}+I_{3}---(4)
\end{gathered}
$$

Substitute 4 in 1

$$
\begin{gathered}
5\left(I_{2}+I_{3}\right)+15 I_{2}=10 \\
20 I_{2}+5 I_{3}=10--(5)
\end{gathered}
$$

Substitute 3 in 2

$$
\begin{aligned}
& 10 I_{3}+20 I_{3}-15 I_{2} \\
& -15 I_{2}+30 I_{3}=0--(6)
\end{aligned}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples:

2. Find the branch currents for the electrical circuit shown in figure.

$$
\begin{gathered}
0.02(x-80)+0.02 x+0.01(x-30)+0.01(x+40) \\
+0.03(x-80)+0.01(x-20)=0---(1) \\
0.1 x=4.1 \\
x=41 A
\end{gathered}
$$

Examples:

3. Find the voltage " V_{xy} " for the electrical circuit shown in figure.

$$
\begin{gathered}
-2+3 I_{1}+2 I_{1}=0---(1) \\
\boldsymbol{I}_{\mathbf{1}}=\mathbf{0 . 4 A} \\
-4+3 I_{2}+5 I_{2}=0--(2) \\
\boldsymbol{I}_{\mathbf{2}}=0.5 \boldsymbol{A} \\
\boldsymbol{V}_{\boldsymbol{x} \boldsymbol{y}}=\boldsymbol{V}_{\boldsymbol{x} \boldsymbol{A}}+\boldsymbol{V}_{\boldsymbol{A B}}+\boldsymbol{V}_{\boldsymbol{B} \boldsymbol{y}} \\
\boldsymbol{V}_{\boldsymbol{x} \boldsymbol{y}}=\mathbf{3}\left(-\boldsymbol{I}_{\mathbf{1}}\right)+(-\mathbf{4})+\mathbf{3}\left(\boldsymbol{I}_{\mathbf{2}}\right) \\
\boldsymbol{V}_{\boldsymbol{x} \boldsymbol{y}}=-\mathbf{3} .7 \mathrm{Volts}
\end{gathered}
$$

Mesh Analysis

Branch Current Method

- Number of unknowns is equal to the number of branches.
- Difficult for complex circuits.
Mesh Current Method
- Number of unknowns is equal to the number of Meshes(Fundamental Loops)
- $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} are Mesh Currents

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Mesh Analysis

Procedure to apply Mesh Analysis:

Step-1: As far as possible try to shift current sources into voltage sources without affecting the load elements.
Step-2: Identify the number of meshes (Fundamental Loops)
Step-3: Name the loops as Loop-1, Loop-2 and so on.
Step-4: Assign Mesh currents as I1, I2 etc.(or x, y etc.) to all the meshes and choose all the mesh currents direction are either clockwise or anticlockwise.

Step-5: Apply KVL to each mesh.
NOTE: Number of KVL equations is equal to number of Meshes (Mesh currents / Unknowns).
Step-6: Solve KVL equations using variable elimination method or by applying Cramer's Rule to find Mesh current.
Step-7: Find branch currents and /or branch voltages and/or powers from the mesh currents using Ohm's Law.

Examples:

1. Find the branch currents and voltages for the electrical circuit shown in figure.

Apply KVL to Mesh - 1

$$
\begin{gathered}
-10+5 \mathrm{I}_{1}+15\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0 \\
20 \mathrm{I}_{1}-15 \mathrm{I}_{2}=10---(1)
\end{gathered}
$$

Apply KVL to Mesh - 2
$15\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+10 \mathrm{I}_{2}+20 \mathrm{I}_{2}=0$
$-15 \mathrm{I}_{1}+45 \mathrm{I}_{2}=0---(2)$
Solve equations (1) and (2)

Power

$$
\begin{aligned}
& \mathrm{I}_{1}=0.66 \mathrm{~A} \\
& \mathrm{I}_{2}=0.22 \mathrm{~A}
\end{aligned}
$$

Branch Current

$$
\begin{gathered}
\mathrm{I}_{\mathrm{DA}}=\mathrm{I}_{5 \mathrm{~V}}=\mathrm{I}_{1}=0.66 \mathrm{~A} \\
\mathrm{I}_{\mathrm{AB}}=\mathrm{I}_{5 \Omega}=\mathrm{I}_{1}=0.66 \mathrm{~A} \\
\mathrm{I}_{\mathrm{BC}}=\mathrm{I}_{10 \Omega}=\mathrm{I}_{2}=0.22 \mathrm{~A} \\
\mathrm{I}_{\mathrm{CD}}=\mathrm{I}_{20 \Omega}=\mathrm{I}_{2}=0.22 \mathrm{~A}
\end{gathered}
$$

$$
\mathrm{I}_{\mathrm{BD}}=\mathrm{I}_{15 \Omega}=\mathrm{I}_{1}-\mathrm{I}_{2}=0.44 \mathrm{~A}
$$

Branch Voltages

$$
\begin{gathered}
\mathrm{V}_{\mathrm{DA}}=\mathrm{V}_{10 \mathrm{~V}}=-10 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{AD}}=\mathrm{V}_{10 \mathrm{~V}}=+10 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{5 \Omega}=5 \mathrm{xI}_{1}=3.33 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{BC}}=\mathrm{V}_{10 \Omega}=10 \mathrm{xI}_{2}=2.22 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{CD}}=\mathrm{V}_{20 \Omega}=20 \mathrm{xI}_{2}=4.44 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{BD}}=\mathrm{V}_{15 \Omega}=15\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=6.66 \mathrm{~V}
\end{gathered}
$$

$$
\begin{aligned}
& P_{10 \mathrm{~V}}=10 \times I_{1}=6.66 \mathrm{~W} \\
& P_{5 \Omega}=3.33 x 0.66=2.19 \mathrm{~W} \\
& P_{15 \Omega}=6.66 x 0.44=2.90 \mathrm{~W} \\
& P_{10 \Omega}=6.66 x 0.22=0.48 \mathrm{~W} \\
& P_{20 \Omega}=4.44 x 0.22=0.97 \mathrm{~W} \\
& \text { Law of conservation of } \\
& \text { energy } \\
& \quad P_{5 V} \\
& \quad=P_{5 \Omega}+P_{15 \Omega}+P_{10 \Omega} \\
& \quad+P_{20 \Omega}
\end{aligned}
$$

Examples:

2. Find the Mesh currents for the electrical circuit shown in figure.

Apply KVL to mesh - 1

$$
\begin{gathered}
-10+10\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)+20\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0 \\
30 \mathrm{I}_{1}-20 \mathrm{I}_{2}-10 \mathrm{I}_{3}=10--(1)
\end{gathered}
$$

Apply KVL to mesh - 2

$$
\begin{gathered}
20\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+20\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)+10 \mathrm{I}_{2}=0 \\
-20 \mathrm{I}_{1}+50 \mathrm{I}_{2}-20 \mathrm{I}_{3}=0---(2)
\end{gathered}
$$

Apply KVL to mesh - 3

$$
\begin{gathered}
10\left(\mathrm{I}_{3}-\mathrm{I}_{1}\right)+20 \mathrm{I}_{3}+5+20\left(\mathrm{I}_{3}-\mathrm{I}_{2}\right)=0 \\
-10 \mathrm{I}_{1}-20 \mathrm{I}_{2}+50 \mathrm{I}_{3}=-5--(3)
\end{gathered}
$$

Solve equations (1). (2) and (3)we get.

$$
\begin{aligned}
& \mathbf{I}_{1}=0.55 \mathrm{~A} \\
& \mathbf{I}_{2}=0.26 \mathrm{~A} \\
& \mathbf{I}_{3}=0.11 \mathrm{~A}
\end{aligned}
$$

Cramer's Rule

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}} \mathbf{I}_{\mathbf{1}}+\mathbf{b}_{\mathbf{1}} \mathbf{I}_{\mathbf{2}}+\mathbf{c}_{\mathbf{1}} \mathbf{I}_{\mathbf{3}}=\mathbf{d}_{\mathbf{1}} \\
& \mathbf{a}_{\mathbf{2}} \mathbf{I}_{\mathbf{1}}+\mathbf{b}_{\mathbf{2}} \mathbf{I}_{\mathbf{2}}+\mathbf{c}_{\mathbf{2}} \mathbf{I}_{\mathbf{3}}=\mathbf{d}_{\mathbf{2}} \\
& \mathbf{a}_{\mathbf{3}} \mathbf{I}_{\mathbf{1}}+\mathbf{b}_{\mathbf{3}} \mathbf{I}_{\mathbf{2}}+\mathbf{c}_{\mathbf{3}} \mathbf{I}_{\mathbf{3}}=\mathbf{d}_{\mathbf{3}}
\end{aligned} \quad \Delta=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \quad X=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] \quad \begin{aligned}
& \quad \begin{array}{l}
\text { where, a, } b \text { and } c \text { are co }- \\
\text { efficients of unknowns } \\
\\
d_{1}, d_{2} \text { and } d_{3} \text { are constant terms }
\end{array}
\end{aligned}
$$

$$
\Delta_{1}=\left[\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right]
$$

$$
\Delta_{2}=\left[\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right]
$$

$$
\Delta_{3}=\left[\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& I_{1}=\Delta_{1} / \Delta \\
& I_{2}=\Delta_{2} / \Delta
\end{aligned}
$$

$$
I_{3}=\Delta_{3} / \Delta
$$

Examples:

3. Find the mesh current for the electrical circuit shown in figure suing mesh analysis.

$$
\begin{aligned}
& \hline \text { Apply KVL to Mesh - I } \\
& \mathrm{I}_{1}-20+2\left(I_{1}-I_{2}\right)+40=0 \\
& 3 \mathrm{I}_{1}-2 \mathrm{I}_{2}=-20---(1) \\
& \hline \text { Apply KVL to Mesh }- \text { II } \\
& \hline-40+2\left(I_{2}-I_{1}\right)+10+2\left(I_{2}-I_{3}\right)=0 \\
& -2 \mathrm{I}_{1}+4 \mathrm{I}_{2}-2 \mathrm{I}_{3}=30---(2) \\
& \hline \text { Apply KVL to Mesh }- \text { III } \\
& 2\left(\mathrm{I}_{3}-\mathrm{I}_{2}\right)-10+4 \mathrm{I}_{3}=0 \\
& -2 \mathrm{I}_{2}+4 \mathrm{I}_{3}=10---(3) \\
& \hline \text { Solve equations (1), (2)and (3) } \\
& \hline
\end{aligned}
$$

$$
\mathrm{I}_{1}=0 \mathrm{~A}, \mathrm{I}_{2}=10 \mathrm{~A} \text { and } \mathrm{I}_{3}=5 \mathrm{~A}
$$

Examples:

4. Find the mesh currents I1, I2 and I3 for the electrical circuit shown in figure suing mesh analysis.

$$
\begin{aligned}
& \text { Apply KVL to Mesh - I } \\
& -20+I_{1}+5\left(I_{1}-I_{2}\right)=0 \\
& 6 \mathrm{I}_{1}-5 \mathrm{I}_{2}=20---(1) \\
& \hline \text { Apply KVL to Mesh }- \text { II } \\
& 5\left(I_{2}-I_{1}\right)+4.5 I_{2}+2\left(I_{2}-I_{3}\right)=0 \\
& -5 \mathrm{I}_{1}+11.5 \mathrm{I}_{2}-2 \mathrm{I}_{3}=0---(2) \\
& \text { Mesh }- \text { III } \\
& \mathrm{I}_{3}=-1 \mathrm{~A}---(3)
\end{aligned}
$$

Solve equations (1), (2) and (3)

$$
\mathrm{I}_{1}=5 \mathrm{~A}, \mathrm{I}_{2}=2 \mathrm{~A} \text { and } \mathrm{I}_{3}=-1 \mathrm{~A}
$$

Examples:

5. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

$$
\begin{aligned}
& \hline \text { Apply KVL to Mesh - I } \\
& -5+2 I_{1}+1\left(I_{1}-I_{3}\right)+2 I_{1}=0 \\
& 5 \mathrm{I}_{1}-\mathrm{I}_{2}=5---(1) \\
& \hline \text { Apply KVL to Mesh - II } \\
& -5+2 I_{2}+I_{2}+I_{2}+2\left(I_{2}-I_{3}\right)=0 \\
& 6 \mathrm{I}_{2}-2 \mathrm{I}_{3}=5---(2) \\
& \text { Apply KVL toMesh }- \text { III } \\
& 1\left(I_{3}-I_{1}\right)+2\left(I_{3}-I_{2}\right)+2 I_{3}+5+2 I_{3}=0 \\
& -\mathrm{I}_{1}-2 \mathrm{I}_{2}+7 \mathrm{I}_{3}=-5---(3) \\
& \hline \text { Solve equations }(\mathbf{1}),(\mathbf{2}) \text { and }(\mathbf{3}) \\
& \hline
\end{aligned}
$$

$$
I_{1}=1.14 \mathrm{~A}, \mathrm{I}_{2}=0.71 \mathrm{~A} \text { and } \mathrm{I}_{3}=-0.34 \mathrm{~A}
$$

Examples:

6. Find the mesh currents I1, I2 and I3 for the electrical circuit shown in figure suing mesh analysis.

Mesh-I

$$
\mathrm{I}_{1}=1 \mathrm{~A}---(1)
$$

$$
\begin{aligned}
& \text { Apply KVL to Mesh - II } \\
& \begin{array}{c}
2\left(I_{2}-I_{1}\right)+I_{2}+2\left(I_{2}-I_{3}\right)=0 \\
-2 \mathrm{I}_{1}+5 \mathrm{I}_{2}-2 \mathrm{I}_{3}=0---(2)
\end{array}
\end{aligned}
$$

Apply KVL toMesh - III

$$
\begin{aligned}
& 2\left(I_{3}-I_{2}\right)+I_{3}-10=0 \\
& -2 I_{2}+3 I_{3}=10---(3)
\end{aligned}
$$

Solve equations (1), (2) and (3)

$$
\mathrm{I}_{1}=1 \mathrm{~A}, \mathrm{I}_{2}=2.36 \mathrm{~A} \text { and } \mathrm{I}_{3}=4.9 \mathrm{~A}
$$

Examples:

7. Find the mesh currents for the electrical circuit shown in figure using mesh analysis.

$$
\begin{aligned}
& \hline \text { Apply KVL to Mesh - I } \\
& 5 I_{1}+2\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+20-50=0 \\
& 7 \mathrm{I}_{1}-2 \mathrm{I}_{2}=30---(1) \\
& \text { Apply KVL to Mesh - II } \\
& 2\left(I_{2}-I_{1}\right)+3 I_{2}+10-20=0 \\
& -2 \mathrm{I}_{1}+5 \mathrm{I}_{2}=10---(2)
\end{aligned}
$$

Solve equations (1) and(2)

$$
\mathrm{I}_{1}=5.48 \mathrm{~A}, \mathrm{I}_{2}=4.19 \mathrm{~A}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Examples:

8. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

Apply KVL to supermesh

$$
\begin{aligned}
& 5 I_{1}+2 I_{2}+6\left(I_{2}-I_{3}\right)-60=0 \\
& 5 I_{1}+8 I_{2}-6 I_{3}=60---(2)
\end{aligned}
$$

Apply KVL toMesh - III

- 5A Current source is common to meshes 1 and 2 Consider current source separately
- i. e. , $I_{2}-I_{1}=5---$ (1)
- combine the meshes 1 and 2 without considering common current source to form a single mesh, Called Supermesh.

$$
6\left(I_{3}-I_{2}\right)+3 I_{3}+50=0
$$

$$
-6 I_{2}+9 I_{3}=-50---(3)
$$

Solve equations (1), (2) and (3)

$$
\mathrm{I}_{1}=0.74 \mathrm{~A}, \mathrm{I}_{2}=5.74 \mathrm{~A} \text { and } \mathrm{I}_{3}=-1.72 \mathrm{~A}
$$

Examples:

9. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

Apply KVL to supermesh

$$
\begin{gathered}
\left(I_{1}-I_{3}\right)+3\left(I_{2}-I_{3}\right)+4 I_{2}-24=0 \\
\mathrm{I}_{1}+7 \mathrm{I}_{2}-4 \mathrm{I}_{3}=24---(2)
\end{gathered}
$$

Apply KVL toMesh - III

$$
I_{3}=-2 \mathrm{~A}---(3)
$$

- 8 A Current source is common to meshes 1 and 2 Consider current source separately

Solve equations (1), (2) and (3)

- i. e. , $I_{2}-I_{1}=8$--- -(1)
- combine the meshes 1 and 2 without considering common current source to form a single source, Called

$$
\mathrm{I}_{1}=-5 \mathrm{~A}, \mathrm{I}_{2}=3 \mathrm{~A} \text { and } \mathrm{I}_{3}=-2 \mathrm{~A}
$$ Supermesh.

Examples:

10. Find the mesh currents for the electrical circuit shown in figure using mesh analysis.

Apply KVL to supermesh

$$
\begin{gathered}
1\left(I_{1}-I_{2}\right)+3\left(I_{3}-I_{2}\right)+I_{3}+2\left(I_{3}-I_{1}\right)+2\left(I_{1}-I_{3}\right)-7=0 \\
\mathrm{I}_{1}-4 \mathrm{I}_{2}+4 \mathrm{I}_{3}=7---(2)
\end{gathered}
$$

- 7 A Current source is common to meshes 1 and 3 Consider current source separately
- i. e. , $I_{3}-I_{1}=7---$ (1)
- combine the meshes 1 and 3 without considering common current source to form a single source, Called Supermesh.

Apply KVL toMesh - III

$$
\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+2 \mathrm{I}_{2}+3\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)=0---(3)
$$

$$
-\mathrm{I}_{1}+6 \mathrm{I}_{2}-3 \mathrm{I}_{3}=0---(2)
$$

Solve equations (1), (2) and (3)

$$
\mathrm{I}_{1}=9 \mathrm{~A}, \mathrm{I}_{2}=2.5 \mathrm{~A} \text { and } \mathrm{I}_{3}=2 \mathrm{~A}
$$

Examples:

11. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

$$
I_{2}-I_{3}=2---(1)
$$

KVL to supermesh

$$
\begin{gathered}
2 I_{2}+1_{3}+5\left(\mathrm{I}_{3}-\mathrm{I}_{1}\right)+10\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)=0 \\
-15 I_{1}+12 I_{2}+6 I_{3}=0--(2)
\end{gathered}
$$

KVL to mesh 1

$$
\begin{aligned}
& 10\left(I_{1}-I_{2}\right)+5\left(I_{1}-I_{3}\right)-50=0 \\
& 15 I_{1}-10 I_{2}-5 I_{3}=50--(3)
\end{aligned}
$$

Solve equations (1), (2) and (3)

$$
I_{1}=20 \mathrm{~A}, \mathrm{I}_{2}=17.33 \mathrm{~A} \text { and } \mathrm{I}_{3}=15.33 \mathrm{~A}
$$

Examples:

12. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

$$
\begin{aligned}
& \mathrm{I}_{2}-\mathrm{I}_{1}=5---(1) \\
& \mathrm{I}_{3}-\mathrm{I}_{2}=8---(2)
\end{aligned}
$$

KVL to Supermesh

$$
\begin{aligned}
& 5 I_{1}+2 I_{2}+3 I_{3}+50-60=0 \\
& 5 I_{1}+2 I_{2}+3 I_{3}=10---(3)
\end{aligned}
$$

Solve the equations (1), (2) and (3)
$\mathrm{I}_{1}=-3.9 \mathrm{~A}$
$\mathrm{I}_{2}=1.1 \mathrm{~A}$
$\mathrm{I}_{3}=9.1 \mathrm{~A}$

Dependent/Controlled Sources

Dependent Sources

Current and voltage of source depends on some other current and voltage.
Example:

Applications: Analysis of amplifiers

Types:

1. Voltage Dependent Voltage source
2. Current Dependent Voltage source
3. Voltage Dependent Current Source
4. Current dependent Current source

Examples:

1. Find the mesh currents for the electrical circuit shown in figure.

Obtain the control variables in terms of mesh currents.

$$
I_{A}=I_{1} ; I_{B}=I_{2}
$$

KVL to Mesh-1

$$
\begin{gathered}
-5+5 I_{1}+10 I_{B}+10\left(I_{1}-I_{2}\right)+5 I_{A}=0 \\
-5+5 I_{1}+10 I_{2}+10\left(I_{1}-I_{2}\right)+5 I_{1}=0 \\
20 I_{1}=5
\end{gathered}
$$

KVL to Mesh-2

$$
\begin{gathered}
-5 I_{A}+10\left(I_{2}-I_{1}\right)+5 I_{2}+10=0 \\
-5 I_{1}+10\left(I_{2}-I_{1}\right)+5 I_{2}+10=0 \\
-15 I_{1}+15 I_{2}=-10
\end{gathered}
$$

W.K.T., $I_{1}=0.25 A$

Therefore $I_{2}=-0.416 A$

Therefore $I_{1}=0.25 A$

Examples:

2. Find the mesh currents for the electrical circuit shown in figure.

Obtain the control variables in terms of mesh currents.

$$
I_{\mathrm{x}}=\mathrm{I}_{1} ; \mathrm{I}_{\mathrm{y}}=\mathrm{I}_{2}-\mathrm{I}_{3}
$$

KVL to mesh-1

$$
\begin{gathered}
-5+1 I_{1}+I_{y}+1\left(I_{1}-I_{2}\right)=0 \\
-5+I_{1}+I_{2}-I_{3}+I_{1}-I_{2}=0 \\
2 I_{1}-I_{3}=5---(1)
\end{gathered}
$$

KVL to mesh-2

$$
\begin{gathered}
\mathbf{1}\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right)-\mathbf{I}_{\mathbf{y}}+\mathbf{1} \mathbf{I}_{2}+\mathbf{I}_{\mathbf{x}}+\mathbf{1}\left(\mathbf{I}_{2}-\mathbf{I}_{3}\right)=\mathbf{0} \\
\mathbf{I}_{\mathbf{2}}-\mathbf{I}_{1}-\mathbf{I}_{2}+\mathbf{I}_{3}+\mathbf{I}_{\mathbf{2}}+\mathbf{I}_{1}+\mathbf{I}_{2}-\mathbf{I}_{3}=\mathbf{0} \\
2 \mathbf{I}_{2}=\mathbf{0} \\
\mathbf{I}_{2}=\mathbf{0 A} .
\end{gathered}
$$

Mesh-3

$$
I_{3}=-1 A
$$

$$
I_{1}=2 A, I_{2}=0 A \text { and } I_{3}=-1 \mathrm{~A}
$$

Examples:

3. Find the mesh currents for the electrical circuit shown in figure.

Obtain the control variables in terms of mesh currents.

$$
V_{1}=-5 I_{1} ; V_{2}=2 I_{2}
$$

Apply KVL to mesh-1

$$
\begin{gathered}
+5+5 I_{1}+2 V_{2}+4 I_{1}+1\left(I_{1}-I_{2}\right)-2 V_{1}=0 \\
5+5 I_{1}+4 I_{2}+4 I_{1}+I_{1}-I_{2}+10 I_{1}=0 \\
20 I_{1}+3 I_{2}=-5--(1)
\end{gathered}
$$

Apply KVL to mesh-2

$$
\begin{gathered}
2 V_{1}+1\left(I_{2}-I_{1}\right)+2 I_{2}+10=0 \\
-10 I_{1}+I_{2}-I_{1}+2 I_{2}+10=0 \\
-11 I_{1}+3 I_{2}=-10---(2)
\end{gathered}
$$

$$
I_{1}=0.161 \mathrm{~A} \text { and } I_{2}=-2.7 \mathrm{~A}
$$

Examples:

Obtaining the relationship between control variables and mesh currents
Case(i)

Case(iiii)
Case(iv)

$$
V_{x}=R I_{1}
$$

$$
V_{x}=R\left(-I_{1}\right)
$$

$$
V_{x}=R\left(I_{2}-I_{1}\right)
$$

$$
V_{x}=R\left(I_{1}-I_{2}\right)
$$

Examples:

4. Find the mesh currents $I 1, I 2, I 3$ and $I 4$ for the electrical circuit shown in figure.

Obtain the control variables in terms of mesh currents.

\square

Examples:

5. Find the mesh currents I1 and I2 for the electrical circuit shown in figure.

Obtain the control variables in terms of mesh currents.

\square
\square

Examples:

Obtaining the relationship between control variables and mesh currents
Case(i)

Case(iiii)
Case(iv)

$$
V_{x}=R I_{1}
$$

$$
V_{x}=R\left(-I_{1}\right)
$$

$$
V_{x}=R\left(I_{2}-I_{1}\right)
$$

$$
V_{x}=R\left(I_{1}-I_{2}\right)
$$

Examples:

4. Find the mesh currents I_{1}, I_{2}, I_{3} and I_{4} for the electrical circuit shown in figure.

$$
\begin{gathered}
I_{3}-I_{2}=5 V_{x} \\
I_{3}-I_{2}=5 \cdot \frac{1}{5}\left(I_{2}-I_{1}\right) \\
I_{1}-2 I_{2}+I_{3}=0---(3)
\end{gathered}
$$

KVL to supermesh

$$
\begin{aligned}
& \frac{1}{20} I_{2}+\frac{1}{15} I_{3}+\frac{1}{2}\left(I_{3}-I_{4}\right)+\frac{1}{5}\left(I_{2}-I_{1}\right)=0 \\
& -0.2 I_{1}+0.25 I_{2}+0.56 I_{3}-0.4 I_{4}=0---(4)
\end{aligned}
$$

At mesh 4

$$
I_{4}=40 A
$$

KVL at mesh-1

$$
\begin{aligned}
& +6+\frac{1}{10} I_{1}+\frac{1}{5}\left(I_{1}-I_{2}\right)+\frac{1}{6}\left(I_{1}-I_{4}\right)=0 \\
& 0.46 I_{1}+0.2 I_{2}-0.166 I_{4}=-6---(2)
\end{aligned}
$$

$$
I_{1}=10 \mathrm{~A}, I_{2}=20 \mathrm{~A}, I_{3}=30 \mathrm{~A} \text { and } I_{4}=40 \mathrm{~A}
$$

5 Vx current source is common to mesh-2
and 3.

Examples:

5. Find the mesh currents I1 and I2 for the electrical circuit shown in figure.

$0.5 V_{1}$ current source is common to mesh-2 and 3,

$$
\begin{gathered}
0.5 V_{1}=I_{3}-I_{2} \\
0.5\left(2\left(I_{1}-I_{2}\right)\right)=I_{3}-I_{2} \\
I_{1}=I_{3}--(3)
\end{gathered}
$$

KVL to supermesh

$$
\begin{gathered}
10 I_{3}+6 I_{2}+2\left(I_{2}-I_{1}\right)=0 \\
-2 I_{1}+8 I_{2}+10 I_{3}=0--(4)
\end{gathered}
$$

Solve equations (2, 3 and 4)
We get.

$$
V_{1}=2\left(I_{1}-I_{2}\right)---(1)
$$

KVL to mesh 1

$$
\begin{gathered}
-110+14 I_{1}+4 I_{1}+2\left(I_{1}-I_{2}\right)=0 \\
20 I_{1}-2 I_{2}=110---(2)
\end{gathered}
$$

$$
I_{1}=5 A, I_{2}=-5 A \text { and } I_{3}=5 A
$$

Node Analysis

- Node: A junction or a point where two or more elements are connected.
- Example:
- Fundamental Node : A node where Current division takes place
- Number of unknowns is equal to the number of nodes-1.
- $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3} \ldots$ are node voltages

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis

Procedure to apply Node Analysis:

Step-1: As for as possible try to convert voltage sources into current sources, without affecting the load elements.
Step-2: Identify the number of fundamental nodes.
Step-3: Name the nodes and assign node voltages as V1, V2, V3...

NOTE: Ground potential is always zero.

Step-4: Assign branch currents to each branch as I1, I2, I3 etc., and choose the directions randomly.
Step-5: Apply KCL at each node
NOTE: Number of KCL equations is equal to the number of nodes-1/number of unknowns.
Step-6: Replace branch currents in terms of node voltages.
Step-7: Solve KCL equations using any mathematical technique to find node voltages.
Step-8: Find the branch currents/branch voltages/power from node voltages using ohm's law.

Node Analysis

- Node: A junction or a point where two or more elements are connected.
- Example:
- Fundamental Node : A node where Current division takes place
- Number of unknowns is equal to the number of nodes-1.
- $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3} \ldots$ are node voltages

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis

Procedure to apply Node Analysis:

Step-1: As for as possible try to convert voltage sources into current sources, without affecting the load elements.
Step-2: Identify the number of fundamental nodes.
Step-3: Name the nodes and assign node voltages as V1, V2, V3...
NOTE: Ground potential is always zero.
Step-4: Assign branch currents to each branch as I1, I2, I3 etc., and choose the directions randomly.
Step-5: Apply KCL at each node
NOTE: Number of KCL equations is equal to the number of nodes-1/number of unknowns.
Step-6: Replace branch currents in terms of node voltages.
Step-7: Solve KCL equations using any mathematical technique to find node voltages.
Step-8: Find the branch currents/branch voltages/power from node voltages using ohm's law.

Node Analysis-Tips

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Tips

$$
\begin{array}{r}
I_{1}=\frac{V_{1}-\left(-V_{s}\right)-V_{2}}{R} \\
\mathbf{I}_{\mathbf{1}}=\frac{\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{s}}-\mathbf{V}_{\mathbf{2}}}{\mathbf{R}}
\end{array}
$$

$$
I_{1}=\frac{V_{1}-V_{s}-V_{2}}{R}
$$

$$
\begin{gathered}
I_{1}=\frac{V_{2}-\left(-V_{s}\right)-V_{1}}{R} \\
\mathbf{I}_{\mathbf{1}}=\frac{\mathbf{V}_{\mathbf{2}}+\mathbf{V}_{\mathbf{s}}-\mathbf{V}_{\mathbf{1}}}{\mathbf{R}}
\end{gathered}
$$

Node Analysis-Examples

1. Find the branch currents and branch voltages for the electrical circuit shown in figure.

Identify the fundamental nodes

KCL at node 1

$$
1=I_{1}+I_{2}
$$

Express branch currents in terms of node voltages

$$
\begin{gathered}
1=\frac{V_{1}-V_{G}}{2}+\frac{V_{1}-V_{2}}{2} \\
1=V_{1}-0.5 V_{2}--(1)
\end{gathered}
$$

KCL at node 2

$$
\begin{array}{cl}
I_{2}+2=I_{3} & \text { Answer: } \\
\frac{V_{1}-V_{2}}{2}+2=\frac{V_{2}-V_{G}}{1} & \begin{array}{l}
\mathbf{V}_{\mathbf{1}}=\mathbf{2} \mathbf{V} \\
0.5 V_{1}-1.5 V_{2}=-2---(2)
\end{array} \\
\mathbf{V}_{\mathbf{2}}=\mathbf{2} \mathbf{V}
\end{array}
$$

Node Analysis-Examples

Branch currents

Node Analysis-Examples

2. Find the Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes

Assign branch currents

Answer: $V_{A}=9.39 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{B}}=12.58 \mathrm{~V}$

KCL at node A

$$
I_{1}+I_{2}=I_{3}
$$

Express branch currents in terms of node voltages

$$
\begin{gathered}
\frac{10-V_{A}}{2}+\left(-\frac{V_{A}}{10}\right)=\frac{V_{A}-V_{B}}{5}---(1) \\
8 V_{A}-2 V_{B}=50--(1)
\end{gathered}
$$

KCL at node B

$$
\begin{gathered}
I_{3}=I_{4}+I_{5}+\frac{1}{3} \\
\frac{V_{A}-V_{B}}{5}=\frac{V_{B}}{15}+\frac{V_{B}-18}{3}-- \text { (2) } \\
3 V_{A}-9 V_{B}=-30-- \text { (2) }
\end{gathered}
$$

Node Analysis-Examples

3. Find the Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes
Assign branch currents

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Examples

KCL at node 1, $I_{2}=I_{1}+I_{3}+9$

$$
\begin{aligned}
& \frac{V_{2}-V_{1}}{2}=\frac{V_{1}-12}{4}+\frac{V_{1}-V_{3}}{4}+9 \\
& -V_{1}+0.5 V_{2}+0.25 V_{3}=6---(1)
\end{aligned}
$$

KCL at node 2, $I_{2}+I_{4}+I_{5}=0$

$$
\begin{gathered}
\frac{V_{2}-V_{1}}{2}+\frac{V_{2}}{100}+\frac{V_{2}-V_{3}}{5}=0 \\
-0.5 V_{1}+0.71 V_{2}-0,2 V_{3}=0---(2)
\end{gathered}
$$

KCL at node $3,9+I_{3}+I_{5}+I_{6}=0$

$$
\begin{gathered}
9+\frac{V_{1}-V_{3}}{4}+\frac{V_{2}-V_{3}}{5}+\frac{-V_{3}}{20}=0 \\
0.25 V_{1}+0.2 V_{2}-0.5 V_{3}=-9---(3)
\end{gathered}
$$

Answer: $V_{1}=6.35 \mathrm{~V}, \mathrm{~V}_{2}=11.76 \mathrm{~V}$ and $\mathrm{V}_{3}=25.88 \mathrm{~V}$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Examples

4. Find the V1 and V2 using Node voltage analysis for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

at node - 1
50 V source is connected between non reference

$$
\text { Answer: } V_{1}=50 \mathrm{~V} \text { and } V_{2}=8.82 \mathrm{~V}
$$

$$
V_{1}=50 \mathrm{~V}---(1)
$$

Apply KCL at node-2

$$
\begin{gathered}
I_{2}=I_{3}+I_{4} \\
\frac{V_{1}-V_{2}}{50}=\frac{V_{2}-10}{20}+\frac{V_{2}}{10} \\
0.02 V_{1}-0.17 V_{2}=-0.5--(2)
\end{gathered}
$$

Node Analysis-Examples

5. Find the V1 and V2 using Node voltage analysis for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Examples

$$
V_{c}=20 \mathrm{~V}---(1)
$$

KCL at node a.

$$
\begin{gathered}
I_{1}=I_{2}+2 \\
\frac{80-V_{a}}{50}=\frac{V_{a}-V_{b}}{10}+2 \\
-0.12 V_{a}+0.1 V_{b}=0.4---(2)
\end{gathered}
$$

KCL at node b

$$
\begin{aligned}
I_{2} & =I_{3}+I_{4} \\
\frac{V_{a}-V_{b}}{10} & =\frac{V_{b}}{50}+\frac{V_{b}-V_{c}}{20} \\
0.1 V_{a}-o .17 V_{b} & +0.05 V_{c}=0--(3)
\end{aligned}
$$

$$
\begin{gathered}
\text { Answer: } \mathrm{V}_{\mathrm{a}}=3.08 \mathrm{~V}, \mathrm{~V}_{\mathrm{b}}=7.69 \mathrm{~V}, \mathrm{~V}_{\mathrm{c}}=20 \mathrm{~V}, \\
V_{1}=V_{a}-V_{b} ; V_{2}=V_{b}-V_{c} \\
\mathrm{~V}_{1}=-4.61 \mathrm{~V} \text { and } V_{3}=-12.31 \mathrm{~V}
\end{gathered}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Examples

6. Find Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

NOTE: if an ideal voltage source is connected between two non reference nodes, consider that common voltage source independently and write mathematical equation corresponding to the common voltage sources.

$$
V_{2}-V_{3}=2---(1)
$$

For further analysis, no need to consider that voltage source. Combine nodes 2 and 3 to form a single node called as super node.
Apply KCL at super node.

$$
\begin{gathered}
I_{2}+3+2=I_{3} \\
\frac{V_{1}-6-V_{2}}{2}+5=\frac{V_{3}}{4}----(2) ; 0.5 \mathrm{~V}_{1}-0.5 \mathrm{~V}_{2}-0.25 \mathrm{~V}_{3}=-2
\end{gathered}
$$

Apply KCL at node1

$$
\begin{gathered}
I_{1}=I_{2}+2 \\
\left(-\frac{V_{1}}{2}\right)=\frac{V_{1}-6-V_{2}}{2}+2---(3) ;-V_{1}+0.5 V_{2}=-1
\end{gathered}
$$

Answer: $V_{1}=4 V ; V_{2}=6 \mathrm{~V} ; V_{3}=4 \mathrm{~V}$.

Node Analysis-Practice problems

1. Carryout nodal analysis and find V_{2}.

2. Carryout nodal analysis and find node voltages.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Practice problems

3. Carryout nodal analysis and find voltage across 2 Ohms resistor (Connected Vertically).

$$
V_{2}(\text { Vertically connected })=0.31 \text { Volts }
$$

4. Find the power dissipated in 6 KOhms resistor using node voltage analysis.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Practice problems

5. Find the current through $\mathbf{5 0}$ Ohms resistor using mesh analysis.

$$
I_{50 \text { ohms }}=0.24 A(\text { b to } a)
$$

6. Find the power dissipated in 6 KOhms resistor using Mesh analysis.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Examples

7. Find V1 and V2 using Node voltage method for the electrical circuit shown in figure.

$$
I_{1}, I_{2} \text { and } V_{2}
$$

Express control variables in terms of node voltages.

$$
I_{1}=\frac{V_{2}}{10} ; I_{2}=\frac{V_{1}}{10} \text { and } V_{2}
$$

Apply KCL at node-1.

$$
\begin{gathered}
2 I_{1}=I_{2}+I_{3}+2 V_{2} \\
2\left(\frac{V_{2}}{10}\right)=\left(\frac{V_{1}}{10}\right)+\frac{V_{1}-V_{2}}{10}+2 V_{2} \\
0.2 V_{2}=0.1 V_{1}+0.1 V_{1}-0.1 V_{2}+2 V_{2} \\
\boldsymbol{V}_{2}=\mathbf{0} \text { Volts }
\end{gathered}
$$

Apply KCL at node-2

$$
\begin{gathered}
I_{3}+2 V_{2}+2 I_{2}=I_{1} \\
\frac{V_{1}-V_{2}}{10}+2 V_{2}+2\left(\frac{V_{1}}{10}\right)=\left(\frac{V_{2}}{10}\right) \\
0.1 V_{1}-0.1 V_{2}+2 V_{2}+0.2 V_{1}=0.1 V_{2} \\
0.3 V_{1}+1.8 V_{2}=0--(1) \\
V_{\mathbf{1}}=\mathbf{0} \text { Volts. }
\end{gathered}
$$

$$
\text { Answer: } \mathrm{V}_{1}=0 \mathrm{~V} \text { and } \mathrm{V}_{2}=0 \mathrm{~V}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Node Analysis-Examples

8. Find Node voltages for the electrical circuit shown in figure.

V_{x} and V_{y} are control varoables.
Express control variables in terms of node voltages.

$$
\begin{aligned}
& V_{x}=V_{2}-V_{1}---(1) \\
& V_{y}=V_{4}-V_{1}---(2)
\end{aligned}
$$

Node-1

$$
V_{1}=-12 \text { Volts }---(3)
$$

Apply KCL at node 2

$$
\begin{gathered}
I_{1}+I_{3}+14=0 \\
\frac{V_{1}-V_{2}}{0.5}+\frac{V_{3}-V_{2}}{2}+14=0---(4) ; 2 V_{1}-2 V_{2}+0.5 V_{3}-0.5 V_{2}=-14 \\
2 \boldsymbol{V}_{\mathbf{1}}-\mathbf{2 . 5} \boldsymbol{V}_{\mathbf{2}}+\mathbf{0 . 5} \boldsymbol{V}_{\mathbf{3}}=-\mathbf{1 4}
\end{gathered}
$$

$0.2 \mathrm{~V}_{\mathrm{y}}$ voltage source is between V_{3} and V_{4}.

$$
\begin{gathered}
0.2 V_{y}=V_{3}-V_{4}--(5) ; 0.2\left(V_{4}-V_{1}\right)=V_{3}-V_{4}---(5) \\
-\mathbf{0 . 2} \boldsymbol{V}_{\mathbf{1}}-\boldsymbol{V}_{\mathbf{3}}+\mathbf{2} \boldsymbol{V}_{\mathbf{4}}=\mathbf{0}
\end{gathered}
$$

Apply KCL at super node.

$$
\begin{aligned}
& I_{2}+I_{4}+0.5 V_{x}=I_{3} \\
& \frac{V_{1}-V_{4}}{2.5}+\left(-V_{4}\right)+0.5\left(V_{2}-V_{1}\right)=\frac{V_{3}-V_{2}}{2}---(6) \\
& -\mathbf{0 . 9} \boldsymbol{V}_{\mathbf{1}}+\boldsymbol{V}_{\mathbf{2}}-\mathbf{0 . 5} \mathbf{5}-\mathbf{1} .4 \boldsymbol{V}_{\mathbf{4}}=\mathbf{0} \\
& \text { Answer: } \mathbf{V}_{\mathbf{1}}=-\mathbf{1 2}, \mathbf{V}_{\mathbf{2}}-\mathbf{4 V}, \mathbf{V}_{\mathbf{3}}=\mathbf{0} \mathbf{V} \text { and } \mathbf{V}_{\mathbf{4}}=-\mathbf{2 V} \\
& \hline
\end{aligned}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

AC Quantities

AC quantities are represented in two different formats.

Polar form

$$
\text { Format }=\mathrm{M} \angle \emptyset
$$

Where, M is the magnitude and \emptyset is the phase angle

Rectangular form

$$
x+j y
$$

Where, x is the real part and y is the imaginary part.

Conversion from rectangular to polar

Given: $\mathrm{x}+\mathrm{jy}$, To find: M and \varnothing

$$
M=\sqrt{x^{2}+y^{2}} \text { and } \emptyset=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Conversion from polar to rectangular

Given : M and \emptyset, To find: x and y

$$
\mathrm{x}=\mathrm{M} \cos \varnothing \text { and } \mathrm{y}=\mathrm{M} \sin \varnothing
$$

AC Quantities

Conversions are used to perform mathematical calculations.
NOTE:

$$
A=10 ; A=10 \angle 0^{0} \Rightarrow 10+j 0
$$

Consider

Similarly

$$
\begin{aligned}
& A=x_{1}+j y_{1} \text { and } B=x_{2}+j y_{2} \\
& A+B=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right) \\
& \quad A-B=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
\end{aligned}
$$

For multiplication and division-Polar form

$$
A=10+j 0 \Rightarrow 10 \text { or } 10 \angle 0^{0}
$$

Consider

Similarly

$$
\begin{aligned}
& \mathrm{A}=\mathrm{M}_{1} \angle \emptyset_{1} \text { and } \mathrm{B}=\mathrm{M}_{2} \angle \emptyset_{2} \\
& \mathrm{~A} * \mathrm{~B}=\mathrm{M}_{1} * \mathrm{M}_{2} \angle \emptyset_{1}+\emptyset_{2} \\
& \frac{\mathrm{~A}}{\mathrm{~B}}=\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}} \angle \emptyset_{1}-\emptyset_{2}
\end{aligned}
$$

$$
\begin{gathered}
A=j 10 \Rightarrow 10 \angle 90^{\circ} \\
A=-j 10 \Rightarrow 10 \angle-90^{\circ} \text { or }-10 \angle 90^{\circ}
\end{gathered}
$$

Also

$$
\begin{gathered}
A * B=\left(x_{1}+j y_{1}\right)\left(x_{2}+j y_{2}\right) \\
=x_{1} x_{2}+j x_{1} y_{2}+j x_{2} y_{1}+j^{2} y_{1} y_{2} \\
=\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+x_{2} y_{1}\right) \quad \text { since } j^{2}=-1
\end{gathered}
$$

$$
\begin{gathered}
A=\frac{1}{j} \Rightarrow-j \\
A=j * j \Rightarrow j^{2}=-1 .
\end{gathered}
$$

AC Quantities

Resistors:

R Ohms (Same for both DC and AC)
Voltage in phase with the current

Capacitors:

C Farads (DC analysis)
-jX $\boldsymbol{X}_{\boldsymbol{C}}$ Ohms (Capacitive reactance AC analysis) (Negative signVoltage lags current by 90°)
Where, $X_{C}=\frac{1}{2 \pi f C} \Rightarrow 1 / w C$, where, f is the frequency.

Inductors:

L Henry (DC analysis)
$+\mathbf{j} \mathbf{X}_{L}$ Ohms (Inductive reactance AC analysis) (Positive sign-

Mesh Analysis-Examples

1. Find the mesh currents using mesh analysis

KVL at mesh-1

$$
\begin{gathered}
5 \mathrm{I}_{1}+\mathrm{j} 5\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)-30 \angle 0^{0}=0 \\
(\mathbf{5}+\mathbf{j} \mathbf{5}) \mathrm{I}_{\mathbf{1}}-\mathbf{j} 5 \mathbf{I}_{\mathbf{2}}=\mathbf{3 0} \angle \mathbf{0}^{\mathbf{0}}--(\mathbf{1})
\end{gathered}
$$

KVL at mesh-2

$$
\begin{gathered}
2 \mathrm{I}_{2}+\mathrm{j} 3 \mathrm{I}_{2}+6\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)+\mathrm{j} 5\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)=0 \\
(-\mathbf{j} 5) \mathbf{I}_{\mathbf{1}}+(\mathbf{8}+\mathbf{j} \mathbf{8}) \mathbf{I}_{\mathbf{2}}-\mathbf{6 \mathbf { I } _ { \mathbf { 3 } } = \mathbf { 0 } - - - (\mathbf { 2 })}
\end{gathered}
$$

KVL at mesh-3
$4 \mathrm{I}_{3}+35.36 \angle 45^{0}+6\left(\mathrm{I}_{3}-\mathrm{I}_{2}\right)=0$

$$
(-6) \mathrm{I}_{2}+(10) \mathrm{I}_{3}=-35.36 \angle 45^{0}---(3)
$$

Solve equations (1), (2) and (3), we get

$$
\mathrm{I}_{1}, \mathrm{I}_{2} \text { and } \mathrm{I}_{3}
$$

Mesh Analysis-Examples

Cramer's rule:

$$
\begin{gathered}
\Delta=\left[\begin{array}{ccc}
(5+j 5) & -j 5 & 0 \\
-j 5 & 8+j 8 & -6 \\
0 & -6 & 10
\end{array}\right], X=\left[\begin{array}{c}
30+j 0 \\
0 \\
-25-j 25
\end{array}\right] \\
\Delta=(5+j 5)[(8+j 8)(10)-6(6)]-(-j 5)[-j 5(10)-0] \\
\Delta=(5+j 5)[80+j 80-36]+j 5[-j 50] \\
\Delta=(5+j 5)(44+j 80)+250 \\
\Delta=220+j 400+j 220-400+250 \\
\Delta=70+j 620 \text { or } \mathbf{6 2 3 . 9} \angle \mathbf{8 3 . 5 5}
\end{gathered}
$$

$$
\Delta_{1}=\left[\begin{array}{ccc}
30+j 0 & -j 5 & 0 \\
0 & 8+j 8 & -6 \\
-25-j 25 & -6 & 10
\end{array}\right]
$$

$$
\Delta_{1}=30[(8+j 8) 10-36]+j 5(-6(25+j 25))
$$

$$
\Delta_{1}=30[(80+j 80)-36]+j 5(-150-j 150)
$$

$$
\Delta_{1}=30[44+j 80]-j 750+750
$$

$$
\begin{gathered}
\Delta_{1}=1320+j 2400-j 750+750 \\
\Delta_{\mathbf{1}}=\mathbf{2 0 7 0}+\boldsymbol{j} 1650 \text { or } \mathbf{2 6 4 7 . 1 4 \angle 3 8 . 5 5 ^ { 0 }}
\end{gathered}
$$

Similarly evaluate Δ_{2} and Δ_{3}
Therefore $I_{1}=\frac{\Delta_{1}}{\Delta}=4.24 \angle 45.01{ }^{0} A$
Similarly evaluate $I_{2}=\frac{\Delta_{2}}{\Delta}$ and $I_{3}=\frac{\Delta_{3}}{\Delta}$

Mesh Analysis-Examples

2. Find the current $\mathrm{I}_{4 \Omega}$ using mesh analysis

Applying KVL to mesh 1 , we obtain:

$$
(8+j 10-\rho) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{2}-j 10 \mathbf{I}_{3}=0
$$

For mesh 2,

$$
(4-j 2-j 2) \mathrm{I}_{2}-(-j 2) \mathrm{I}_{1}-(-j 2) \mathrm{I}_{3}+20 / 90^{\circ}=0
$$

$$
\left[\begin{array}{cc}
8+j 8 & j 2 \\
j 2 & 4-j 4
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2}
\end{array}\right]=\left[\begin{array}{c}
j 50 \\
-j 30
\end{array}\right]
$$

from which we obtain the determinants

$$
\begin{gathered}
\Delta=\left|\begin{array}{cc}
8+j 8 & j 2 \\
j 2 & 4-j 4
\end{array}\right|=32(1+j)(1-j)+4=68 \\
\Delta_{2}=\left|\begin{array}{cc}
8+j 8 & j 50 \\
j 2 & -j 30
\end{array}\right|=340-j 240=416.17 \angle-35.22^{\circ} \\
\mathbf{I}_{2}=\frac{\Delta_{2}}{\Delta}=\frac{416.17 /-35.22^{\circ}}{68}=6.12 \angle-35.22^{\circ} \mathrm{A}
\end{gathered}
$$

The desired current is

$$
\mathrm{I}_{o}=-\mathrm{I}_{\mathbf{2}}=6.12 \angle 144.78^{\circ} \mathrm{A}
$$

For mesh $3, I_{3}=5$.

$$
\begin{gathered}
(8+j 8) \mathbf{I}_{1}+j 2 \mathbf{I}_{2}=j 50 \\
j 2 \mathrm{I}_{1}+(4-j 4) \mathbf{I}_{2}=-j 20-j 10
\end{gathered}
$$

Mesh Analysis-Examples

3. Find the Node voltages using node analysis

KCL at node-1

$$
\begin{gathered}
I_{1}=I_{2}+I_{3} \\
\frac{30 \angle 0^{0}-V_{1}}{5}=\left(\frac{V_{1}}{j 5}\right)+\frac{V_{1}-V_{2}}{2+j 3} \\
6-0.2 V_{1}=-j 0.2 V_{1}+\frac{V_{1}-2}{3.6 \angle 56.3^{0}} \\
6-0.2 V_{1}=-j 0.2 V_{1}+0.277 \angle-56.3^{0}\left(V_{1}-V_{2}\right) \\
6-0.2 V_{1}=-j 0.2 V_{1}+0.153 V_{1}-j 0.23 V_{1}-0.153 V_{2}+j 0.23 V_{2} \\
6=0.2 V_{1}-j 0.2 V_{1}+0.153 V_{1}-j 0.23 V_{1}-0.153 V_{2}+j 0.23 V_{2} \\
\mathbf{(0 . 3 5 3}-\boldsymbol{j 0 . 4 3}) \boldsymbol{V}_{\mathbf{1}}+\left(-\mathbf{0 . 1 5 3}+\boldsymbol{j 0 . 2 3)} \boldsymbol{V}_{\mathbf{2}}=\mathbf{6}---(\mathbf{1})\right.
\end{gathered}
$$

KCL at node-2

$$
\begin{gathered}
I_{3}+I_{4}=I_{5} \\
\frac{V_{1}-V_{2}}{2+j 3}+\left(-\frac{V_{2}}{6}\right)=\left(V_{2}-35.36 \angle 45^{0}\right) / 4
\end{gathered}
$$

$0.153 V_{1}-j 0.23 V_{1}-0.153 V_{2}+j 0.23 V_{2}-0.166 \mathrm{~V}_{2}=0.25 \mathrm{~V}_{2}-8.84 \angle 45$
$0.153 V_{1}-j 0.23 V_{1}-0.153 V_{2}+j 0.23 V_{2}-0.166 \mathrm{~V}_{2}-0.25 \mathrm{~V}_{2}=8.84 \angle 45$
$(0.153-j 0.23) V_{1}+(-0.569+j 0.23) V_{2}=8.84 \angle 45---(2)$
Solve (1) and (2) to find V_{1} and V_{2}
Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Problems

4. Find I_{X} using node analysis.

Transform to frequency domain.

$$
\begin{aligned}
20 \cos 4 t & \Longrightarrow \\
1 \mathrm{H} & \Longrightarrow \quad 20 / 0^{\circ}, \quad \omega=4 \mathrm{rad} / \mathrm{s} \\
0.5 \mathrm{H} & \Longrightarrow j \omega L=j 4 \\
0.1 \mathrm{~F} & \Longrightarrow j \omega L=j 2 \\
& \Longrightarrow \quad \frac{1}{j \omega C}=-j 2.5
\end{aligned}
$$

Applying KCL at node 1 ,

$$
\frac{20-\mathrm{v}_{1}}{10}=\frac{\mathrm{v}_{1}}{-j 2.5}+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{j 4}
$$

or

$$
(1+j 1.5) \mathrm{V}_{1}+j 2.5 \mathrm{v}_{2}=20
$$

At node 2,

$$
2 \mathrm{I}_{x}+\frac{\mathrm{V}_{1}-\mathrm{V}_{2}}{j 4}=\frac{\mathrm{V}_{2}}{j 2}
$$

But $\mathrm{I}_{x}=\mathrm{V}_{1} /-\boldsymbol{j 2 . 5}$. Substituting this gives

$$
\frac{2 \mathrm{~V}_{1}}{-j 2.5}+\frac{\mathbf{v}_{\mathbf{1}}-\mathrm{V}_{2}}{j 4}=\frac{\mathbf{v}_{2}}{j 2}
$$

By simplifying, we get

$$
11 v_{1}+15 v_{2}=0
$$

Problems

$$
\left[\begin{array}{cc}
1+j 1.5 & j 2.5 \\
11 & 15
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2}
\end{array}\right]=\left[\begin{array}{c}
20 \\
0
\end{array}\right]
$$

We obtain the determinants as

$$
\begin{gathered}
\Delta=\left|\begin{array}{cc}
1+j 1.5 & j 2.5 \\
11 & 15
\end{array}\right|=15-j 5 \\
\Delta_{1}=\left|\begin{array}{cc}
20 & j 2.5 \\
0 & 15
\end{array}\right|=300, \quad \Delta_{2}=\left|\begin{array}{cc}
1+j 1.5 & 20 \\
11 & 0
\end{array}\right|=-220 \\
\mathrm{v}_{1}=\frac{\Delta_{1}}{\Delta}=\frac{300}{15-j 5}=18.97 \angle 18.43^{\circ} \mathrm{V} \\
\mathrm{v}_{2}=\frac{\Delta_{2}}{\Delta}=\frac{-220}{15-j 5}=13.91 \angle 198.3^{\circ} \mathrm{V}
\end{gathered}
$$

The current I_{x} is given by

$$
\mathrm{I}_{x}=\frac{\mathrm{V}_{1}}{-j 2.5}=\frac{18.97 / 18.43^{\circ}}{2.5 \angle-90^{\circ}}=7.59 / 108.4^{\circ} \mathrm{A}
$$

Transforming this to the time domain,

$$
i_{x}=7.59 \cos \left(4 t+108.4^{\circ}\right) \mathrm{A}
$$

Practice problems

1. Find node voltages

2. Find node voltages and mesh currents for the electrical circuit shown in figure.

Practice problems

3. Find node voltages

$$
v_{1}=16.1 \cos \left(100 t+29.74^{\circ}\right) \mathrm{V}
$$

Network Theorems

Theorems:

Theorems are statements that can be demonstrated to be true by some accepted mathematical arguments and functions. Generally theorems are general principles. The process of showing a theorem to be correct is called a proof.

- Proved theorems can be used to analyze the given system, and theorems helps to analyze the complex systems easily.
- In electrical system most popular theorems are

1. Thevenin's Theorem
2. Norton's Theorem
3. Superposition Theorem
4. Reciprocity theorem
5. Millman's Theorem and
6. Maximum Power Transfer Theorem

Network Theory (19EC33)

Thevenin's Theorem

1. Thevenin's Theorem

Statement: Any active linear bilateral complex electrical network between open circuited load terminals can be replaced by a single practical voltage source between the same open circuited load terminals.
A practical voltage source is a series combination of ideal voltages source and a resistor (DC circuit)/Impedance(AC Circuits).

The voltage source being equal to the voltage measured between the open circuited load terminals, denoted as V_{TH} or V_{OC} and Resistor/Impedance being equal to the equivalent Resistance / Impedance measured between open circuited load terminals by replacing all independent sources by their internal impedances, denoted as R_{TH} or Z_{TH}.

Internal Impedance of an ideal voltage sources is zero, Hence replace it by short circuit.
Internal Impedance of an ideal current sources is infinity , hence replace it by open circuit.

Thevenin's Theorem

Procedure to obtain Thevenin's equivalent circuit.

Step-1: Identify the load element, remove the load element and name the load terminals.
Step-2: Find the open circuit voltage using any network analysis technique.
Step-3: Find the equivalent resistance/Impedance between the open circuited terminals by replacing all independent sources by their internal impedance.

Step-4: Replace the given circuit between the open circuited load terminals by the Thevenin's equivalent circuit.
Step-5: Connect the load element between the load terminals and find the required load quantity using current division or voltage division formula.

NOTE: For the circuits with dependent sources, find $\mathbf{R}_{T H}$ using the ratio $=\mathbf{V}_{\mathbf{O C}} / I_{\text {SC }}$

Thevenin's Theorem-Examples
 Example:

1. Obtain the Thevenin's equivalent circuit between the terminals A and B.

Step-2. To find $V_{T H}$

$$
\begin{gathered}
V_{A B}=V_{O C}=V_{T H}=V_{10}+V_{20} \\
V_{T H}=10\left(I_{2}\right)+20\left(I_{1}\right)---(1)
\end{gathered}
$$

Apply KVL at mesh-1
A

$$
5 I_{1}+20 I_{1}=20
$$

20 V

$$
25 I_{1}=20
$$

$$
I_{1}=0.8 A
$$

At mesh-2

$$
I_{2}=1.5 \mathrm{~A}
$$

$$
V_{T H}=10(1.5)+20(0.8) \Rightarrow \mathbf{3 1} \text { Volts }
$$

Step-3: To find $\mathrm{R}_{\text {TH }}$

$$
\begin{gathered}
R_{T H}=R_{A B}=R_{e q}=20 \| 5+10 \\
R_{T H}=\mathbf{1 4} \mathbf{~ O h m s}
\end{gathered}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Thevenin's Theorem-Examples

2. Obtain the Thevenin's equivalent circuit to find the current through R of 10 ohms

Remove the load element and name the load terminals.

$$
\begin{gathered}
V_{T H}=V_{5.2}+V_{10.9} \Rightarrow 5.2\left(I_{1}\right)+10.9\left(-I_{2}\right) \\
V_{T H}=V_{7.1}+V_{19.6} \Rightarrow 7.1\left(-I_{1}\right)+19.6\left(I_{2}\right) \\
V_{T H}=V_{5.2}-100+V_{19.6} \Rightarrow 5.2\left(I_{1}\right)-100+19.6\left(I_{2}\right) \\
V_{T H}=V_{7.1}+100+V_{10.9} \Rightarrow 7.1\left(-I_{1}\right)+100+10.9\left(-I_{2}\right) \\
\text { Apply KVL at mesh-1; 12.3I }=100 ; I_{1}=8.13 \mathrm{~A} \\
\text { Apply KVL at mesh-2; } 30.5 I_{2}=100 ; I_{2}=3.28 \mathrm{~A} . \\
\qquad \begin{array}{l}
\boldsymbol{T H}
\end{array}=\mathbf{6 . 6 3 V} \mathrm{V}
\end{gathered}
$$

Thevenin's Theorem-Examples

Re arranging the resistors

$$
\begin{aligned}
R_{T H}= & (5.2 \| 7.1)+(10.9 \| 19.6) \\
& R_{T H}=10 \text { Ohms }
\end{aligned}
$$

Thevenin's Equivalent circuit

$$
\text { Given } R=10 \text { Ohms }
$$

$$
I_{10}=\frac{V_{T H}}{R_{e q}+R} \Rightarrow 0.33 A
$$

Thevenin's Theorem-Examples

3. Obtain the Thevenin's equivalent circuit and find the current through RL of 20 Ohms

Norton's Theorem

1. Norton's Theorem

Statement: Any active linear complex bilateral electrical network between open circuited load terminals can be replaced by a single practical current source between the same open circuited load terminals.
A practical current source is a parallel combination of ideal current source and a resistor (DC circuit)/Impedance(AC Circuits).
The Current source being equal to the current measured through the short circuited load terminals, denoted as I_{N} or $I_{S C}$ and Resistor/Impedance being equal to the equivalent Resistance / Impedance measured between open circuited load terminals, denoted as R_{N} or Z_{N}

Norton's Theorem

Procedure to obtain Norton's equivalent circuit.
Step-1: Identify the load element, remove the load element, name the load terminals and short the load terminals.

Step-2: Find the short circuit current using any network analysis technique.
Step-3: Find the equivalent resistance/Impedance between the open circuited terminals by replacing all independent sources by their internal impedances. (NOTE: $\mathrm{R}_{T H}=\mathrm{R}_{\mathrm{N}}$)
Step-4: Replace the given circuit between the open circuited load terminals by the Norton's equivalent circuit.
Step-5: Connect the load element between the load terminals and find the required load quantity using current division or voltage division formula.

NOTE:

- For the circuits with dependent sources, find \mathbf{R}_{N} using the ratio $=\mathrm{V}_{\mathrm{OC}} / \mathrm{I}_{\mathrm{SC}} ; \mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{\mathrm{N}}$
- Thevenin's Theorem is the dual of Norton's Theorem
- Thevenin's equivalent circuit can be converted into Norton's Equivalent circuit and vice-versa using source transformation

Norton's Theorem

Example:

2. Obtain the Norton's equivalent circuit between the terminals \mathbf{A} and B.

To find I_{N}

$$
\begin{gathered}
\boldsymbol{I}_{\boldsymbol{N}}=\boldsymbol{I}_{\boldsymbol{A B}}=\boldsymbol{I}_{\boldsymbol{S C}}=\boldsymbol{I}_{\mathbf{3}} \\
25 \mathrm{I}_{1}-20 \mathrm{I}_{3}=20---(1) \\
-20 I_{1}-10 I_{2}+30 I_{3}=0---(2) \\
I_{2}=1.5 A--(3) \\
\boldsymbol{I}_{\mathbf{3}}=\mathbf{2 . 2 . \boldsymbol { A }} \\
\boldsymbol{I}_{\boldsymbol{N}}=\boldsymbol{I}_{\boldsymbol{S} \boldsymbol{C}}=\boldsymbol{I}_{\mathbf{3}}=\mathbf{2 . 2 A}
\end{gathered}
$$

To find $\mathbf{R}_{\mathbf{N}}$

$$
\mathrm{R}_{\mathrm{AB}}=\mathrm{R}_{\mathrm{TH}}=\mathrm{R}_{\mathrm{N}}=(5| | 20)+10
$$

$$
R_{N}=14 \Omega
$$

Norton's Theorem

3. Obtain the Thevenin's and Norton's equivalent circuit between the terminals A and B.

To find I_{N}

$$
\begin{gathered}
4 I_{1}-6 I_{x}+6\left(I_{1}-I_{2}\right)=20---(1) \\
4 I_{1}=20 ; I_{1}=5 A \\
-6 I_{1}+6 I_{2}=0---(2) \\
I_{1}=I_{2} \\
I_{x}=I_{1}-I_{2} \\
\text { From }(1), \boldsymbol{I}_{\mathbf{1}}=\boldsymbol{I}_{2}=\mathbf{5 A} \\
I_{\mathbf{s c}}=\boldsymbol{I}_{\boldsymbol{N}}=I_{\mathbf{2}}=\mathbf{5 A} . \\
\text { To find } \mathbf{R}_{\mathbf{N}} \\
\mathrm{R}_{\mathrm{N}}=\frac{V_{O C}}{I_{S C}} \\
\text { To find } \mathbf{V}_{\mathbf{O C}} \\
4 I-6 I_{x}+6 I-20=0 \\
I_{x}=I \\
\boldsymbol{I}=\mathbf{5 A} \\
\boldsymbol{V}_{\boldsymbol{O C}}=\mathbf{6} * \mathbf{5}=\mathbf{3 0 V} . \\
\boldsymbol{R}_{\boldsymbol{N}}=\frac{\mathbf{3 0}}{\mathbf{5}}=\mathbf{6} \mathbf{O h m s}
\end{gathered}
$$

Superposition Theorem

3. Superposition Theorem

Statement: Any active linear complex multisource electrical network, the voltage across or current through any given element is equal to the algebraic sum of individual voltages or currents, produced independently across or in that element by each source acting independently, with all the remaining sources are replaced by their respective internal impedances.

NOTE: Superposition theorem not applicable to find the power

$$
\begin{gathered}
P\left(I^{2} R\right) \neq P\left(I_{1}^{2} R\right)+P\left(I_{2}^{2} R\right) \\
P\left(I^{2} R\right)=P\left(\left(I_{1}+I_{2}\right)^{2} R\right)=P\left(I_{1}^{2} R+I_{2}^{2} R+2 I_{1} I_{2} R\right) \neq P\left(I_{1}^{2} R\right)+P\left(I_{2}^{2} R\right)
\end{gathered}
$$

Superposition Theorem

Procedure to apply superposition theorem.
Step-1: Identify the load element and load quantity (either current or voltage)
Step-2: Consider only one source and set remaining sources equal to zero (replaced by their internal impedance) (NOTE: Internal Impedance of the voltage source is zero, hence replaced by short circuit. Internal Impedance of the current source is infinity, hence replaced by open circuit.)
Step-3: Find the required quantity and denote that quantity as I' or V' (for other source I" or V" and so on.)
Step-4: Repeat the steps 2 and 3 for all the sources.
Step-5: Find the resultant(Total) output using the following relation.

$$
\begin{gathered}
I_{A B}=I_{A B}^{\prime}+I_{A B}^{\prime \prime}+\cdots . \\
\text { and } \\
V_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AB}}^{\prime}+\mathrm{V}_{\mathrm{AB}}^{\prime \prime}+\cdots .
\end{gathered}
$$

Superposition Theorem

Example:

4. Find the current through the branch $P Q$ using superposition theorem.

Case (1): active 4.2 V source and set 3.5 V to zero.

$$
\begin{gathered}
I_{P Q}^{\prime}=\frac{I_{T}\left(R_{2}\right)}{R_{1}+R_{2}} \\
I_{P Q}^{\prime}=(4.2) /(3+3 \| 2)\left(\frac{2}{3+2}\right) \\
I_{P Q}^{\prime}=0.4 \mathrm{~A}
\end{gathered}
$$

Case (2): active 3.5 V source and set 4.2 V to zero.

$$
I_{P Q}^{\prime \prime}=\frac{-I_{T}\left(R_{2}\right)}{\boldsymbol{R}_{\mathbf{1}}+R_{\mathbf{2}}}
$$

Cross Verification:

$$
\begin{gathered}
6 I_{1}-3 I_{2}=4.2---(1) \\
-3 I_{1}+5 I_{2}=3.5---(2) \\
I_{1}=1.5 A \\
I_{2}=1.6 A \\
I_{P Q}=I_{1}-I_{2} \Rightarrow-0.1 A .
\end{gathered}
$$

$$
\begin{gathered}
I_{P Q}^{\prime \prime}=-(3.5) /(2+3 \| 3) \frac{(3)}{3+3} \\
I_{P Q}^{\prime \prime}=-0.5 \mathrm{~A}
\end{gathered}
$$

Resultant current

$$
\mathrm{I}_{\mathrm{PQ}}=\mathrm{I}_{\mathrm{PQ}}^{\prime}+\mathrm{I}_{\mathrm{PQ}}^{\prime \prime}=(0.4-0.5) \Rightarrow-\mathbf{0 . 1} \mathbf{A} .
$$

Find the current through 2 Ohms resistor using superposition theorem and also verify the same.

$$
I_{2}-I_{1}=4---(1)
$$

KVL at supermesh

$$
\begin{gathered}
5+2 I_{2}-4 V_{3}+3 I_{1}=0---(3) \\
V_{3}=-3 I_{1}--(3) \\
5+2 I_{2}+12 I_{1}+3 I_{1}=0 \\
15 I_{1}+2 I_{2}=-5--(4)
\end{gathered}
$$

Solve (1) and (4) we get.

$$
I_{2}=3.23 \mathrm{~A} .
$$

From the circuit.,

$$
I=-I_{2}=-3.23 A
$$

Case(1): Activate 5V source and set 4A source to zero
Control variable, V_{3}

$$
V_{3}=3 I^{\prime}---(1)
$$

KVL equation

$$
\begin{gathered}
3 I^{\prime}+4 V_{3}+2 I^{\prime}-5=0 \\
3 I^{\prime}+4\left(3 I^{\prime}\right)+2 I^{\prime}-5=0 \\
17 I^{\prime}=5 \\
\boldsymbol{I}^{\prime}=\mathbf{0} .2941 \boldsymbol{A}
\end{gathered}
$$

Case(2): Activate 4A source and deactivate 5 V source.
Control variable is V_{3}

$$
V_{3}=3\left(-I_{1}\right) \Rightarrow-3 I_{1}---(2)
$$

4 A , source is common to mesh 1 and 2

$$
I_{2}-I_{1}=4---(3)
$$

Super mesh KVL equation

$$
\begin{gathered}
2 I_{2}-4 V_{3}+3 I_{1}=0 \\
2 I_{2}-4\left(-3 I_{1}\right)+3 I_{1}=0 \\
15 I_{1}+2 I_{2}=0-(4) \\
I_{1}=-0.47 A \\
I_{2}=3.53 A . \\
\boldsymbol{I}^{\prime \prime}=-I_{2}=-3.53 A .
\end{gathered}
$$

According to the superposition theorem, $\mathrm{I}=\mathrm{I}^{\prime}+\mathrm{I}^{\prime \prime}=>-3.23 \mathrm{~A}$

Reciprocity Theorem

4. Reciprocity Theorem

Statement: Any active linear single source electrical network, the ratio of response to excitation remains same even after interchanging their position.
If the response is voltage, excitation is current and vice-versa.

Procedure:

Step 1 - Firstly, select the branches between which reciprocity has to be established.
Step 2 - The current in the branch is obtained using any conventional network analysis method.
Step 3 - The voltage source is interchanged between the branch which is selected.
Step 4 - The current in the branch where the voltage source was existing earlier is calculated.
Step 5 - Now, it is seen that the current obtained in the previous connection, i.e., in step 2 and the current which is calculated when the source is interchanged, i.e., in step 4 are identical to each other.

Reciprocity Theorem

5. Verify the reciprocity theorem for the electrical circuit shown in figure by finding I_{2}.

$$
\begin{gathered}
I_{2}=I_{T} \frac{3}{3+3} \\
I_{2}=10 /(2+3 \| 3)\left(\frac{3}{3+3}\right) \\
I_{2}=1.43 A
\end{gathered}
$$

Apply Reciprocity theorem,

$$
\begin{gathered}
I_{1}=I_{T}\left(\frac{3}{2+3}\right) \\
I_{1}=10 /(3+2 \| 3)\left(\frac{3}{5}\right) \\
I_{1}=1.43 \mathrm{~A}
\end{gathered}
$$

If $I 1$ and $I 2$ are equal, then the given system is reciprocal in nature.

Reciprocity Theorem

6. Verify the reciprocity theorem for the electrical circuit shown in figure by finding V_{S}.

Current division formula

$$
\begin{gathered}
i_{2}=10 \angle 0^{0} \frac{(5)}{5+4-j 4} \\
V_{s}=I_{2} *(-j 4)
\end{gathered}
$$

Millman's Theorem

5. Millman's Theorem

Statement: Any active linear electrical network of two or more practical voltages sources are connected between the two terminals can be replaced by a single practical voltage source between the same two terminals.

Resultant practical voltage source consisting of an ideal voltage source of \mathbf{V} volts, connected in series with the single resistor/impedance of \mathbf{R} Ohms.
Where, $\boldsymbol{V}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{V}_{\mathbf{i}} \mathrm{G}_{\mathrm{i}}}{\mathrm{G}_{\mathrm{i}}}$ and $\boldsymbol{R}=\sum_{\mathrm{i}=\mathbf{1}}^{\mathrm{n}} \frac{\mathbf{1}}{\mathrm{G}_{\mathrm{i}}}$ ($G_{i}=\frac{1}{R_{i}}$ and n is the number of ptactical voltage sources)

Millman's Theorem-Example

7. Find the current through 2 Ohms resistor using Millman's Theorem

$$
V=\frac{V_{1} G_{1}+V_{2} G_{2}+V_{3} G_{3}}{G_{1}+G_{2}+G_{3}} ; R=\frac{1}{G_{!}+G_{2}+G_{3}}
$$

$$
V_{1}=50 \mathrm{~V}, V_{2}=-20 \mathrm{~V} \text { and } V_{3}=16 \mathrm{~V}
$$

$$
R_{1}=5 \Omega, R_{2} 20 \Omega \text { and } \mathrm{R}_{3}=4 \Omega
$$

$\therefore G_{1}=\frac{1}{R_{1}} \Rightarrow 0.2 S, G_{2}=\frac{1}{R_{2}} \Rightarrow 0.05 S$ and $G_{3}=\frac{1}{R_{3}} \Rightarrow 0.25 S$

$$
V=26 \text { Volts and } \mathrm{R}=2 \Omega
$$

Millman's Equivalent circuit

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

$$
\mathrm{V} 1=10, \mathrm{~V} 2=5 \mathrm{~V}, \mathrm{~V} 3=15 \mathrm{~V}, \mathrm{I} 1=2 \mathrm{~A}, \mathrm{I} 2=3 \mathrm{~A}, \mathrm{I} 3=4 \mathrm{~A}
$$

Maximum Power Transfer Theorem

6. Maximum Power Transfer Theorem

- As the name implies, it evaluates the condition(Resistance or Impedance) to be satisfied to transfer maximum power from source to the load.
- Defined under different cases, depending on the type of circuit and load.
- Case(1): DC network - Resistive Load - Variable Resistive Load
- Case(2): AC network - Resistive Load - Variable Resistive Load
- Case(3): AC Network - Complex Load - Variable Resistive and Fixed Reactance Load
- Case(4): AC Network - Complex Load - Fixed Resistive and Variable Reactance Load
- Case(5): AC Network - Complex Load - Both Resistive and Reactance are variable

Maximum Power Transfer Theorem

Case(1): DC network - Resistive Load - Variable Resistive Load

Consider a DC electrical circuit with variable resistive load shown in figure. Where, R is the network resistance, R_{L} is the load resistance and V is the applied voltage.

Power delivered to the load resistor is given by

$$
P=I_{L}^{2} R_{L} \text { Watts }---(1)
$$

From the circuit,

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{R}_{\mathrm{L}}}---(2) ; \therefore \mathrm{P}=\frac{\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}}}{\left(\mathrm{R}+\mathrm{R}_{\mathrm{L}}\right)^{2}}---(3)
$$

As per the maxima theorem, P is maximum when its derivative with respect to RL is equal to zero.

$$
\text { i. e. } \frac{\mathrm{dP}_{\max }}{\mathrm{dR}_{\mathrm{L}}}=0
$$

Differentiate equation (3) w.r.t RL and find RL

$$
\therefore \mathbf{R}_{\mathbf{L}}=\mathbf{R}
$$

Statement: In any DC electrical network with variable Resistive load, the maximum power will be transferred from source to the load if the load resistance is equal to the network resistance.

$$
\text { i. e., } \mathbf{R}_{\mathrm{L}}=\mathbf{R} \text {. }
$$

$$
\begin{gathered}
\mathrm{P}=\frac{\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}}}{\left(\mathrm{R}+\mathrm{R}_{\mathrm{L}}\right)^{2}} \\
\frac{d p}{d R_{L}}=\frac{\left(R+R_{L}\right)^{2} \cdot V^{2} \cdot 1 \cdot-V^{2} R_{L} \cdot 2\left(R+R_{L}\right) \cdot 1}{D r^{2}}=0 \\
\left(R+R_{L}\right)^{2} \cdot V^{2}-V^{2} R_{L} 2\left(R+R_{L}\right)=0 \\
\left(R+R_{L}\right)^{2}-2 R R_{L}-2 R_{L}^{2}=0 \\
R^{2}+R_{L}^{2}+2 R R_{L}-2 R R_{L}-2 R_{L}^{2}=0 \\
R^{2}-R_{L}^{2}=0 \\
R=R_{L}
\end{gathered}
$$

Maximum Power Transfer Theorem

Case(2): AC network - Resistive Load - Variable Resistive Load

Consider an AC electrical circuit with variable resistive load shown in figure. Where, $\mathrm{R}+\mathrm{jX}$ is the network Impedance, R_{L} is the load resistance and V is the applied voltage.

Power delivered to the load resistor is given by

$$
\mathrm{P}=\mathrm{I}_{\mathrm{L}}^{2} \mathrm{R}_{\mathrm{L}} \text { Watts }---(1)
$$

From the circuit,

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{j}+\mathrm{R}_{\mathrm{L}}} \Rightarrow \frac{V}{\sqrt{\left(R+R_{L}\right)^{2}+X^{2}}}---(2) ; \quad \therefore \mathrm{P}=\frac{\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}}}{\left(R+\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}^{2}}---(3)
$$

As per the maxima theorem, P is maximum when its derivative with respect to $R \mathrm{~L}$ is equal to zero.

$$
\text { i. e. } \frac{\mathrm{dP}_{\max }}{\mathrm{dR}_{\mathrm{L}}}=0
$$

Differentiate equation (3) w.r.t RL and find RL

$$
\therefore \mathbf{R}_{\mathrm{L}}=\sqrt{\mathbf{R}^{2}+X^{2}}
$$

Statement: In any AC electrical network with variable Resistive load, the maximum power will be transferred from source to the load if the load resistance is equal to the magnitude of the network

$$
\text { Impedance. } \quad \text { i.e., } \mathbf{R}_{\mathrm{L}}=\sqrt{R^{2}+X^{2}} .
$$

$$
\begin{gathered}
\mathrm{P}=\frac{\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}}}{\left(R+\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}^{2}} \\
\left(R+\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}^{2} \cdot \mathrm{~V}^{2} \cdot 1-\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}} \cdot 2\left(\mathrm{R}+\mathrm{R}_{\mathrm{L}}\right) \cdot 1 \cdot=0 \\
\left(R+R_{L}\right)^{2}+X^{2}-2 R R_{L}-2 R_{L}^{2}=0 \\
R^{2}+R_{L}^{2}+2 R R_{L}+\mathrm{X}^{2}-2 R R_{L}-2 R_{L}^{2}=0 \\
R^{2}-R_{L}^{2}+X^{2}=0 \\
R_{L}^{2}=R^{2}+X^{2} \\
R_{L}=\sqrt{R^{2}+X^{2}}
\end{gathered}
$$

Maximum Power Transfer Theorem

Case(3): AC network - Complex Load - Fixed Reactance and Variable Resistive Load

Consider an AC electrical circuit with variable resistive load shown in figure. Where, $\mathrm{R}+\mathrm{jX}$ is the network Impedance, R_{L} is the load resistance, X_{L} is the fixed load reactance and V is the applied voltage.

Power delivered to the load resistor is given by

$$
P=I_{L}^{2} R_{L} \text { Watts }---(1)
$$

From the circuit,

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{jX}+\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathrm{X}_{\mathrm{L}}} \Rightarrow \frac{V}{\sqrt{\left(R+R_{L}\right)^{2}+\left(X+X_{L}\right)^{2}}}---(2) ; \quad \therefore \mathrm{P}=\frac{\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}}}{\left(R+\mathrm{R}_{\mathrm{L}}\right)^{2}+\left(\mathrm{X}+\mathrm{X}_{\mathrm{L}}\right)^{2}}---(3)
$$

As per the maxima theorem, P is maximum when its derivative with respect to RL is equal to zero.

$$
\text { i. e. } \frac{\mathrm{dP}_{\max }}{\mathrm{dR}_{\mathrm{L}}}=0
$$

Differentiate equation (3) w.r.t RL and find RL

$$
\therefore \mathbf{R}_{\mathrm{L}}=\sqrt{R^{2}+\left(X+X_{L}\right)^{2}}
$$

Statement: In any AC electrical network with fixed reactance load and variable Resistive load, the maximum power will be transferred from source to the load if the load resistance is equal to the magnitude of the network

Impedance along with load reactance.

$$
\text { i.e., } \mathbf{R}_{\mathrm{L}}=\sqrt{R^{2}+\left(X+X_{L}\right)^{2}} \text {. }
$$

Maximum Power Transfer Theorem

Case(4): AC network - Complex Load - Fixed Resistive and Variable Reactance Load

Consider an AC electrical circuit with variable resistive load shown in figure. Where, $\mathrm{R}+\mathrm{jX}$ is the network Impedance, R_{L} is the load resistance, X_{L} is the fixed load reactance and V is the applied voltage.

Power delivered to the load resistor is given by

$$
P=I_{L}^{2} R_{L} \text { Watts }---(1)
$$

From the circuit,

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{jX}+\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathrm{X}_{\mathrm{L}}} \Rightarrow \frac{V}{\sqrt{\left(R+R_{L}\right)^{2}+\left(X+X_{L}\right)^{2}}}---(2) ; \quad \therefore \mathrm{P}=\frac{\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}}}{\left(R+\mathrm{R}_{\mathrm{L}}\right)^{2}+\left(\mathrm{X}+\mathrm{X}_{\mathrm{L}}\right)^{2}}---(3)
$$

As per the maxima theorem, P is maximum when its derivative with respect to RL is equal to zero.

$$
\text { i. e. } \frac{\mathrm{dP}_{\max }}{\mathrm{dX}_{\mathrm{L}}}=0
$$

Differentiate equation (3) w.r.t XL and find XL

$$
\therefore X_{L}=-X
$$

Statement: In any AC electrical network with fixed resistive load and variable reactance load, the maximum power will be transferred from source to the load if the load reactance is equal to the conjugate of the network reactance. i.e., $\boldsymbol{X}_{L}=-\boldsymbol{X}$.

Maximum Power Transfer Theorem

Case(5): AC network - Complex Load - Both Resistive Reactance are variable

Consider an AC electrical circuit with variable resistive load shown in figure. Where, $\mathrm{R}+\mathrm{jX}$ is the network Impedance, R_{L} is the load resistance, X_{L} is the load reactance and V is the applied voltage.

Power delivered to the load resistor is given by $P=I_{L}^{2} R_{L}$ Watts $---(1)$
From the circuit, $\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{jX}+\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathrm{X}_{\mathrm{L}}} \Rightarrow \frac{V}{\sqrt{\left(R+R_{L}\right)^{2}+\left(X+X_{L}\right)^{2}}}---(2) ; \therefore \mathrm{P}=\frac{\mathrm{V}^{2} \mathrm{R}_{\mathrm{L}}}{\left(R+\mathrm{R}_{\mathrm{L}}\right)^{2}+\left(\mathrm{X}+\mathrm{X}_{\mathrm{L}}\right)^{2}}---$ (3)
Case(i): Consider X_{L}
As per the maxima theorem, P is maximum when its derivative with respect to $R L$ is equal to zero.

$$
\text { i. e., } \frac{\mathrm{dP}_{\max }}{\mathrm{dX}_{\mathrm{L}}}=0
$$

Differentiate equation (3) w.r.t XL and find RL $\therefore \boldsymbol{X}_{L}=-\boldsymbol{X}$
Case(i): Consider R_{L}
As per the maxima theorem, P is maximum when its derivative with respect to RL is equal to zero.

$$
\text { i. e. } \frac{\mathrm{dP}_{\max }}{\mathrm{dR}_{\mathrm{L}}}=0
$$

Differentiate equation (3) w.r.t RL and find RL $:: \mathbf{R}_{\mathrm{L}}=\sqrt{\boldsymbol{R}^{2}+\left(\boldsymbol{X}+\boldsymbol{X}_{L}\right)^{2}} ; \boldsymbol{R}_{\boldsymbol{L}}=\boldsymbol{R}$
Statement: In any AC electrical network with variable resistive load and variable reactance load, the maximum power will be transferred from source to the load if the load Impedance is equal to the complex conjugate of the network Impedance.

$$
\text { i.e., } \boldsymbol{R}_{L}+\boldsymbol{j} X_{L}=\boldsymbol{R}-\boldsymbol{j} \boldsymbol{X} \text {. }
$$

Maximum Power Transfer Theorem

Procedure to solve problems on maximum power transfer theorem

1. Identify the load element, Remove the load element and name the load terminals as A and B.
2. Obtain the Thevenin's equivalent circuit between the terminals A and B.
3. Reconnect the load element between the terminals
4. Apply the maximum power transfer theorem and find the load element required to transfer maximum power.

Maximum Power Transfer Theorem-Examples

1. Find the value of R that will receive maximum power and determine the maximum power

Remove the load element and name the load terminals.

Obtain the Thevenin's equivalent circuit between the terminals a and b .
To find $V_{T H}$

$$
\begin{gathered}
V_{T H}=\mathrm{V}_{7.1}+\mathrm{V}_{19.6} \\
V_{T H}=7.1\left(-I_{1}\right)+19.6\left(I_{2}\right)
\end{gathered}
$$

KVL at Mesh-1 $12.3 I_{1}=100 ; \boldsymbol{I}_{\mathbf{1}}=\mathbf{8 . 1 3 A}$
KVL at Mesh-2 20.5I $I_{2}=100 ; I_{2}=\mathbf{3 . 2 7 8 6} A$

$$
V_{T H}=7.1\left(-I_{1}\right)+19.6\left(I_{2}\right) \Rightarrow 6.5375 \text { Volts }
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Maximum Power Transfer Theorem-Examples

Re arranging the resistors

$$
\begin{aligned}
R_{T H}= & (5.2 \| 7.1)+(10.9 \| 19.6) \\
& R_{T H}=10 \text { Ohms }
\end{aligned}
$$

Thevenin's Equivalent circuit

Apply MPT theorem As per the statement, $\mathrm{R}=\mathrm{Req}$ Therefore, $\mathrm{R}=10$ Ohms.
Maximum Power

$$
P_{\max }=\frac{\mathrm{V}_{\mathrm{TH}}^{2}}{4 R} \Rightarrow \text { 1.068Watts }
$$

Maximum Power Transfer Theorem-Examples

2. Find the value of $R L$ that will receive maximum power and determine the maximum power

$\therefore Z_{\text {eq }}=20+24=44 \Omega$
$\therefore R_{L}=44 \Omega$ for $P_{\max }$
To find $P_{\text {max }}$, find Thevenin's voltage $V_{T H}$.

Maximum Power Transfer Theorem-Examples

Applying KVL to the two loops,

$$
-60 \mathrm{I}_{1}-30 \mathrm{I}_{1}+60=0
$$

$$
\therefore \quad \mathrm{I}_{1}=0.6667 \mathrm{~A}
$$

$$
-40 \mathrm{I}_{2}-60 \mathrm{I}_{2}+100=0
$$

$$
\mathrm{I}_{2}=1 \mathrm{~A}
$$

$\therefore \quad$ Drop across $30 \Omega=30 \times I_{1}=20 \mathrm{~V}$
and drop across $60 \Omega=60 \times I_{2}=60 \mathrm{~V}$

Tracing path from A to B we get the voltages as shown in the Fig.

$$
\begin{aligned}
\therefore \mathrm{V}_{\mathrm{AB}} & =50+20-60=10 \mathrm{~V} \\
\therefore \mathrm{~V}_{\mathrm{TH}} & =10 \mathrm{~V} \\
\therefore \mathrm{P}_{\max } & =\frac{\left(\mathrm{V}_{\mathrm{TH}}\right)^{2}}{4 \mathrm{R}_{\mathrm{L}}} \\
& =\frac{(10)^{2}}{4 \times 44}=0.5681 \mathrm{~W}
\end{aligned}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Maximum Power Transfer Theorem-Examples

3. Find the load element and its value that will be connected between the terminals A and B for receive maximum power and determine the maximum power

As there is direct short across 20Ω, it becomes redundant.

$$
\begin{aligned}
Z_{\text {eq }} & =(100) \|(-j 100)=\frac{100 \times-j 100}{100-j 100}=\frac{10^{4} \angle-90^{\circ}}{141.421 \angle-45^{\circ}} \\
& =70.7106 \angle-45^{\circ}=50-j 50 \Omega \\
\therefore \quad Z_{\mathrm{L}} & =Z_{\text {eq }}^{*}=50+j 50 \Omega
\end{aligned}
$$

Maximum Power Transfer Theorem-Examples

To find $P_{\text {max }}$, find $V_{T H}$.

$$
\begin{aligned}
& & {[-100+j 100] \mathrm{I}_{2} } & =-100 \\
& \therefore & \mathrm{I}_{2} & =\frac{-100}{-100+j 100}=\frac{+100 \angle 180^{\circ}}{141.421 \angle 135^{\circ}}=+0.7071 \angle+45^{\circ} \mathrm{A} \\
& \therefore & \mathrm{~V}_{\mathrm{TH}} & =\mathrm{I}_{2} \times 100=+70.71 \angle+45^{\circ} \mathrm{V} \\
& \therefore & \mathrm{P}_{\max } & =\frac{\mid\left[\left.\mathrm{V}_{\mathrm{TH}} \mathrm{\|}\right|^{2}\right.}{4 \mathrm{R}_{\mathrm{L}}}=\frac{(70.71)^{2}}{4 \times 50}=25 \mathrm{~W}
\end{aligned}
$$

Resonance

Definition:

- A phenomenon in which applied voltage and resulting current are in phase.
- An A.C. circuit is said to be resonance if it exhibits unity power factor condition- Applied voltage is in phase with the resulting current.
- Two types
- Series Resonance
- Parallel Resonance
- Applications:

Communication - radio receiver has ability to select the desired frequency signal, transmitted by station.(Selection of required frequency components and rejecting the unwanted signals).

Series Resonance

In electrical system, the basic elements Resistor, Inductor and Capacitors are connected in series and the circuit is excited by an A.C. source which undergo resonance based on certain conditions is called series resonance.

Definition:

> Applied voltage is in phase with the resulting current
$>$ Power factor is unity

$>$ Net imaginary part is equal to zero.
$>$ Inductive reactance is equal to the capacitive reactance.
$>$ Net impedance is equal to only resistive
$>$ Resulting current is maximum and net impedance is minimum.

Realization:

$>$ Varying the frequency of the source with C and L are fixed - frequency tuning
$>$ Varying C with L and frequency are fixed - Capacitive tuning
$>$ Varying L with C and Frequency are fixed - Inductive tuning

Series Resonance

1. Frequency tuning

Varying the frequency to achieve, Inductive reactance and capacitive reactance. Hence net imaginary part get cancelled out and applied voltage is inphase with the resulting current.
Consider an RLC series electrical circuit.
Net Impedance, $\mathrm{Z}_{\mathrm{T}}=\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}} \sim \mathrm{X}_{\mathrm{C}}\right)---(1)$

$$
\begin{gathered}
\left|\mathrm{Z}_{\mathrm{T}}\right|=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}} \sim \mathrm{X}_{\mathrm{C}}\right)^{2}}---(2) \\
\mathrm{I}=\frac{\mathrm{V}_{S}}{\left|\mathrm{Z}_{\mathrm{T}}\right|}---(3)
\end{gathered}
$$

By varying the frequency, at some particular frequency

$$
X_{L}=X_{C}---(4)
$$

$\therefore I_{\text {max }}=\frac{\boldsymbol{V}}{\boldsymbol{R}}$ Amperes (Voltage is inphase with the current) -- (5)
Peak power delivered at the load is

$$
P_{P e a k}=\frac{V^{2}}{R} \text { Watts }---(6)
$$

Series Resonance

Important Parameters:

1. Resonant frequency:

The frequency at which inductive reactance is equal to the capacitive reactance is called resonant frequency.

$$
\text { i.e., } X_{L}=X_{C}
$$

We know that, $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$ and $\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}$

$$
\begin{gathered}
\therefore \omega L=\frac{1}{\omega C}---(7) \\
\omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \sec \text { or } \mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \text { Herts }--(8)
\end{gathered}
$$

where, ω_{O} is the resonant frequency in radians per second and f_{0} is the resonant frequency in Hertz.

2. Frequency Response:

The response of magnitude of current vs frequency is the frequency response.

Where, $\mathbf{f}_{\mathbf{1}}$ and $\mathbf{f}_{\mathbf{2}}$ are half power frequencies/Corner frequencies/cutoff frequencies. $\mathbf{f}_{\mathbf{1}}$-lower cut off frequency and $\mathbf{f}_{\mathbf{2}}$ upper cu off frequency,

Series Resonance

3. Bandwidth

The difference between the two half power frequencies is called Bandwidth.

$$
\text { i.e., B. W. }(\boldsymbol{\beta})=\mathbf{f}_{2}-\mathbf{f}_{\mathbf{1}} \text { or } \boldsymbol{\omega}_{2}-\boldsymbol{\omega}_{1}---(9)
$$

4. Quality factor

The ratio of resonant frequency to the bandwidth is called quality factor.
i.e., $Q=\frac{\omega_{O}}{\beta}---(10)$

Also defined as the ratio of the energy stored in the oscillating resonator to the energy dissipated per cycle.

Derivation of \mathbf{Q}.

$$
\begin{gathered}
Q=2 \pi \frac{\frac{1}{2} L I^{2}}{\frac{I^{2}}{2} R t} \\
\boldsymbol{Q}=\frac{\boldsymbol{\omega}_{\boldsymbol{o}} \boldsymbol{L}}{\boldsymbol{R}}---(\mathbf{1 2})
\end{gathered}
$$

Or

$$
\begin{gathered}
Q=2 \pi \frac{\frac{1}{2} C V^{2}}{\frac{I^{2}}{2} R t} \\
Q=2 \pi \frac{\frac{1}{2} C\left(\frac{I}{\omega C}\right)^{2}}{\frac{I^{2}}{2} R t} \\
\boldsymbol{Q}=\frac{\mathbf{1}}{\boldsymbol{\omega}_{\boldsymbol{o}} \mathbf{C R}}---(\mathbf{1 3})
\end{gathered}
$$

or

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

Network Theory (19EC33)

Series Resonance

- Sharpness of the response could be measured by Quality factor.
- If Q>10 (called as high Q circuit)
- If $\mathrm{Q} \leq 10$ (Called low Q circuit)
- Higher the Q, lower the Bandwidth and higher the selectivity.
- lower the Q , higher the bandwidth and higher the selectivity.

Series Resonance

Properties of Series Resonance:

2. Current Response curve

1. Voltage Response curve

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Series Resonance

3. Impedance Curve

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Series Resonance

4. Phase Curve

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Series Resonance

Derivation of Half power frequencies

Refer the frequency response of series RLC circuit shown in figure.
At resonance frequency $f_{r} Z=R$ and current is I_{m}
At half power frequencies f_{1} and f_{2} the current is $\frac{t_{m}}{\sqrt{2}}$

$$
\begin{aligned}
& Z=\sqrt{2} R \\
& Z=R+j X_{L}-J X_{C}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{2} R \\
& R^{2}+\left(X_{L}-X_{C}\right)^{2}=2 R^{2} \\
&\left(X_{L}-X_{C}\right)^{2}=R^{2} \\
& X_{L}-X_{C}=R
\end{aligned}
$$

At frequency ω_{1} the circuit impedance $X_{C}>X_{L}$

$$
\begin{aligned}
X_{C}-X_{L} & =R \\
\frac{1}{\omega_{1} C}-\omega_{1} L & =R \\
\frac{1-\omega_{1}^{2} L C}{\omega_{1} C} & =R \\
R \omega_{1} C-1+\omega_{1}^{2} L C & =0 \\
\omega_{1}^{2}+\frac{R}{L} \omega_{1}-\frac{1}{L C} & =0
\end{aligned}
$$

$$
\begin{gathered}
a=1, b=\frac{R}{L}, c=-\frac{1}{L C} \\
\omega_{1}=\frac{-\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}+\frac{4}{L C}}}{2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
\end{gathered}
$$

Frequency is always positive

$$
\omega_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

In terms of frequency f_{1}

$$
f_{1}=\frac{1}{2 \pi}\left[-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right]
$$

Series Resonance

At frequency ω_{2} the circuit impedance $X_{L}>X_{C}$

$$
\begin{aligned}
& X_{L}-X_{C}=R \\
& \omega_{2} L-\frac{1}{\omega_{2} C}-=R \\
& \frac{\omega_{2}^{2} L C-1}{\omega_{2} C}=R \\
& \omega_{2}^{2} L C-R \omega_{2} C-1=0 \\
& \omega_{2}^{2}-\frac{R}{L} \omega_{2}-\frac{1}{L C}=0 \\
& a=1, \quad b=-\frac{R}{L}, \quad c=-\frac{1}{L C} \\
& \omega_{2}=\frac{\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}+\frac{4}{L C}}}{2}=\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
\end{aligned}
$$

Frequency is always positive

$$
\omega_{2}=\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

In terms of frequency f_{2}

$$
f_{2}=\frac{1}{2 \pi}\left[\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right]
$$

Series Resonance

- Relation between resonant frequency and half power frequencies.
- Show that the resonant frequency is the geometrical mean of half power frequencies.

We know that at half power frequencies,

$$
\begin{aligned}
& \omega_{2} \mathrm{~L}-\frac{1}{\omega_{2} \mathrm{C}}=+\mathrm{R} \\
& \omega_{1} \mathrm{~L}-\frac{1}{\omega_{1} \mathrm{C}}=-\mathrm{R}
\end{aligned}
$$

$$
\therefore
$$

$$
\omega_{1} \cdot \omega_{2}=\frac{1}{\mathrm{LC}}
$$

Adding the above two equations

$$
\text { But from condition of resonance, } \quad \omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}
$$

$$
\begin{array}{ll}
\therefore & \left(\omega_{2}+\omega_{1}\right) \mathrm{L}-\left(\frac{1}{\omega_{2}}+\frac{1}{\omega_{1}}\right) \frac{1}{\mathrm{C}}=0 \\
\therefore & \left(\omega_{2}+\omega_{1}\right) \mathrm{L}-\left(\frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}}\right) \frac{1}{\mathrm{C}}=0 \\
\therefore & \left(\omega_{1}+\omega_{2}\right) \mathrm{L}=\left(\frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}}\right) \frac{1}{\mathrm{C}}
\end{array}
$$

$$
\therefore \quad \omega_{1} \cdot \omega_{2}=\omega_{0}^{2}
$$

$$
\text { i.e. } \quad f_{1} \cdot f_{2}=f_{0}^{2}
$$

$$
f_{0}=\sqrt{f_{1} \cdot f_{2}}
$$

Series Resonance

Derivation of Half power frequencies

Refer the frequency response of series RLC circuit shown in figure.
At resonance frequency $f_{r} Z=R$ and current is I_{m}
At half power frequencies f_{1} and f_{2} the current is $\frac{I_{m}}{\sqrt{2}}$

$$
\begin{aligned}
& Z=\sqrt{2} R \\
& Z=R+j X_{L}-J X_{C}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{2} R \\
& R^{2}+\left(X_{L}-X_{C}\right)^{2}=2 R^{2} \\
&\left(X_{L}-X_{C}\right)^{2}=R^{2} \\
& X_{L}-X_{C}=R
\end{aligned}
$$

At frequency ω_{1} the circuit impedance $X_{C}>X_{L}$

$$
\begin{aligned}
X_{C}-X_{L} & =R \\
\frac{1}{\omega_{1} C}-\omega_{1} L & =R \\
\frac{1-\omega_{1}^{2} L C}{\omega_{1} C} & =R \\
R \omega_{1} C-1+\omega_{1}^{2} L C & =0 \\
\omega_{1}^{2}+\frac{R}{L} \omega_{1}-\frac{1}{L C} & =0
\end{aligned}
$$

$\omega_{1}=\frac{-\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}+\frac{4}{L C}}}{2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}$
Frequency is always positive

$$
\omega_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

In terms of frequency f_{1}

$$
f_{1}=\frac{1}{2 \pi}\left[-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right]
$$

Series Resonance

At frequency ω_{2} the circuit impedance $X_{L}>X_{C}$

$$
\begin{aligned}
& X_{L}-X_{C}=R \\
& \omega_{2} L-\frac{1}{\omega_{2} C}-=R \\
& \frac{\omega_{2}^{2} L C-1}{\omega_{2} C}=R \\
& \omega_{2}^{2} L C-R \omega_{2} C-1=0 \\
& \omega_{2}^{2}-\frac{R}{L} \omega_{2}-\frac{1}{L C}=0 \\
& a=1, \quad b=-\frac{R}{L}, \quad c=-\frac{1}{L C} \\
& \omega_{2}=\frac{\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}+\frac{4}{L C}}}{2}=\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
\end{aligned}
$$

Frequency is always positive

$$
\omega_{2}=\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

In terms of frequency f_{2}

$$
f_{2}=\frac{1}{2 \pi}\left[\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right]
$$

Series Resonance

- Relation between resonant frequency and half power frequencies.
- Show that the resonant frequency is the geometrical mean of half power frequencies.

We know that at half power frequencies,

$$
\begin{aligned}
& \omega_{2} \mathrm{~L}-\frac{1}{\omega_{2} \mathrm{C}}=+\mathrm{R} \\
& \omega_{1} \mathrm{~L}-\frac{1}{\omega_{1} \mathrm{C}}=-\mathrm{R}
\end{aligned}
$$

$$
\therefore
$$

$$
\omega_{1} \cdot \omega_{2}=\frac{1}{\mathrm{LC}}
$$

Adding the above two equations

$$
\text { But from condition of resonance, } \quad \omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}
$$

$$
\begin{array}{ll}
\therefore & \left(\omega_{2}+\omega_{1}\right) \mathrm{L}-\left(\frac{1}{\omega_{2}}+\frac{1}{\omega_{1}}\right) \frac{1}{\mathrm{C}}=0 \\
\therefore & \left(\omega_{2}+\omega_{1}\right) \mathrm{L}-\left(\frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}}\right) \frac{1}{\mathrm{C}}=0 \\
\therefore & \left(\omega_{1}+\omega_{2}\right) \mathrm{L}=\left(\frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}}\right) \frac{1}{\mathrm{C}}
\end{array}
$$

$$
\therefore \quad \omega_{1} \cdot \omega_{2}=\omega_{0}^{2}
$$

$$
\text { i.e. } \quad f_{1} \cdot f_{2}=f_{0}^{2}
$$

$$
f_{0}=\sqrt{f_{1} \cdot f_{2}}
$$

Series Resonance

- Derivation of Bandwidth

We know that at half power frequencies,

$$
\begin{aligned}
& \omega_{2} \mathrm{~L}-\frac{1}{\omega_{2} \mathrm{C}}=+\mathrm{R} \\
& \omega_{1} \mathrm{~L}-\frac{1}{\omega_{1} \mathrm{C}}=-\mathrm{R}
\end{aligned}
$$

Subtracting the above two equations

$$
\begin{array}{ll}
\therefore & \left(\omega_{2}-\omega_{1}\right) \mathrm{L}+\left(\frac{1}{\omega_{1}}-\frac{1}{\omega_{2}}\right) \frac{1}{\mathrm{C}}=2 \mathrm{R} \\
\therefore & \left(\omega_{2}-\omega_{1}\right)+\left(\frac{\omega_{2}-\omega_{1}}{\omega_{1} \omega_{2}}\right) \frac{1}{\mathrm{LC}}=\frac{2 R}{\mathrm{~L}}
\end{array}
$$

We know that

$$
\omega_{1} \omega_{2}=\frac{1}{\mathrm{LC}}
$$

$$
\begin{aligned}
\therefore & \left(\omega_{2}-\omega_{1}\right)+\left(\omega_{2}-\omega_{1}\right) & =\frac{2 R}{L} \\
\therefore & \left(\omega_{2}-\omega_{1}\right) & =\frac{R}{L} \\
& \text { i.e. }\left(f_{2}-f_{1}\right) & =\frac{R}{2 \pi L}
\end{aligned}
$$

$$
\therefore
$$

Series Resonance

- Derivation of frequencies at which maximum voltage across the L and C.

Variation of $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{C}}$ and V_{L} with frequency is as shown in Fig.

it is clear that, voltage across C and voltage across L is not maximum at resonant frequency. At resonant frequency f_{0}, the voltages V_{C} and V_{L} are equal in magnitude but opposite in phase. The voltage V_{c} is maximum at frequency f_{c} which is less than f_{0} and the voltage V_{L} is maximum at frequency f_{L} which is greater than f_{0}.

Series Resonance

Consider that voltage across capacitor is V_{C} and it is given by,

$$
\begin{align*}
& V_{c}=I\left(\frac{1}{\omega C}\right) \quad \text { but } I=\frac{v}{Z} \\
\therefore \quad & V_{c}=\frac{V}{\omega C \sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}} \tag{5}
\end{align*}
$$

To find frequency at which V_{c} is maximum, we have to differentiate V_{c} with respect to ω and equate it to zero. But first removing radical sign by squaring expression. Then equating $\frac{d V_{C}^{2}}{d \omega}=0$; since when V_{C}^{2} is maximum, V_{C} is maximum. By squaring equation (5), we have,

$$
\begin{aligned}
& v_{C}^{2}
\end{aligned}=\frac{v^{2}}{\omega^{2} C^{2}\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]}
$$

Series Resonance

$\therefore \quad V_{C}^{2}=\frac{v^{2}}{\omega^{2} R^{2} C^{2}+\left(\omega^{2} L C-1\right)^{2}}$
Now, differentiating V_{C}^{2} with respect to ω and equating to zero, we have,

$$
\frac{d V_{C}^{2}}{d \omega}=\frac{V^{2}\left[2 \omega R^{2} C^{2}+2\left(\omega^{2} L C-1\right)(2 \omega L C)\right]}{\left[\omega^{2} R^{2} C^{2}+\left(\omega^{2} L C-1\right)^{2}\right]^{2}}=0
$$

\therefore

$$
\begin{aligned}
\omega^{2} & =\frac{1}{L C}-\frac{R^{2}}{2 L^{2}} \\
\omega & =\sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{2 \mathrm{~L}^{2}}} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Therefore, the frequency f_{c} at which capacitor voltage V_{c} is maximum, is given by,

$$
V^{2}\left[2 \omega R^{2} C^{2}+2\left(\omega^{2} L C-1\right)(2 \omega L C)\right]=0
$$

But V is input voltage which can not be zero.

$$
\begin{equation*}
f_{C}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{2 L^{2}}} \tag{6}
\end{equation*}
$$

$$
\begin{align*}
\therefore \quad 2 \omega \mathrm{R}^{2} \mathrm{C}^{2}+2(2 \omega \mathrm{LC})\left(\omega^{2} \mathrm{LC}-1\right) & =0 \\
2 \omega \mathrm{R}^{2} \mathrm{C}^{2}+4 \omega^{3} \mathrm{~L}^{2} \mathrm{C}^{2}-4 \omega \mathrm{LC} & =0 \\
4 \omega^{3} \mathrm{~L}^{2} \mathrm{C}^{2} & =4 \omega \mathrm{LC}-2 \omega \mathrm{R}^{2} \mathrm{C}^{2} \tag{7}\\
\therefore \quad \omega^{2} & =\frac{4 \omega \mathrm{LC}}{4 \omega \mathrm{~L}^{2} \mathrm{C}^{2}}-\frac{2 \omega \mathrm{R}^{2} \mathrm{C}^{2}}{4 \omega \mathrm{~L}^{2} \mathrm{C}^{2}}
\end{align*}
$$

From equation (6),

Series Resonance

Similarly let us calculate the frequency at which the voltage across the inductance is at its maximum.

The voltage across inductor is V_{L} and is given by,

$$
\begin{align*}
& V_{L}=I \cdot(\omega L) \quad \text { but } I=\frac{V}{Z} \\
& V_{L}=\frac{V(\omega L)}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}} \tag{8}
\end{align*}
$$

$\therefore \quad V_{L}=\frac{V(\omega \mathrm{~L})}{\sqrt{R^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}}}$
Squaring equation (8),

$$
\begin{array}{ll}
& v_{L}^{2}=\frac{V^{2} \omega^{2} L^{2}}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \\
\therefore & v_{L}^{2}=\frac{V^{2} \omega^{2} L^{2}}{\frac{R^{2} C^{2} \omega^{2}+\left(\omega^{2} L C-1\right)^{2}}{\omega^{2} C^{2}}} \\
\therefore & v_{L}^{2}=\frac{v^{2} \cdot \omega^{4} L^{2} C^{2}}{\omega^{2} R^{2} C^{2}+\left(\omega^{2} L C-1\right)^{2}}
\end{array}
$$

By differentiating V_{L}^{2} with respect to ω and equating only numerator term to zero, we have,

$$
\begin{array}{rlrl}
& & 2 \omega^{2} L C-\omega^{2} R^{2} C^{2}-2 & =0 \\
\therefore & \omega^{2}\left(2 L C-R^{2} C^{2}\right) & =2 \\
\therefore & \omega^{2} & =\frac{2}{2 L C-R^{2} C^{2}} \\
\therefore & \omega^{2} & =\frac{1}{L C-\frac{R^{2} C^{2}}{2}} \\
\therefore & \omega & =\frac{1}{\sqrt{L C-\frac{R^{2} C^{2}}{2}}} \mathrm{rad} / \mathrm{sec}
\end{array}
$$

Therefore, the frequency f_{L} at which inductor voltage V_{L} is maximum is given by,
$\therefore \quad f_{L}=\frac{1}{2 \pi \sqrt{L C-\frac{R^{2} C^{2}}{2}}}$

Series Resonance

Resonance by varying circuit inductance

Consider a series RLC circuit as shown in Figure is become resonant by varying inductance of the circuit.

Figure: Resonance by varying inductance Let L_{1} is the inductance at ω

$$
\begin{aligned}
X_{C}-X_{L} & =R \\
\frac{1}{\omega C}-\omega L_{1} & =R \\
L_{1} & =\frac{1}{\omega^{2} C}-\frac{R}{\omega}
\end{aligned}
$$

Let L_{2} is the inductance at ω

$$
\begin{aligned}
X_{L}-X_{C} & =R \\
\omega L_{2}-\frac{1}{\omega C} & =R \\
L_{2} & =\frac{1}{\omega^{2} C}+\frac{R}{\omega}
\end{aligned}
$$

Resonance by varying circuit capacitance

Consider a series RLC circuit as shown in Figure is become resonant by varying capacitance of the circuit.

Figure: Resonance by varying capacitance
Let C_{1} is the capacitance at ω_{1}

$$
\begin{aligned}
X_{C}-X_{L} & =R \Rightarrow \frac{1}{\omega_{1} C_{1}}-\omega_{1} L=R \\
\frac{1}{\omega_{1} C_{1}} & =R+\omega_{1} L \\
C_{1} & =\frac{1}{\omega_{1}^{2} L+\omega_{1} R}
\end{aligned}
$$

Let C_{2} is the capacitance at ω_{2}

$$
\begin{aligned}
X_{L}-X_{C} & =R \Rightarrow \omega_{2} L-\frac{1}{\omega_{2} C_{2}}=R \\
\frac{1}{\omega_{2} C_{2}}=\omega_{2} L-R & \\
C_{2} & =\frac{1}{\omega_{2}^{2} L-\omega_{2} R}
\end{aligned}
$$

Series Resonance

Following are the important properties of the series resonant circuit.

1) Under resonance, applied a.c. voltage and resulting a.c. current are in phase.
2) Under resonance, the series resonance circuit shows unity power factor condition.
3) Under resonance, the total reactance of the circuit becomes zero. The impedance of the circuit becomes purely resistive, thus the voltage and current are in phase.
4) The impedance under resonance is of minimum value as compared to the impedance at any frequency other than the resonant frequency.
5) Under resonance, the current in the circuit is of maximum value (as impedance is minimum) and hence power in the circuit is maximum under resonance.
6) Under resonance only, the series resonant circuit acts as voltage amplifier with the quality factor of the circuit i.e. Q_{0} acting as amplification or the magnification factor.
7) Under resonance, energy stored by L and C is of equal value, hence quality factor of the circuit is nothing but the quality factor of L and C at resonating frequency.
8) The quality factor of the circuit decides selectivity of the circuit. Its required value must be large enough. It decides how much the resonant circuit is selective.
9) The impedance under resonance is capacitive in nature while above resonance it is inductive in nature. In general, the series resonant circuit is used when high power output is required at a perticular frequency and impedance requirement is lower. Basically in series resonant circuit under resonance impedance is minimum (ideally zero), hence it is used in m-derived filters (to be discussed latter) to increase attenuation to infinity suddenly.

Series Resonance- Problems

1. Determine the resonant frequency for the circuit shown in figure. Also find the current at resonance and the voltage across each element and the impedance at resonance.

Solution:

Given data:
$\mathrm{R}=20 \mathrm{Ohms}, \mathrm{L}=1 \mathrm{mH}$ and $\mathrm{C}=20 \mathrm{uF}, \mathrm{Vs}=50 \mathrm{~V}$. To find:

$$
V_{s}=50 \mathrm{~V}
$$

$f_{o}, I_{\text {max }}, V_{R}, V_{L}, V_{C}, Z_{\text {resonance }}$

$$
f_{o}=\frac{1}{2 \pi \sqrt{L C}}--(1) ; \boldsymbol{f}_{\boldsymbol{o}}=\mathbf{1 . 1 2 5 \mathrm { KHz } .} \quad \begin{aligned}
& V_{R}=I_{\max } R \Rightarrow 50 \mathrm{~V} \\
& \operatorname{Vma}_{x x} X_{L} \xrightarrow{\Rightarrow} 2.5 \times 2 \times 3.14 \times 1.125 \times 10^{3} \times 1 \times 10^{-3} \\
& \boldsymbol{V}_{\boldsymbol{L}}=\mathbf{1 7 . 6 6 ~ V o l t s}
\end{aligned}
$$

$$
Z_{T}=R=20 \text { Ohms; } I_{\max }=\frac{\boldsymbol{V}}{\boldsymbol{R}}=\mathbf{2 . 5 A .} \quad V_{C}=\operatorname{Ima}_{x x}\left(-X_{C}\right) \Rightarrow \frac{2.5}{2 \times 3.14 \times 1.125 \times 10^{3} \times 20 \times 10^{-6}}
$$

$$
V_{C}=-17.66 \mathrm{~V}
$$

Series Resonance- Problems

2. A series RLC circuit has a capacitance of 0.5 microfarads and a resistance of 10 ohms. Find the value of the inductance that will produce a resonant frequency of 5000 Hz . Also calculate the maximum energy stored in the inductor at resonance. Assume the supply voltage to be 220 V .

Given data:

$\mathrm{R}=10 \mathrm{Ohms}, \mathrm{C}=0.5 \mathrm{uF}, \mathrm{f}_{\mathrm{o}}=5 \mathrm{KHz}, \mathrm{Vs}=220 \mathrm{~V}$.

To find:

$\mathrm{L}, \mathrm{E}_{\text {max }}$

Solution:

NOTE: Instatanteneous maximum energy

$$
\begin{aligned}
& f_{o}=\frac{1}{2 x 3.14 \sqrt{L C}} \Rightarrow 5000=\frac{1}{2 \times 3.14 \sqrt{L x 0.5 \times 10^{-6}}}=> \\
& \mathrm{L}=2.0285 \mathrm{mH} \\
& E_{\max }=\frac{1}{2} L I_{\max }^{2} \\
& E_{\max }=0.49 \text { Joules. }
\end{aligned}
$$

Series Resonance- Problems

3. A series RLC circuit with $\mathrm{R}=20 \mathrm{Ohms}$ and $\mathrm{L}=1 \mathrm{H}$ results in a leading phase angle of 40° at a frequency of 50 Hz . At what frequency will the circuit be resonant?

Given data:

$\mathrm{R}=20 \mathrm{Ohms}, \mathrm{L}=1 \mathrm{H}, \varphi=40^{\circ}, \mathrm{f}=5 \mathrm{OHz}$

To find:

C, f_{o}

Solution:

$$
Z_{T}=R+j\left(X_{C} \sim X_{L}\right)
$$

Leading phase angle(I leads V)- Capacitor: XC>XL

NOTE: Lagging phase angle (V leads I/ I lags V)-Inductor: XL>XC

$$
\varphi=\tan ^{-1}\left(\left(X_{C}-X_{L}\right) / R\right)
$$

$\tan \varphi=\frac{X_{C}-X_{L}}{R} \Rightarrow 0.839 ; X_{C}=\frac{1}{2 \times 3.14 \times 50 \times C} ; X_{L}=2 \times 3.14 \times 50 \times 1$
$\boldsymbol{C}=\mathbf{9 . 6 1 8} \mathbf{u F}, \boldsymbol{f}_{\boldsymbol{o}}=51.32 \mathrm{~Hz}$.

Series Resonance- Problems

4. A 40 Ohms resistor is in series with a coil, a capacitor and a 200 V variable frequency supply as shown in figure. At a frequency of 250 Hz , a maximum current of o.8A flows through the circuit and voltage across capacitor is 400 V . Determine
a) The Capacitance of the capacitor. And
b) The resistance of the coil

NOTE:

Coil=series combination of L and R (coil resistance)

Given data:

$\mathrm{R}=40 \mathrm{Ohms}, \mathrm{Vs}=200 \mathrm{~V}, \mathrm{Imax}=0.8 \mathrm{~A}, \mathrm{fo}=250 \mathrm{~Hz}, \mathrm{VC}=400 \mathrm{~V}$
To find:
C, L, R(Coil resistance)

Series Resonance- Problems

Given data:

$\mathrm{R}=40 \mathrm{Ohms}, \mathrm{Vs}=200 \mathrm{~V}, \operatorname{Imax}=0.8 \mathrm{~A}, \mathrm{fo}=250 \mathrm{~Hz}, \mathrm{VC}=400 \mathrm{~V}$
To find:
C, L, R(Coil resistance)

Solution:

$$
V_{C}=\operatorname{Imax} x X_{C}
$$

$400 V=0.8 x \frac{1}{2 \times 3.14 x f_{o} x C} ; \boldsymbol{C}=\mathbf{1} .27 \boldsymbol{u F}$

At resonance $X_{C}=X_{L}$
$\frac{1}{2 \pi f_{o} C}=2 \pi f_{o} L ; \mathbf{L}=\mathbf{0 . 3 1 8} \mathbf{H}$
At resonance $Z_{T}=40+\mathrm{R}$
$\operatorname{Imax}=\mathrm{V} / \mathrm{Z}_{\mathrm{T}}$;

$$
0.8=\frac{200}{40+R} ; \boldsymbol{R}=\mathbf{2 1 0} \text { Ohms. }
$$

Series Resonance- Problems

5. A series circuit has a resonance frequency of 150 KHz , a bandwidth of 60 KHz and $\mathrm{Q}=4$. Determine the cut off frequencies.

Given data:

$\mathrm{fo}=15 \mathrm{OKhz}, \mathrm{BW}=60 \mathrm{KHz}, \mathrm{Q}=4$.
To find:
f1, f2

NOTE:
Q>5
$f_{1}=f_{o}-\frac{B W}{2}$ and $f_{2}=f_{o}+\frac{B W}{2}$

Solution:

$$
\begin{gathered}
f_{o}=\sqrt{f_{1} f_{2}}---(1) \\
B W=f_{2}-f_{1}---(2) \\
f_{1}^{2}+60000 f_{1}-225 \times 10^{8}=0 \\
f_{1}=122.97 \mathrm{KHz} \text { and }-182.95 \mathrm{KHz} ; \mathrm{f}_{1}=\mathbf{1 2 2 . 9 7} \mathbf{K H z} . \\
f_{2}=B W+f_{1}=\mathbf{1 8 2 . 9 7 \mathrm { KHZ } .}
\end{gathered}
$$

Series Resonance- Problems

6. A Series RLC circuit has $\mathrm{R}=20 \mathrm{Ohms}, \mathrm{L}=0.02 \mathrm{H}$ and $\mathrm{C}=0.06$ micro Farads, Vs=200V. Find
a) Resonant frequency
b) Circuit impedance and current under resonant condition
c) Maximum value of the voltage across the L and f_{L}
d) Maximum vale of the voltage across the C and f_{C}.
$V_{C} \max =I . X_{C}=\frac{V}{z_{T}}\left(\frac{1}{2 \pi f_{C} C}\right) ; Z_{T}=\sqrt{R+\left(X_{C}-X_{L}\right)^{2} ;} X_{C}=\frac{1}{2 \pi f_{C} C}$ and $X_{L}=2 \pi f_{C} L$.

$$
V_{C \max }=2887.17 \text { Volts }
$$

$$
f_{c}=4592.88 \mathrm{~Hz}
$$

$V_{L} \max =I . X_{L}=\frac{V}{z_{T}}\left(2 \pi f_{L} L\right) ; Z_{T}=\sqrt{R+\left(X_{C}-X_{L}\right)^{2} ;} X_{C}=\frac{1}{2 \pi f_{L} C}$ and $X_{L}=2 \pi f_{L} L$

$$
V_{\text {Lmax }}=2887.16 \mathrm{Volts}
$$

$$
f_{L}=4595.17 \mathrm{~Hz}
$$

Parallel Resonance - Introduction

- Electrical elements, such as R, L and C and its combinations are connected in parallel called Parallel Circuits.
- Similar to the series circuit, parallel circuits also exhibits the resonance condition, when the circuit is excited by an AC source.
- In parallel circuit, the resonance is a phenomenon at which

1. Voltage and currents are inphase
2. Net susceptance is equal to zero (Imaginary part of admittance)
3. Power factor is unity
4. Maximum impedance and minimum current

NOTE:

> Current magnification circuit/ Anti-resonance circuit.
$>$ There is no general circuit - parallel connection of circuit elements- Infinite circuits.
> No general formula/expression for resonant frequency- differs from one circuit to another circuit.

Parallel Resonance - Introduction

Frequency response

Impedance response

Parallel Resonance - Introduction

- Bandwidth:

$$
f_{2}-f_{1}=\frac{f_{o}}{Q}
$$

- Relation between resonant frequency to the half power frequencies:

$$
f_{o}=\sqrt{f_{1} f_{2}}
$$

- Quality factor(Current Magnification factor):

$$
Q=\frac{R}{\omega_{o} L}=\omega_{o} C R=\frac{1}{R} \sqrt{\frac{C}{L}}
$$

Parallel Resonance - Introduction

- Example:

1. RLC parallel circuit:

Consider the electrical elements R, L and C are connected in parallel, where, I is the current supplied to the circuit, I_{R}, I_{L} and I_{C} are the current through R, L and C respectively.

$$
\begin{gathered}
Z_{T}=R| | j X_{L}| | j X_{C} \\
Y_{T}=\frac{1}{R}+\frac{1}{j X_{L}}+\frac{1}{-j X_{C}} \\
Y_{T}=\frac{1}{R}+\frac{1}{j}\left(\frac{1}{X_{L}}-\frac{1}{X_{C}}\right)
\end{gathered}
$$

At resonance net susceptance is equal to zero

$$
\begin{gathered}
\frac{1}{X_{L}}-\frac{1}{X_{C}}=0 \\
\frac{1}{2 \pi f_{o} L}=2 \pi f_{o} C \\
\boldsymbol{f}_{\boldsymbol{o}}=\frac{\mathbf{1}}{\mathbf{2 \pi \sqrt { L C }}}
\end{gathered}
$$

Parallel Resonance - Introduction

- Example:

2. RL-RC parallel circuit:

Consider the electrical elements R, L and C are connected in parallel, where, I is the current supplied to the circuit, I_{L} and I_{C} are the current through the branches of Inductor and Capacitor respectively. R_{L} and R_{C} are the resistors connected in series with the Inductor and Capacitor respectively.

$$
Y_{T}=\frac{1}{Z_{L}}+\frac{1}{Z_{C}} \Rightarrow \frac{1}{R_{L}+j X_{L}}+\frac{1}{R_{C}-j X_{C}}
$$

Parallel Resonance

$$
\begin{gathered}
Y_{D}=\frac{R_{L}}{R_{L}^{2}+X_{L}^{2}}+\frac{R_{C}}{R_{C}^{2}+X_{C}^{2}} \\
Z_{D}=\frac{1}{Y_{D}}
\end{gathered}
$$

$$
Y_{T}=\left\{\frac{R_{L}}{R_{L}^{2}+X_{L}^{2}}+\frac{R_{C}}{R_{C}^{2}+X_{C}^{2}}\right\}+\left\{\frac{j X_{C}}{R_{C}^{2}+X_{C}^{2}}-\frac{j X_{L}}{R_{L}^{2}+X_{L}^{2}}\right\}
$$

Parallel Resonance - Introduction

At resonance net susceptance is equal to zero

$$
\begin{gathered}
\frac{X_{C}}{R_{C}^{2}+X_{C}^{2}}-\frac{X_{L}}{R_{L}^{2}+X_{L}^{2}}=0---(1) \\
\text { We know that, } X_{C}=\frac{1}{\omega_{o} C} ; X_{L}=\omega_{o} L \\
\frac{X_{C}}{R_{C}^{2}+X_{C}^{2}}=\frac{X_{L}}{R_{L}^{2}+X_{L}^{2}} \\
\frac{\frac{1}{\omega_{o} C}}{R_{C}^{2}+\left(\frac{1}{\omega_{o} C}\right)^{2}}=\frac{\omega_{o} L}{R_{L}^{2}+\left(\omega_{o} L\right)^{2}} \\
\frac{1}{\omega_{o} C}\left[R_{L}^{2}+\left(\omega_{o} L\right)^{2}\right]=\omega_{o} L\left[R_{C}^{2}+\left(\frac{1}{\omega_{o} C}\right)^{2}\right] \\
\frac{R_{L}^{2}}{\omega_{o} C}+\frac{\omega_{o} L^{2}}{C}=\omega_{o} L R_{C}^{2}+\frac{L}{\omega_{o} C^{2}} \\
\frac{1}{\omega_{o}}\left[\frac{R_{L}^{2}}{C}-\frac{L}{C^{2}}\right]=\omega_{o}\left[-\frac{L^{2}}{C}+L R_{C}^{2}\right]
\end{gathered}
$$

Parallel Resonance

$$
\begin{gathered}
\frac{1}{\omega_{o}}\left[\frac{R_{L}^{2}}{C}-\frac{L}{C^{2}}\right]=\omega_{o}\left[-\frac{L^{2}}{C}+L R_{C}^{2}\right] \\
\omega_{o}^{2}=\frac{\left[\frac{R_{L}^{2}}{C}-\frac{L}{C^{2}}\right]}{\left[-\frac{L^{2}}{C}+L R_{C}^{2}\right]} \\
\boldsymbol{\omega}_{\boldsymbol{o}}=\sqrt{\frac{\left[\frac{\boldsymbol{R}_{L}^{2}}{\boldsymbol{C}}-\frac{\boldsymbol{L}}{\boldsymbol{C}^{2}}\right]}{\left[\boldsymbol{L \boldsymbol { R } _ { \boldsymbol { C } } ^ { 2 }}-\frac{\boldsymbol{L}^{2}}{\boldsymbol{C}}\right]}}
\end{gathered}
$$

$$
R_{C}=R_{L}=\sqrt{\frac{L}{C}}
$$

Parallel Resonance - Introduction

Summary:

Parallel Resonance

$$
\omega_{o}=\sqrt{\frac{\left[\frac{R_{L}^{2}}{C}-\frac{L}{C^{2}}\right]}{\left[L R_{C}^{2}-\frac{L^{2}}{C}\right]}}
$$

Parallel Resonance

Parallel Resonance

$$
\begin{aligned}
& \qquad \boldsymbol{f}_{o}=\frac{\mathbf{1}}{2 \boldsymbol{2 \pi \sqrt { L C }}} \\
& \mathbf{R} \text { does not affect } \\
& \text { the resonant } \\
& \text { frequency }
\end{aligned}
$$

Parallel Resonance - Problems

A coil of inductance 10 H and 10Ω resistance is connected in parallel with 100 pF capacitor. The combination is applied with a voltage of 100 V . Find resonant frequency and current at resonance.

Solution : $\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{~L}=10 \mathrm{H}, \mathrm{C}=100 \mathrm{pF}$
Frequency of resonance is given by,

$$
\begin{aligned}
\mathrm{f}_{\mathrm{zz}} & =\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}_{\mathrm{L}}{ }^{2}}{\mathrm{~L}^{2}}} \\
& =\frac{1}{2 \times \pi} \sqrt{\frac{1}{\left(10 \times 100 \times 10^{-12}\right)}-\frac{(10)^{2}}{(10)^{2}}} \\
& =5.033 \mathrm{kHz}
\end{aligned}
$$

At resonant frequency, the impedance of parallel resonant circuit is given by,

$$
\begin{aligned}
Z_{z r} & =\frac{L}{C R_{L}} \\
& =\frac{10}{100 \times 10^{-12} \times 10} \\
& =10 \times 10^{9} \Omega
\end{aligned}
$$

This shows that impedance is very high at resonance.
The current at resonance is given by,

$$
\begin{aligned}
I_{0} & =\frac{V}{Z_{a r}} \\
& =\frac{100}{10 \times 10^{9}} \\
& =10 \mathrm{nA}
\end{aligned}
$$

Thus the current is at its minimum value as the impedance is maximum.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Parallel Resonance - Problems

Two impedances $\mathrm{Z}_{1}=20+j 10$ and $\mathrm{Z}_{2}=10-j 30$ are connected in parallel and this combination is connected in series with $\mathrm{Z}_{3}=30+j X$. Find the value of X which will produce resonance.

Solution : From given information, given circuit is as shown in Fig

Total impedance is given by,

$$
\begin{aligned}
Z & =Z_{3}+\left(Z_{1} \| Z_{2}\right) \\
& =(30+j X)+\frac{(20+j 10)(10-j 30)}{(20+j 10)+(10-j 30)} \\
& =(30+j X)+\frac{(200+j 100-j 600+300)}{(30-j 20)} \\
& =(30+j X)+\frac{(500-j 500)}{(30-j 20)}
\end{aligned}
$$

The circuit shown in Fig. will resonate, if imaginary part is zero,
$=(30+j \mathrm{X})+\frac{(500)(1-\mathrm{j} 1)(30+\mathrm{j} 20)}{(30)^{2}+(20)^{2}}$

$$
\begin{array}{rlrl}
& \therefore & \mathrm{X}-\frac{50}{13} & =0 \\
\therefore & \mathrm{X} & =\frac{50}{13} \\
\therefore & \mathrm{X} & =3.846 \Omega
\end{array}
$$

$$
=\left[30+\frac{250}{13}\right]+\mathrm{j}\left[\mathrm{X}-\frac{50}{13}\right]
$$

Transient Response Analysis - Introduction

Time Response Analysis

The study of behaviour(Output/Response) of a system with respect to time is called Time Response analysis Time response is divided into two parts

1. Transient part

The response /Output before reaching the steady state or final value.

2. Steady State Part

The time response or part of the response after vanishing the transient part.
NOTE: Transients due to energy storage
elements present in the system and its Initial values.

Natural Response:

Stored energy released to the resistive part of the network
Forced Response:
An external energy supplied to the electrical network

Transient Response Analysis - Introduction

- Energy storage elements in the electrical system- Inductor and Capacitor.
- Initial conditions are evaluated at the time instants $\mathbf{t}=\mathbf{o}^{-}, \mathbf{t}=\mathbf{o}^{+}$and $\mathbf{t}>\mathbf{0}$ (before, just and after switching action respectively)

Voltage across the capacitor cannot change instantaneously

Capacitor charging

for uncharged Capacitor

$$
v_{C}\left(o^{-}\right)=0 \text { Votls }
$$

$$
v_{C}\left(0^{+}\right)=0 \text { Volts }
$$

Equivalent Circuit
$\bigcirc \mathrm{O}$

Transient Response Analysis - Introduction

Capacitor Discharging

$$
\begin{gathered}
v_{C}(t)=\frac{1}{C} \int_{-\infty}^{\infty} i(t) d t \Rightarrow \frac{1}{C} \int_{-\infty}^{0} i(t) d t+\frac{1}{C} \int_{0}^{\infty} i(t) d t \\
v_{C}(t)=v_{C}\left(0^{-}\right)+\frac{1}{C} \int_{0}^{\infty} i(t) d t
\end{gathered}
$$

for charged Capacitor $v_{\boldsymbol{C}}\left(\mathrm{o}^{-}\right)=V_{\boldsymbol{c}}$ Votls $v_{C}\left(0^{+}\right)=V_{c}$ Volts

Equivalent Circuit

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Introduction

Current through the inductors cannot change instantaneously

Inductor Charging and discharging

$$
\begin{gathered}
i_{L}(t)=\frac{1}{L} \int_{-\infty}^{\infty} v(t) d t \Rightarrow \frac{1}{L} \int_{-\infty}^{0} v(t) d t+\frac{1}{C} \int_{0}^{\infty} v(t) d t \\
i_{L}(t)=i_{L}\left(o^{-}\right)+\frac{1}{C} \int_{0}^{\infty} v(t) d t
\end{gathered}
$$

for uncharged Inductor
$i_{L}\left(o^{-}\right)=0$ Amperes
$i_{L}\left(0^{+}\right)=0$ Amperes
for charged Inductor
$i_{L}\left(o^{-}\right)=I$ Amperes
$i_{L}\left(0^{+}\right)=I$ Amperes

Equivalent Circuit

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Introduction

Resistor- current and voltage across the resistor changes instantaneously

Summary	Element	Behaviour Immediately sfter excltation is given $t=0^{+}$Instant	Behaviour as $t \rightarrow \infty$ L.e. steady state
	$\because \underbrace{R}_{\text {- }}$		
	$0 .$		s.c.
	$\rightarrow \longrightarrow_{000}^{I_{0}}$		
		\bigcirc s.c.	-
			$\stackrel{V_{0}}{ }{ }^{\text {o.c. }}$

Transient Response Analysis - Introduction

Initial and final conditions of energy storage elements

Procedure:

1. Identify the energy storage elements and its state

NOTE: State-Uncharged/Charged state.
2. Draw the equivalent circuit at $t=0$ - and find the current through the inductors and voltage across the capacitors. i.e., $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{-}\right)$ and $\mathrm{v}_{\mathrm{C}}\left(\mathrm{o}^{-}\right)$
NOTE: $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{+}\right)$and $\mathrm{v}_{\mathrm{C}}\left(\mathrm{o}^{-}\right)=\mathrm{v}_{\mathrm{C}}\left(\mathrm{o}^{+}\right)$
3. Draw the equivalent circuit at $\mathrm{t}=\mathrm{O}+$, by replacing inductor by $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{+}\right)$Amperes, capacitor by $\mathrm{v}_{\mathrm{C}}\left(\mathrm{O}^{+}\right)$volts and resistors are kept as it is.
NOTE: Charged current value and charged voltage value of inductor and capacitor respectively would be called as steady state values.
NOTE: To find the steady state values
i) Current through the inductor is maximum at steady state and would be calculated by replacing the inductor by short circuit. i.e., $\mathrm{i}_{\mathrm{SC}}=\mathrm{i}_{\mathrm{L}}(\mathrm{o}-)=\mathrm{i}_{\mathrm{L}}\left(\mathrm{O}^{+}\right)$
ii) Voltage across the capacitor is maximum at steady state and would be calculated by replacing the capacitor by open circuit. i.e., $\mathrm{v}_{\mathrm{OC}}=\mathrm{v}_{\mathrm{C}}\left(\mathrm{O}^{-}\right)=\mathrm{v}_{\mathrm{C}}\left(\mathrm{O}^{+}\right)$.
4. Find the initial voltages and currents at $t=0+$.
4. Draw the equivalent circuit at $\mathrm{t}>\mathrm{O}$ and obtain system equations (KVL/KCL).
5. Find the derivatives of initial voltages and currents using the above initial conditions, i.e., $\frac{d}{d t} \mathrm{i}\left(\mathrm{o}^{+}\right)$, $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right), \frac{d}{d t} v\left(0^{+}\right)$and $\frac{d^{2}}{d t^{2}} v\left(0^{+}\right)$.

Transient Response Analysis - Examples

1.For the circuit shown in figure, the switch K is
closed at $\mathrm{t}=\mathrm{o}$, then find $\mathrm{i}\left(0^{+}\right), \frac{d}{d t} \mathrm{i}\left(\mathrm{O}^{+}\right)$and $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)$.
Solution:
Step-1:
L is the energy storage element-Uncharged state Step-2: $\mathrm{t}=\mathrm{o}^{-}$

$$
\begin{gathered}
i_{L}\left(0^{-}\right)=0 A \\
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=0 A .
\end{gathered}
$$

Step7: at $\mathrm{t}=\mathrm{O}^{+}$
From equation (1)

$$
\begin{gathered}
V=R i(t)+\frac{L d i(t)}{d t} \\
\frac{d}{d t} i\left(0^{+}\right)=\frac{V}{L}-\frac{R}{L} i\left(0^{+}\right) \\
\frac{d}{d t} \boldsymbol{i}\left(\mathbf{0}^{+}\right)=\frac{V}{L} \mathbf{A} / \mathbf{s e c}
\end{gathered}
$$

Differentiate Equation (1) w.r.t t

$$
\begin{gather*}
0=\frac{R d i(t)}{d t}+\frac{L d^{2} i(t)}{d t^{2}}---(2) \tag{2}\\
\text { From equation (2). } \\
\frac{L d^{2} i(t)}{d t^{2}}=-\frac{R d i(t)}{d t} \\
\text { At } \mathrm{t}=\mathrm{o}^{+} \\
\frac{\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d}{ }^{2}}=-\frac{R \boldsymbol{d i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{L d t}} \\
\frac{\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d \boldsymbol { t } ^ { 2 }}}=-\frac{\mathbf{V R}}{\mathbf{L}^{2}} \mathbf{A} / \mathbf{s e c}^{2}
\end{gather*}
$$

Equivalent circuit at $\mathrm{t}=\mathrm{O}^{+}$
Step-4:

$$
i\left(0^{+}\right)=0 A
$$

Step-5: equivalent circuit at $\mathrm{t}>\mathrm{O}$
Step6: apply KVL

$$
V=R i(t)+\frac{L d i(t)}{d t}---(1)
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Examples

2.For the circuit shown in figure, the switch K is closed at $\mathrm{t}=\mathrm{o}$, then find $\mathrm{i}\left(0^{+}\right), \frac{d}{d t} \mathrm{i}\left(\mathrm{o}^{+}\right)$and $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)$.
Solution:
C- Energy storage element-Uncharged state

At $\mathrm{t}=\mathrm{O}^{+}$
Equivalent circuit

Apply KVL
D. (1) w.r.t At $t=0+$

Find $\mathbf{i}\left(\mathbf{o}^{+}\right)=V / R A$.
At $t>0$
Equivalent circuit

$$
\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)=\frac{V^{2}}{R^{3} C^{2}} A / \operatorname{Sec}^{2}
$$

$$
0=\frac{R d i(t)}{d t}+\frac{1}{C} i(t)---(2) \frac{d^{2}}{d t^{2}} i\left(0^{+}\right)=-\frac{1}{R C} d i\left(0^{+}\right) / \mathrm{dt}
$$

At t=0+

$$
\frac{d}{d t} i\left(0^{+}\right)=-\frac{1}{R C} i\left(0^{+}\right)
$$

$$
\frac{d}{d t} i\left(0^{+}\right)=-\frac{V}{R^{2} C} A / S e c
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Examples

3.For the circuit shown in figure, the switch K is closed at $\mathrm{t}=\mathrm{O}$, then find $\mathrm{i}\left(0^{+}\right), \frac{d}{d t} \mathrm{i}\left(\mathrm{O}^{+}\right)$and $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)$.
L, C storage elements- Uncharged state At $\mathrm{t}=\mathbf{0}$ -

$$
\begin{gathered}
i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0 \mathrm{~A} \\
v_{C}\left(0^{-}\right)=v_{C}\left(0^{+}\right)=0 \mathrm{Volts}
\end{gathered}
$$

KVL equation

At $\mathrm{t}=\mathrm{O}+$

$$
V=\operatorname{Ri}(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int i(t) d t---(1)
$$

At $\mathrm{t}=\mathrm{O}+$

$$
\begin{gathered}
V=\operatorname{Ri}\left(0^{+}\right)+L \frac{d i\left(0^{+}\right)}{d t}+v_{C}\left(0^{+}\right) \\
\frac{d i\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t}}=\frac{\mathbf{v}}{\mathbf{L}} \mathbf{A} / \mathbf{s e c}
\end{gathered}
$$

$$
i\left(0^{+}\right)=0 A
$$

At $\mathrm{t}>\mathrm{O}$

D (2) w.r.t

$$
\begin{aligned}
& \quad 0=R \frac{d i(t)}{d t}+L \frac{d^{2} i(t)}{d t^{2}}+\frac{1}{C} i(t)---(2) \\
& \text { At } \mathrm{t}=\mathbf{0}+ \\
& \qquad \frac{\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t}^{2}}=\frac{\mathbf{V R}}{\mathbf{L}^{2}} \mathbf{A} / \mathbf{s e c}^{\mathbf{2}}
\end{aligned}
$$

$$
+
$$

Transient Response Analysis - Introduction

Initial and final conditions of energy storage elements

Procedure:

1. Identify the energy storage elements and its state

NOTE: State-Uncharged/Charged state.
2. Draw the equivalent circuit at $t=0$ - and find the current through the inductors and voltage across the capacitors. i.e., $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{-}\right)$ and $\mathrm{v}_{\mathrm{C}}\left(\mathrm{o}^{-}\right)$
NOTE: $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{+}\right)$and $\mathrm{v}_{\mathrm{C}}\left(\mathrm{o}^{-}\right)=\mathrm{v}_{\mathrm{C}}\left(\mathrm{o}^{+}\right)$
3. Draw the equivalent circuit at $\mathrm{t}=\mathrm{O}+$, by replacing inductor by $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{+}\right)$Amperes, capacitor by $\mathrm{v}_{\mathrm{C}}\left(\mathrm{O}^{+}\right)$volts and resistors are kept as it is.
NOTE: Charged current value and charged voltage value of inductor and capacitor respectively would be called as steady state values.
NOTE: To find the steady state values
i) Current through the inductor is maximum at steady state and would be calculated by replacing the inductor by short circuit. i.e., $\mathrm{i}_{\mathrm{SC}}=\mathrm{i}_{\mathrm{L}}(\mathrm{o}-)=\mathrm{i}_{\mathrm{L}}\left(\mathrm{O}^{+}\right)$
ii) Voltage across the capacitor is maximum at steady state and would be calculated by replacing the capacitor by open circuit. i.e., $\mathrm{v}_{\mathrm{OC}}=\mathrm{v}_{\mathrm{C}}\left(\mathrm{O}^{-}\right)=\mathrm{v}_{\mathrm{C}}\left(\mathrm{O}^{+}\right)$.
4. Find the initial voltages and currents at $t=0+$.
4. Draw the equivalent circuit at $\mathrm{t}>\mathrm{O}$ and obtain system equations (KVL/KCL).
5. Find the derivatives of initial voltages and currents using the above initial conditions, i.e., $\frac{d}{d t} \mathrm{i}\left(\mathrm{o}^{+}\right)$, $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right), \frac{d}{d t} v\left(0^{+}\right)$and $\frac{d^{2}}{d t^{2}} v\left(0^{+}\right)$.

Transient Response Analysis - Examples

1.For the circuit shown in figure, the switch K is
closed at $\mathrm{t}=\mathrm{o}$, then find $\mathrm{i}\left(0^{+}\right), \frac{d}{d t} \mathrm{i}\left(\mathrm{O}^{+}\right)$and $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)$.
Solution:
Step-1:
L is the energy storage element-Uncharged state Step-2: $\mathrm{t}=\mathrm{o}^{-}$

$$
\begin{gathered}
i_{L}\left(0^{-}\right)=0 A \\
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=0 A .
\end{gathered}
$$

Step7: at $\mathrm{t}=\mathrm{O}^{+}$
From equation (1)

$$
\begin{gathered}
V=R i(t)+\frac{L d i(t)}{d t} \\
\frac{d}{d t} i\left(0^{+}\right)=\frac{V}{L}-\frac{R}{L} i\left(0^{+}\right) \\
\frac{d}{d t} \boldsymbol{i}\left(\mathbf{0}^{+}\right)=\frac{V}{L} \mathbf{A} / \mathbf{s e c}
\end{gathered}
$$

Differentiate Equation (1) w.r.t t

$$
\begin{gather*}
0=\frac{R d i(t)}{d t}+\frac{L d^{2} i(t)}{d t^{2}}---(2) \tag{2}\\
\text { From equation (2). } \\
\frac{L d^{2} i(t)}{d t^{2}}=-\frac{R d i(t)}{d t} \\
\text { At } \mathrm{t}=\mathrm{o}^{+} \\
\frac{\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d}{ }^{2}}=-\frac{R \boldsymbol{d i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{L d t}} \\
\frac{\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d \boldsymbol { t } ^ { 2 }}}=-\frac{\mathbf{V R}}{\mathbf{L}^{2}} \mathbf{A} / \mathbf{s e c}^{2}
\end{gather*}
$$

Equivalent circuit at $\mathrm{t}=\mathrm{O}^{+}$
Step-4:

$$
i\left(0^{+}\right)=0 A
$$

Step-5: equivalent circuit at $\mathrm{t}>\mathrm{O}$
Step6: apply KVL

$$
V=R i(t)+\frac{L d i(t)}{d t}---(1)
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Examples

2.For the circuit shown in figure, the switch K is closed at $\mathrm{t}=\mathrm{o}$, then find $\mathrm{i}\left(0^{+}\right), \frac{d}{d t} \mathrm{i}\left(\mathrm{o}^{+}\right)$and $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)$.
Solution:
C- Energy storage element-Uncharged state

At $\mathrm{t}=\mathrm{O}^{+}$
Equivalent circuit

Apply KVL
D. (1) w.r.t At $t=0+$

Find $\mathbf{i}\left(\mathbf{o}^{+}\right)=V / R A$.
At $t>0$
Equivalent circuit

$$
\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)=\frac{V^{2}}{R^{3} C^{2}} A / \operatorname{Sec}^{2}
$$

$$
0=\frac{R d i(t)}{d t}+\frac{1}{C} i(t)---(2) \frac{d^{2}}{d t^{2}} i\left(0^{+}\right)=-\frac{1}{R C} d i\left(0^{+}\right) / \mathrm{dt}
$$

At t=0+

$$
\frac{d}{d t} i\left(0^{+}\right)=-\frac{1}{R C} i\left(0^{+}\right)
$$

$$
\frac{d}{d t} i\left(0^{+}\right)=-\frac{V}{R^{2} C} A / S e c
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Examples

3.For the circuit shown in figure, the switch K is closed at $\mathrm{t}=\mathrm{O}$, then find $\mathrm{i}\left(0^{+}\right), \frac{d}{d t} \mathrm{i}\left(\mathrm{O}^{+}\right)$and $\frac{d^{2}}{d t^{2}} i\left(0^{+}\right)$.
L, C storage elements- Uncharged state At $\mathrm{t}=\mathbf{0}$ -

$$
\begin{gathered}
i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0 \mathrm{~A} \\
v_{C}\left(0^{-}\right)=v_{C}\left(0^{+}\right)=0 \mathrm{Volts}
\end{gathered}
$$

KVL equation

At $\mathrm{t}=\mathrm{O}+$

$$
V=\operatorname{Ri}(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int i(t) d t---(1)
$$

At $\mathrm{t}=\mathrm{O}+$

$$
\begin{gathered}
V=\operatorname{Ri}\left(0^{+}\right)+L \frac{d i\left(0^{+}\right)}{d t}+v_{C}\left(0^{+}\right) \\
\frac{d i\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t}}=\frac{\mathbf{v}}{\mathbf{L}} \mathbf{A} / \mathbf{s e c}
\end{gathered}
$$

$$
i\left(0^{+}\right)=0 A
$$

At $\mathrm{t}>\mathrm{O}$

D (2) w.r.t

$$
\begin{aligned}
& \quad 0=R \frac{d i(t)}{d t}+L \frac{d^{2} i(t)}{d t^{2}}+\frac{1}{C} i(t)---(2) \\
& \text { At } \mathrm{t}=\mathbf{0}+ \\
& \qquad \frac{\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t}^{2}}=\frac{\mathbf{V R}}{\mathbf{L}^{2}} \mathbf{A} / \mathbf{s e c}^{\mathbf{2}}
\end{aligned}
$$

$$
+
$$

Transient Response Analysis - Examples

4.For the circuit shown in figure, the switch K is Opened at $\mathrm{t}=\mathrm{O}$, then find $\mathrm{v}\left(0^{+}\right), \frac{d}{d t} \mathrm{v}\left(\mathrm{o}^{+}\right)$and $\frac{d^{2}}{d t^{2}} v\left(0^{+}\right)$.

Solution:
L-uncharged state

$$
i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0 A
$$

At t=o+

At $t>0$

Apply KCL

D (1) w.r.t.t

$$
0=\frac{v(t)}{L}+\frac{1}{100} \frac{d v(t)}{d t}---(2)
$$

At $\mathrm{t}=\mathrm{O}+$

$$
\frac{d v\left(0^{+}\right)}{d t}=-100 v\left(0^{+}\right) \Rightarrow-\mathbf{1 0}^{4} \mathbf{V} / \mathbf{s e c}
$$

D. (2) w.r.t.t

$$
\begin{equation*}
1=\frac{1}{L} \int v(t) d t+\frac{v(t)}{100}---(1) \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
0=\frac{d v(t)}{d t}+\frac{1}{100} \frac{d^{2} v(t)}{d t^{2}}---(3) \\
\frac{d^{2} v(t)}{d t^{2}}=-100 \frac{d v(t)}{d t}
\end{gathered}
$$

At $\mathrm{t}=0+$

$$
\begin{aligned}
& \frac{d^{2} v\left(0^{+}\right)}{d t^{2}}=-100 \frac{d v\left(0^{+}\right)}{d t} \\
& \frac{\boldsymbol{d}^{2} \boldsymbol{v}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d} \boldsymbol{t}^{2}}=\mathbf{1 0}^{\mathbf{6}} \boldsymbol{v} / \mathbf{s e c}^{2}
\end{aligned}
$$

Transient Response Analysis - Examples

5. For the circuit shown in figure, the switch K is Opened at $\mathrm{t}=\mathrm{O}$, then find $\mathrm{v}\left(0^{+}\right), \frac{d}{d t} \mathrm{v}\left(\mathrm{o}^{+}\right)$and $\frac{d^{2}}{d t^{2}} v\left(0^{+}\right)$.

Solution:

C-Uncharged state
Apply KCL
$v_{C}\left(0^{-}\right)=v_{C}\left(0^{+}\right)=0$ Volts

$$
\begin{gathered}
10=\frac{v(t)}{10^{3}}+10^{-6} \frac{d v(t)}{d t}---(1) \\
\frac{d v(t)}{d t}=10^{6}\left(10-\frac{\mathrm{v}(\mathrm{t})}{10^{3}}\right)
\end{gathered}
$$

At t=o+

$$
\frac{d v\left(0^{+}\right)}{d t}=10^{6}\left(10-\frac{\mathrm{v}\left(0^{+}\right)}{10^{3}}\right)
$$

$$
\frac{d v\left(0^{+}\right)}{d t}=10^{7} \mathrm{v} / \mathrm{sec}
$$

D (1) w.r.t.t
At $t>0$

$$
\begin{aligned}
& \text { At } \mathrm{t}=0+ \\
& \qquad \begin{array}{l}
0=10^{-3} \frac{d v(t)}{d t}+10^{-6} \frac{d^{2} v(t)}{d t^{2}} \\
\frac{d^{2} v\left(0^{+}\right)}{d t^{2}}=-\frac{10^{3} \mathrm{dv}\left(0^{+}\right)}{\mathrm{dt}} \\
\frac{\boldsymbol{d}^{2} \boldsymbol{v}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t ^ { 2 }}}=-\mathbf{1 0}^{\mathbf{7}} \boldsymbol{v} / \mathbf{s e c}^{2}
\end{array}
\end{aligned}
$$

Transient Response Analysis - Examples

Important points and expressions to be remembered

1. Voltage across the short circuit is zero
2. Voltage across the open circuit is maximum
3. Current through the open circuit is zero
4. Current through the short circuit is maximum
5. R

$$
v(t)=R i(t) \text { and } i(t)=\frac{v(t)}{R}
$$

6. C

$$
v(t)=\frac{1}{C} \int i(t) d t \text { and } i(t)=C \frac{d v(t)}{d t}
$$

7. L

$$
v(t)=L \frac{d i(t)}{d t} \text { and } i(t)=\frac{1}{L} \int v(t) d t
$$

Transient Response Analysis - Examples

6.For the circuit shown in figure, the switch K is closed at $\mathrm{t}=\mathrm{o}$, then find $\mathrm{v}\left(0^{+}\right), \frac{d}{d t} \mathrm{v}\left(\mathrm{o}^{+}\right)$and $\frac{d^{2}}{d t^{2}} v\left(0^{+}\right)$.

Solution:
Apply KCL
L, C - uncharged state.

$$
i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0 A
$$

$$
10=\frac{v(t)}{2}+\int v(t) d t+0.5 \times 10^{-6} \frac{d v(t)}{d t}---(1)
$$

At $\mathrm{t}=\mathrm{O}+$

$$
\frac{d v\left(0^{+}\right)}{d t}=20 \times 10^{6} \frac{\text { volts }}{s e c}
$$

$$
\frac{d^{2} v(t)}{d t^{2}}=-\frac{10^{7}}{0.5 \times 10^{-6}}
$$

D (1) w.r.t. t

$$
0=\frac{1}{2} \frac{d v(t)}{d t}+v(t)+0.5 \times 10^{-6} \frac{d^{2} v(t)}{d t^{2}}---(2)
$$

$$
v\left(0^{+}\right)=0 \text { Volts }
$$

At $\mathrm{t}>\mathrm{O}$
At $\mathrm{t}=\mathrm{O}+$

$$
\begin{gathered}
0.5 \times 10^{-6} \frac{d^{2} v(t)}{d t^{2}}=-\frac{1}{2} \frac{d v(t)}{d t}-v(t) \\
0.5 \times 10^{-6} \frac{d^{2} v(t)}{d t^{2}}=-\frac{1}{2} 20 \times 10^{6}-0 \\
0.5 \times 10^{-6} \frac{d^{2} v(t)}{d t^{2}}=-10^{7}
\end{gathered}
$$

Transient Response Analysis - Examples

7. In the network shown in figure, the switch is changed from the position 1 to the position 2 at $t=0$, steady state condition having reached before switching. Find the values of $\mathrm{i}, \mathrm{di} / \mathrm{dt}$ and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=\mathrm{O}+$

Solution:

Capacitor C- Reached steady state condition at $\mathrm{t}=\mathrm{O}-$
The equivalent circuit at $\mathrm{t}=\mathrm{O}-$

$$
\begin{gathered}
30 i\left(0^{+}\right)=-30 \\
\boldsymbol{i}\left(\mathbf{0}^{+}\right)=-\mathbf{1} \boldsymbol{A} .
\end{gathered}
$$

At $\mathrm{t}>0$

Apply KVL

$$
30 i(t)+10^{6} \int i(t)+30=0---(1)
$$

Apply KVL

$$
30 i(t)+10^{6} \int i(t)+30=0---(1)
$$

$\mathrm{D}(1)$ w.r.t.t.

$$
30 \frac{d i(t)}{d t}+10^{6} i(t)=0---(2)
$$

At $\mathrm{t}=0+$

$$
\begin{aligned}
& \frac{d}{d t} i\left(0^{+}\right)=-\frac{10^{6} i\left(0^{+}\right)}{30} \\
& \frac{\boldsymbol{d}}{\boldsymbol{d t}} \boldsymbol{i}\left(\mathbf{0}^{+}\right)=\frac{\mathbf{1 0}}{\mathbf{3 0}} \mathbf{A} / \mathbf{s e c}
\end{aligned}
$$

$$
\begin{gathered}
\text { D(2)w.r.t.t } \\
\frac{30 d^{2} i(t)}{d t^{2}}+\frac{10^{6} d i(t)}{d t}=0---(3) \\
\frac{d^{2} i(t)}{d t^{2}}=-\frac{10^{6}}{30} \frac{d i(t)}{d t} \\
\text { At } \mathrm{t}=\mathrm{O}+\begin{array}{c}
\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right) \\
\boldsymbol{d t}^{2}
\end{array}=-\frac{\mathbf{1 0}^{\mathbf{1 2}}}{\mathbf{9 0 0}} \Rightarrow \frac{\mathbf{1 0}^{\mathbf{1 0}}}{\mathbf{9}} \boldsymbol{A} / \boldsymbol{s e c}^{\mathbf{2}}
\end{gathered}
$$

Transient Response Analysis - Examples

8. In the network shown in figure, the switch is changed from the position 1 to the position 2 at $t=0$, steady state condition having reached before switching. Find the values of $\mathrm{i}, \mathrm{di} / \mathrm{dt}$ and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=\mathrm{O}+$
Solution:
Inductor L- Uncharged state

Capacitor C-Steady state condition at $\mathrm{t}=\mathrm{O}-$

$$
i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0 A
$$

At $\mathrm{t}=\mathrm{O}-$
Equivalent circuit

At $\mathrm{t}=\mathrm{O}+$
Equivalent circuit

$$
i\left(0^{+}\right)=0 A
$$

Transient Response Analysis - Examples

At $\mathrm{t}>0$

Equivalent circuit

$$
\begin{aligned}
& \text { D (1) w.r.t.t } \\
& \frac{d^{2} i(t)}{d t^{2}}+20 \frac{d i(t)}{d t}+10^{6} i(t)=0---(2) \\
& \text { At } \mathrm{t}=\mathrm{O}+ \\
& \quad \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=-20 \frac{d i\left(0^{+}\right)}{d t}-10^{6} i\left(0^{+}\right) \\
& \quad \frac{\boldsymbol{d i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t}}=\mathbf{8 0 0} \mathbf{~} / \mathbf{s e c}^{\mathbf{2}}
\end{aligned}
$$

Apply KVL

$$
\frac{d i(t)}{d t}+20 i(t)+10^{6} \int i(t) d t=0---(1)
$$

$$
\begin{aligned}
& \text { At } \mathrm{t}=\mathrm{o}^{+} \\
& \qquad \begin{array}{r}
\frac{d i\left(0^{+}\right)}{d t}=-20 i\left(0^{+}\right)-40 \\
\frac{\boldsymbol{d i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t}}=-\mathbf{4 0} \mathbf{A} / \mathbf{s e c}
\end{array}
\end{aligned}
$$

Transient Response Analysis - Examples

9. In the network shown in figure, the switch is changed from the position a to the position b at $t=0$, steady state condition having reached before switching. Find the values of $\mathrm{i}, \mathrm{di} / \mathrm{dt}$ and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=\mathrm{O}+$ Solution:

Capacitor $\mathrm{C}=$ Uncharged state

$$
v_{C}\left(0^{-}\right)=v_{C}\left(0^{+}\right)=0 \mathrm{~V}
$$

Inductor $\mathrm{L}=$ Steady state condition .
At $\mathrm{t}=\mathrm{O}$ -
Equivalent circuit.
At $\mathrm{t}=\mathrm{O}+$
Equivalent circuit.

$$
i\left(0^{+}\right)=0.1 A
$$

Transient Response Analysis - Examples

At $\mathrm{t}>\mathrm{O}$
Equivalent circuit

Apply KVL

$$
10^{7} \int i(t) d t+10^{3} i(t)+\frac{d i(t)}{d t}=0---(1)
$$

ut

At $\mathrm{t}=\mathrm{O}+$

D (1) w.r.t.t

$$
10^{7} i(t)+10^{3} \frac{d i(t)}{d t}+\frac{d^{2} i(t)}{d t^{2}}=0---(2)
$$

$$
\begin{align*}
& \text { At } t=0+ \tag{2}\\
& \qquad \begin{array}{c}
10^{7} i\left(0^{+}\right)+10^{3} \frac{d i\left(0^{+}\right)}{d t}+\frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=0--- \text { (2) } \\
\frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=-10^{7} i\left(0^{+}\right)-10^{3} \frac{d i\left(0^{+}\right)}{d t} \\
\frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=-10^{7} x 0.1-10^{3} \cdot(-100) \Rightarrow-10 \times 10^{5}+10^{5} \\
\frac{\boldsymbol{d}^{2} \boldsymbol{i}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d t ^ { 2 }}}=-\mathbf{9} \times \mathbf{1 0} \mathbf{A} / \boldsymbol{s e c}^{2}
\end{array}
\end{align*}
$$

$$
\frac{d i\left(0^{+}\right)}{d t}=-10^{3} i\left(0^{+}\right) \Rightarrow-100 \mathrm{~A} / \sec
$$

Transient Response Analysis - Examples

10. In the network shown in figure, the switch is closed at $\mathrm{t}=\mathrm{o}$. Find the values of $i_{1}, i_{2}, \frac{d i_{1}}{d t}, \frac{d i_{2}}{d t}, \frac{d^{2} i_{1}}{d t^{2}}$ and $\frac{d^{2} i_{2}}{d t^{2}}$ at $t=0^{+}$

Solution:

Capacitor C=Uncharged

Inductor L=Uncharged
At $\mathrm{t}>\mathrm{O}$

At $\mathrm{t}=\mathrm{O}+$

Apply KVL

$$
\begin{gathered}
V=R_{1} i_{1}(t)+\frac{1}{C} \int\left(i_{1}(t)-i_{2}(t)\right) d t---(1) \\
0=\frac{1}{C} \int\left(i_{2}(t)-i_{1}(t)\right) d t+R_{2} i_{2}(t)+L \frac{d i_{2}(t)}{d t}---(2)
\end{gathered}
$$

$$
\text { at } t=0^{+}
$$

Apply KVL

$$
\frac{d i_{2}\left(0^{+}\right)}{d t}=0 \frac{A}{\sec }
$$

$$
\begin{gather*}
V=R_{1} i_{1}(t)+\frac{1}{C} \int\left(i_{1}(t)-i_{2}(t)\right) d t---(1) \\
0=\frac{1}{C} \int\left(i_{2}(t)-i_{1}(t)\right) d t+R_{2} i_{2}(t)+L \frac{d i_{2}(t)}{d t}-- \tag{2}
\end{gather*}
$$

D (1) w.r.t t

$$
0=R_{1} \frac{d i_{1}(t)}{d t}+\frac{1}{C} i_{1}(t)-\frac{1}{C} i_{2}(t)---(3)
$$

At $\mathrm{t}=\mathrm{O}+$

$$
\begin{gathered}
\frac{d i_{1}\left(0^{+}\right)}{d t}=-\frac{1}{R_{1} C} i_{1}\left(0^{+}\right)+\frac{1}{R_{1} C} i_{2}\left(0^{+}\right) \\
\frac{\boldsymbol{d} \boldsymbol{i}_{\mathbf{1}}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d} \boldsymbol{t}}=-\frac{\mathbf{V}}{\mathbf{C R}_{\mathbf{1}}^{\mathbf{2}}} \mathbf{A} / \mathbf{s e c}
\end{gathered}
$$

From (2)

$$
\frac{d i_{2}(t)}{d t}=-\frac{1}{L C} \int\left(i_{2}(t)-i_{1}(t)\right) d t-\frac{R_{2}}{L} i_{2}(t)---(4)
$$

D.(3) w.r.t.t.

$$
0=R_{1} \frac{d^{2} i_{1}(t)}{d t^{2}}+\frac{1}{C} \frac{d i_{1}(t)}{d t}-\frac{1}{C} \frac{d i_{2}(t)}{d t}---(5)
$$

At $\mathrm{t}=0+$

$$
\begin{gathered}
\frac{d^{2} i_{1}\left(0^{+}\right)}{d t^{2}}=-\frac{1}{C R_{1}} \frac{d i_{1}\left(0^{+}\right)}{d t}+\frac{1}{C R_{2}} \frac{d i_{2}\left(0^{+}\right)}{d t} \\
\frac{\boldsymbol{d}^{2} \boldsymbol{i}_{\mathbf{1}}\left(\mathbf{0}^{+}\right)}{\boldsymbol{d} \boldsymbol{t}^{\mathbf{2}}}=\frac{\boldsymbol{V}}{\boldsymbol{C}^{\mathbf{2}} \boldsymbol{R}_{\mathbf{1}}^{\mathbf{3}}} \boldsymbol{A} / \boldsymbol{\operatorname { s e c }}^{\mathbf{2}}
\end{gathered}
$$

${ }^{\mathrm{D}}$ (2) w.r.t.t

$$
\begin{gathered}
0=\frac{1}{C}\left[i_{2}(t)\right]-\frac{1}{C} i_{1}(t)+R_{2} \frac{d i_{2}(t)}{d t}+L \frac{d^{2} i_{2}(t)}{d t^{2}} \\
\frac{d^{2} i_{2}(t)}{d t^{2}}=-\frac{1}{C L}\left[i_{2}(t)\right]+\frac{1}{C L} i_{1}(t)-\frac{R_{2}}{L} \frac{d i_{2}(t)}{d t} \\
\text { at } t=0^{+}
\end{gathered}
$$

$$
\frac{d^{2} i_{2}\left(0^{+}\right)}{d t^{2}}=\frac{V}{C L R_{1}} A / s e c
$$

Transient Response Analysis - Practice Problems

11. In the network shown in figure, the switch is closed at $\mathrm{t}=\mathrm{o}$. Find the values of $v_{a}\left(0^{-}\right), v_{b}\left(0^{-}\right), v_{a}\left(0^{+}\right)$and $v_{b}\left(0^{+}\right)$.

Transient Response Analysis - Practice Problems

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Practice Problems

12. In the network shown in figure, a steady state has reached with switch open. At $\mathrm{t}=\mathrm{O}$ switch is closed. Find the three loop currents at $\mathrm{t}=\mathrm{O}^{+}$

Transient Response Analysis - Practice Problems

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Examples

11. In the network shown in figure, the switch is closed at $\mathrm{t}=\mathrm{o}$.

Find the values of $v_{a}\left(0^{-}\right), v_{b}\left(0^{-}\right), v_{a}\left(0^{+}\right)$and $v_{b}\left(0^{+}\right)$.

Solution:

$\mathrm{L}=2 \mathrm{H}$ is the energy storage element- attains steady state at $\mathrm{t}=\mathrm{O}^{-}$
at $\mathrm{t}=\mathrm{o}-$, equivalent circuit.

$$
\begin{aligned}
& i_{L}\left(0^{-}\right)=5 /(30 \| 10) \Rightarrow \mathbf{0 . 6 6 7 A} \\
& V_{\boldsymbol{b}}\left(0^{-}\right)=\mathbf{o} \text { Volts. } \\
& \boldsymbol{V}_{\boldsymbol{a}}\left(0^{-}\right)=\boldsymbol{V}_{20} \Rightarrow \mathbf{2 0} * \mathbf{0 . 6 6 7} *\left(\frac{10}{10+30}\right) \Rightarrow \mathbf{3 . 3 3 V}
\end{aligned}
$$

At $\mathrm{t}=\mathrm{o}+$
Equivalent circuit

Transient Response Analysis - Examples

Nodal analysis

$$
\begin{gathered}
V_{1}=5 \mathrm{~V} \\
\frac{5-V_{a}\left(0^{+}\right)}{10}=\frac{V_{a}\left(0^{+}\right)}{10}+\frac{\left(V_{a}\left(0^{+}\right)-V_{b}\left(0^{+}\right)\right.}{20} \\
-0.25 V_{a}\left(0^{+}\right)+0.05 V_{b}\left(0^{+}\right)=-0.5---(1) \\
\frac{5-V_{b}\left(0^{+}\right)}{10}+\frac{\left(V_{a}\left(0^{+}\right)-V_{b}\left(0^{+}\right)\right.}{20}=\frac{2}{3} \\
-0.15 V_{b}\left(0^{+}\right)+0.05 V_{a}\left(0^{+}\right)=0.1667---(2)
\end{gathered}
$$

Solve equations (1) and (2)

$$
\begin{gathered}
V_{a}\left(0^{+}\right)=1.9 V \\
V_{b}\left(0^{+}\right)=-0.477 V
\end{gathered}
$$

Transient Response Analysis - Examples

12. In the network shown in figure, a steady state has reached with switch open. At $\mathrm{t}=\mathrm{o}$ switch is closed. Find the three loop currents at $\mathrm{t}=\mathrm{o}^{+}$.

Solution:

$\mathrm{L}=1 \mathrm{H}$; attains steady state at $\mathrm{t}=\mathrm{o}-$ $\mathrm{C} 1=05 \mathrm{~F}$; attains steady state at $\mathrm{t}=0-$ $\mathrm{C} 2=1 \mathrm{~F}$; attains steady state at $\mathrm{t}=\mathrm{O}-$ At $\mathrm{t}=\mathrm{O}-$
Equivalent circuit.

$$
\begin{gathered}
I_{L}\left(0^{-}\right)=\frac{6}{2+4}=\mathbf{1} \boldsymbol{A} \\
v_{1}\left(0^{-}\right)+v_{2}\left(0^{-}\right)=v_{4} \Rightarrow 4 V--(1)
\end{gathered}
$$

The charges on capacitors are equal if the capacitors are Connected in series.

$$
\begin{gathered}
Q_{1}=Q_{2} \\
C_{1} v_{1}=C_{2} v_{2} \\
0.5 v_{1}\left(0^{-}\right)=v_{2}\left(0^{-}\right) \\
0.5 v_{1}\left(0^{-}\right)-v_{2}\left(0^{-}\right)=0--(2)
\end{gathered}
$$

Solve (1) and (2)

$$
v_{1}\left(0^{-}\right)=2.66 \mathrm{~V} ; \text { and } v_{2}\left(0^{-}\right)=1.33 \mathrm{~V}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Examples

At $\mathrm{t}=\mathrm{O}+$
Equivalent circuit.

$$
i_{1}\left(0^{+}\right)-i_{3}\left(0^{+}\right)=1---(1)
$$

Apply KVL to super mesh

$$
\begin{gathered}
2 i_{1}\left(0^{+}\right)+4\left(i_{1}\left(0^{+}\right)-i_{2}\left(0^{+}\right)\right)+\frac{4}{3}-6=0 \\
6 i_{1}\left(0^{+}\right)-4 i_{2}\left(0^{+}\right)=4.67--(2)
\end{gathered}
$$

Apply KVL to mesh 2

$$
\begin{gathered}
4\left(i_{2}\left(0^{+}\right)-i_{1}\left(0^{+}\right)\right)+\frac{8}{3}=0 \\
-4 i_{1}\left(0^{+}\right)+4 i_{2}\left(0^{+}\right)=2.667--(3)
\end{gathered}
$$

Solve (1),(2) and (3)

$$
\begin{gathered}
i_{1}\left(0^{+}\right)=1 A \\
i_{2}\left(0^{+}\right)=0.33 A \\
i_{3}\left(0^{+}\right)=0 A
\end{gathered}
$$

Transient Response Analysis - Introduction

Solution of homogeneous differential equation
Consider a differential homogeneous equation of first order.

$$
a \frac{d i(t)}{d t}+b i(t)=0---(1)
$$

Rearrange the equation by separating the variables.

$$
\begin{gathered}
a \frac{d i(t)}{d t}=-b i(t) \\
\frac{d i(t)}{d t}=\left(-\frac{b}{a}\right) i(t)---(2)
\end{gathered}
$$

Multiply dt on both sides

$$
\begin{gathered}
d i(t)=-\frac{b}{a} i(t) d t \\
\frac{d i(t)}{i(t)}=-\frac{b}{a} d t---(3)
\end{gathered}
$$

Integrate on both sides
We get,

$$
\int \frac{d i(t)}{i(t)}=\int-\frac{b}{a} d t
$$

$$
\begin{aligned}
& \int \frac{d i(t)}{i(t)}=\int-\frac{b}{a} d t \\
& \ln i(t)=-\frac{b}{a} t+K_{I}
\end{aligned}
$$

K_{I} is defined at $t=-\infty$ to 0^{-}or at $t=0^{+}$

$$
\begin{gathered}
\ln i(t)=\ln e^{-\frac{b}{a} t}+\ln K \\
\ln i(t)=\ln \left(K e^{-\frac{b}{a} t}\right) \\
\boldsymbol{i}(\boldsymbol{t})=\mathbf{K e}^{-\frac{\boldsymbol{b}}{\boldsymbol{a}} t}---(\mathbf{4})
\end{gathered}
$$

General solution- K is unknown
 Particular solution - K is known

Transient Response Analysis - Introduction

Step response of RL series circuit

?

At $\mathrm{t}=\mathrm{o}, \mathrm{V}$ is applied to the circuit and at $\mathrm{t}=\mathrm{o}^{-}$, inductor is at rest(uncharged condition)
Hence, $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{-}\right)=\mathrm{o}$ Amperes, $\mathrm{i}_{\mathrm{L}}\left(\mathrm{o}^{+}\right)=\mathrm{o}$ Amperes.
At $t>0$,
KVL equation

$$
\begin{gathered}
V=R i(t)+L \frac{d i(t)}{d t}---(1) \\
L \frac{d i(t)}{d t}=V-R i(t) \\
\text { divide } R \text { on both sides } \\
\frac{L}{R} \frac{d i(t)}{d t}=\frac{V}{R}-i(t)
\end{gathered}
$$

Multiply dt on both sides, we get

$$
\frac{d i(t)}{\frac{V}{R}-i(t)}=\frac{R}{L} d t---(2)
$$

Apply integration on both sides

$$
\begin{gathered}
\int \frac{d i(t)}{\frac{V}{R}-i(t)}=\int \frac{R}{L} d t \\
-\ln \left(\frac{V}{R}-i(t)\right)=\frac{R}{L} t+K
\end{gathered}
$$

Transient Response Analysis - Introduction

$$
\begin{array}{rc}
-\ln \left(\frac{V}{R}-i(t)\right)=\frac{R}{L} t+K---(3) & i(t)=\frac{V}{R}-\frac{\frac{V}{R}}{e^{\frac{R}{L} t}} \\
\text { at } t=0^{+}, i(t)=0 & \boldsymbol{i}(\boldsymbol{t})=\frac{\boldsymbol{V}}{\boldsymbol{R}}-\frac{\boldsymbol{V}}{\boldsymbol{R}} \boldsymbol{e}^{-\left(\frac{R}{L} t\right)}---(\mathbf{5})
\end{array}
$$

At $t>0$

$$
\begin{array}{cc}
-\ln \left(\frac{V}{R}-i(t)\right)=\frac{R}{L} t-\ln \left(\frac{V}{R}\right)=\boldsymbol{i}_{\boldsymbol{s s}}+\boldsymbol{i}_{\boldsymbol{t r}}(\boldsymbol{t}) \\
-\ln \left(\frac{V}{R}-i(t)\right)=\ln e^{\frac{R}{L} t}-\ln \left(\frac{V}{R}\right) & V_{L}=L \frac{d i(t)}{d t} \\
-\ln \left(\frac{V}{R}-i(t)\right)=-\left(-\ln e^{\frac{R}{L} t}+\ln \left(\frac{V}{R}\right)\right) & V_{L}=L \cdot\left(-\frac{d}{d t}\left[\frac{V}{R}-\frac{V}{R} e^{-\left(\frac{R}{L} t\right)} \cdot e^{-\frac{R}{L} t} \cdot\left(-\frac{R}{L}\right)\right.\right. \\
V & \boldsymbol{V}_{\boldsymbol{L}}=\boldsymbol{V} \boldsymbol{e}^{-\frac{R}{L} t}
\end{array}
$$

$$
\text { NOTE: } V_{L}=\mathrm{Ve}\left(-\frac{\mathrm{R}}{\mathrm{~L}}\right) \mathrm{t}
$$

If inductor carries initial current

Transient Response Analysis - Introduction

Step response of RC series circuit

$?$

$$
V_{C}\left(0^{-}\right)=V_{C}\left(0^{+}\right)=0 \text { Volts }
$$

At $\mathrm{t}>0$

$$
\begin{gathered}
V=V_{R}+V_{C} \\
V=i R+V_{C} \\
i=i_{R}=I_{C} \\
\text { w.k.t., } I_{C}=C \frac{d V_{C}}{d t} \\
V=R C \frac{d V_{C}}{d t}+V_{C}---(1)
\end{gathered}
$$

Rearrange the equation by separating the variables

$$
V-V_{C}=R C \frac{d V_{C}}{d t}
$$

$$
\begin{gathered}
V-V_{C}=R C \frac{d V_{C}}{d t} \\
\frac{d V_{C}}{V-V_{C}}=\frac{d t}{R C}---(2)
\end{gathered}
$$

Integration on both sides

$$
\begin{gathered}
\int \frac{d V_{C}}{V-V_{C}}=\int \frac{d t}{R C}+K \\
-\ln \left(V-V_{C}\right)=\frac{1}{R C} t+K---(3)
\end{gathered}
$$

Where K is the integral constant defined at $\mathrm{t}=0+$

$$
-\ln \left(V-V_{C}\right)=\ln e^{\frac{t}{R C}}+K
$$

Transient Response Analysis - Introduction

$$
\begin{aligned}
& -\ln \left(V-V_{C}\right)=\ln e^{\frac{t}{R C}}+K \\
& \text { At } \mathrm{t}=0+ \\
& \text { w.k.t. VC=0 } \\
& K=-\ln V \\
& V=i R+V_{C} \\
& i R=V-V_{C} \\
& \text { w.k.t., } V_{C}=V-V e^{-\frac{t}{R C}-} \\
& -\ln \left(V-V_{C}\right)=\ln e^{\frac{t}{R C}}-\ln V \\
& -\ln \left(V-V_{C}\right)+\ln V=\ln e^{\frac{t}{R C}} \\
& \ln \left(\frac{V}{V-V_{C}}\right)=\ln e^{\frac{t}{R C}} \\
& \frac{V}{V-V_{C}}=e^{\frac{t}{R C}} \\
& V=V e^{\frac{t}{R C}}-V_{\mathrm{C}} e^{\frac{t}{R C}} \\
& V_{C} e^{\frac{t}{R C}}=\mathrm{V} e^{\frac{t}{R C}}-V \\
& V_{C}=V-V e^{-\frac{t}{R C}---(4)}
\end{aligned}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Introduction

Summary

Homogeneous differential equation Form-1

$$
a \frac{d i}{d t}+b i(t)=0
$$

Solution:

$$
i(t)=K e^{-\frac{b}{a} t}
$$

Where, K is the initial condition

$$
\begin{gathered}
\text { Or } \\
a \frac{d v(t)}{d t}+b v(t)=0
\end{gathered}
$$

Solution:

$$
v(t)=K e^{-\left(\frac{b}{a}\right) t}
$$

Where, K is the initial condition

Transient Response Analysis - Introduction

Summary

Homogeneous differential equation Form-2

$$
a \frac{d i}{d t}+b i(t)=c
$$

Solution:
Example: $L \frac{d i(t)}{d t}+R i(t)=V$

$$
\begin{aligned}
& i(t)=\frac{V}{R}\left(1-e^{-\frac{R}{L} t}\right) \\
& i(t)=\frac{V}{R}-K e^{-\left(\frac{R}{L}\right) t}
\end{aligned}
$$

Example: $\operatorname{RC} \frac{d v_{C}(t)}{d t}+v_{C}(t)=V$

$$
a \frac{d v(t)}{d t}+b v(t)=c
$$

Solution:

$$
v(t)=\frac{c}{b}\left(1-e^{\left.-\left(\frac{b}{a}\right) t\right)}\right.
$$

Zero initial conditions

$$
\begin{aligned}
& v_{C}(t)=V-V e^{-\left(\frac{1}{R C}\right) t} \\
& v_{C}(t)=V-K e^{-\left(\frac{1}{R C}\right) t}
\end{aligned}
$$

Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is initially at the position 1 and the steady state having reached, the switch is changed to the position 2 at $t=0$. find current $i(t)$.

Solution:

L- energy storage element-charged state at $\mathrm{t}=\mathrm{o}$-.
At $\mathrm{t}=\mathrm{O}$ -
Equivalent circuit

At $\mathrm{t}>0$, equivalent circuit.
Apply KVL

$$
\begin{gathered}
R_{1} i(t)+R_{2} i(t)+\frac{L d i(t)}{d t}=0 \\
L \frac{d i(t)}{d t}+\left(R_{1}+R_{2}\right) i(t)=0---(1) \\
i(t)=K e^{-\left(\frac{R_{1}+R_{2}}{L}\right) t}---(2)
\end{gathered}
$$

Where, K is the initial value of current through he inductor i.e., at o-.

Therefore $\mathrm{K}=\frac{V}{R_{1}}----(3)$

$$
\begin{equation*}
\mathbf{i}(\mathbf{t})=\frac{\mathbf{V}}{\mathbf{R}_{\mathbf{1}}} \mathbf{e}^{-\left(\frac{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}{\mathbf{L}}\right) \mathbf{t}} \tag{4}
\end{equation*}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is closed at $t=0$, a steady state having previously been attained. Find current $\mathrm{i}(\mathrm{t})$.

Solution:

L- charged state at $\mathrm{t}=\mathrm{O}$ -

At $\mathrm{t}=\mathrm{O}$ -
Equivalent circuit

$$
i\left(0^{-}\right)=\frac{V}{R_{1}+R_{2}} A
$$

At $t>0$
Equivalent circuit

Apply KVL

$$
\begin{gathered}
V=R_{1} i(t)+L \frac{d i(t)}{d t} \\
L \frac{d i(t)}{d t}+R_{1} i(t)=V---(1)
\end{gathered}
$$

w.k.t.,

$$
i(t)=\frac{V}{R_{1}}-K e^{-\left(\frac{R_{1}}{L}\right) t}---(2)
$$

Where, K is the initial value of current through the inductor.

$$
\begin{aligned}
a t & =0+ \\
\frac{V}{R_{1}+R_{2}} & =\frac{V}{R_{1}}-K
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{R_{1}+R_{2}}=\frac{V}{R_{1}}-K \\
& K=\frac{V}{R_{1}+R_{2}}-\frac{V}{R_{1}}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
i(t)=\frac{V}{R_{1}}-\left(\frac{V}{R_{1}+R_{2}}-\frac{V}{R_{1}}\right) e^{-\left(\frac{R_{1}}{L}\right) t} \\
\boldsymbol{i}(\boldsymbol{t})=\frac{\boldsymbol{V}}{\boldsymbol{R}_{\mathbf{1}}}\left(\mathbf{2}-\frac{\boldsymbol{R}_{\mathbf{1}}}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}}\right) \boldsymbol{e}^{-\left(\frac{\boldsymbol{R}_{\mathbf{1}}}{L}\right) \boldsymbol{t}}
\end{gathered}
$$

Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is moved from the position 1 to 2 at $t=0$. Find $V_{C}(t)$ at $\mathrm{t}>\mathrm{O}$.

Solution:

C-charged state at $\mathrm{t}=\mathrm{O}$ -
At $\mathrm{t}=0$ -
Equivalent circuit

At $t>0$, equivalent circuit.

$$
\begin{gathered}
-50=V_{R}+V_{C} \\
-50=1 x 10^{-6} \frac{d v_{c}}{d t} x 5000+V_{c} \\
-50=\frac{5}{1000} \frac{d v_{C}}{d t}+v c \\
\frac{d v_{C}(t)}{d t}+200 v_{C}=-10^{4}---(1) \\
v(t)=\frac{c}{b}\left(1-e^{\left.-\left(\frac{b}{a}\right) t\right)}\right. \\
v_{C}(t)=-\frac{10^{4}}{200}-K e^{-(200) t}---(2)
\end{gathered}
$$

Transient Response Analysis

Summary

Differential equation-1

$$
a \frac{d y(t)}{d t}+b y(t)=0
$$

Solution:

$$
\begin{gathered}
\frac{d y(t)}{d t}=-\frac{b}{a} y(t) \\
\frac{d y(t)}{y(t)}=-\frac{b}{a} d t \\
\int \frac{d y(t)}{y(t)}=\int-\frac{b}{a} d t \\
\ln y(t)=-\frac{b}{a} t+K^{\prime} \\
\ln y(t)=\ln e^{-\left(\frac{b}{a}\right) t}+\ln K---(1) \\
y(t)=K e^{-\left(\frac{b}{a}\right) t}---(2)
\end{gathered}
$$

Where, K is integral constant at $\mathrm{t}=0^{+}$.

$$
\text { If } y(t)=0 \text {, at } t=0^{+} \text {. from (1). }
$$

$$
\begin{gathered}
\ln y(t)=\ln \mathrm{e}^{-\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}}+\ln \mathrm{K} \\
\mathrm{~K}=0 \\
\therefore \mathbf{y}(\mathbf{t})=\mathbf{0}
\end{gathered}
$$

If $y(t)=y\left(0^{+}\right)=x$, at $t=0^{+}$. from (1).

$$
\begin{gathered}
\ln y(t)=\ln e^{-\left(\frac{b}{a}\right) t}+\ln K \\
K=x \\
\therefore y(t)=x e^{-\left(\frac{b}{a}\right) t}
\end{gathered}
$$

NOTE:

- $y(t)$ may be current $i(t)$ or voltage $v(t)$
- $i(t)$ may be branch currents/loop currents $/ \mathrm{i}_{\mathrm{L}}(\mathrm{t})$
- $\mathrm{v}(\mathrm{t})$ may be branch voltages/Node voltages $/ \mathrm{v}_{\mathrm{C}}(\mathrm{t})$.

Transient Response Analysis

Example:

- Consider a circuit.

- At $\mathrm{t}>\mathrm{O}$
- KVL equation

$$
\begin{gathered}
R_{1} i(t)+R_{2} i(t)+\frac{L d i(t)}{d t}=0 \\
L \frac{d i(t)}{d t}+\left(R_{1}+R_{2}\right) i(t)=0
\end{gathered}
$$

- This is in the form of differential equation-1

$$
a \frac{d i(t)}{d t}+b i(t)=0
$$

- w.k.t., the solution for differential equation.

$$
\begin{aligned}
& \text { If } \mathrm{i}(\mathrm{t})=0 \text {, at } \mathrm{t}=0^{+} \text {. from (1). } \\
& \qquad \begin{aligned}
& \ln \mathrm{i}(\mathrm{t})=\ln \mathrm{e}^{-\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}}+\ln \mathrm{K} \\
& \mathrm{~K}=0 \\
& \therefore \mathbf{i}(\mathrm{t})=\mathbf{0}
\end{aligned}
\end{aligned}
$$

If $i(t)=\frac{V}{R_{1}}$, at $t=0^{+}$. from (1).

$$
\begin{gathered}
\ln i(t)=\ln e^{-\left(\frac{b}{a}\right) t}+\ln K \\
K=\frac{V}{R_{1}} \\
\therefore i(t)=\frac{\mathbf{V}}{\mathbf{R}_{\mathbf{1}}} \mathbf{e}^{-\left(\frac{\mathbf{R}_{1}+\mathbf{R}_{2}}{\mathbf{L}}\right) \mathbf{t}}
\end{gathered}
$$

Transient Response Analysis - Introduction

Differential equation-2

$$
a \frac{d y(t)}{d t}+b y(t)=c
$$

Solution:

$$
\begin{gathered}
b K e^{-\left(\frac{b}{a}\right) t}=c-b y(t) \\
b y(t)=c-b K e^{-\left(\frac{b}{a}\right) t} \\
\mathbf{y}(\mathbf{t})=\frac{\mathbf{c}}{\mathbf{b}}-\mathbf{K e}^{-\left(\frac{\mathbf{b}}{\mathbf{a}}\right) \mathbf{t}}--(\mathbf{3})
\end{gathered}
$$

If $y(t)=0$, at $t=0^{+}$. from (2).

$$
\begin{gathered}
\mathrm{K}=\frac{\mathrm{c}}{\mathrm{~b}} \mathrm{e}^{\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}}-\mathrm{y}(\mathrm{t}) \cdot \mathrm{e}^{\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}} \\
\mathrm{~K}=\frac{c}{b}
\end{gathered}
$$

$$
-\left(\frac{1}{b}\right) \ln (c-b y(t))+K^{\prime}=\frac{b}{a} t
$$

$$
-\ln (c-b y(t))+b \ln K=\ln e^{\left(\frac{b}{a}\right) t}
$$

$$
b \ln K-\ln e^{\left(\frac{b}{a}\right) t}=\ln (c-b y(t)
$$

$$
\frac{b K}{e^{\left(\frac{b}{a}\right) t}}=c-b y(t)
$$

Also,

$$
\begin{equation*}
K=\frac{c}{b} e^{\left(\frac{b}{a}\right) t}-y(t) \cdot e^{\left(\frac{b}{a}\right) t} \tag{2}
\end{equation*}
$$

Transient Response Analysis - Introduction

Example:

- Consider a circuit.

- At t>0
- KVL equation

$$
\begin{aligned}
& R_{1} i(t)+L \frac{d i(t)}{d t}=V \\
& L \frac{d i(t)}{d t}+R_{1} i(t)=V
\end{aligned}
$$

- This is in the form of differential equation-2

$$
a \frac{d i(t)}{d t}+b i(t)=c
$$

- w.k.t., the solution for the differential equation.
$i(t)=\frac{c}{b}-K e^{-\left(\frac{b}{a}\right) t}$, Where, K is integral constant at $\mathrm{t}=0^{+}$.

$$
\begin{aligned}
& \text { If } \mathrm{i}(\mathrm{t})=0 \text {, at } \mathrm{t}=0^{+} . \\
& \mathrm{K}=\frac{\mathrm{c}}{\mathrm{~b}} \mathrm{e}^{\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}}-\mathrm{i}(\mathrm{t}) \cdot \mathrm{e}^{\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}} \\
& \mathrm{~K}=\frac{V}{R_{1}} \\
& \therefore \mathbf{i}(\mathrm{t})= \frac{\mathbf{V}}{\mathbf{R}_{\mathbf{1}}}\left(\mathbf{1}-\mathbf{e}^{-\left(\frac{\mathbf{R}_{1}}{L}\right) \mathrm{t}}\right)
\end{aligned}
$$

If $\mathrm{i}(\mathrm{t})=\frac{V}{R_{1}+R_{2}^{\prime}}$, at $\mathrm{t}=0^{+}$.

$$
\begin{gathered}
\mathrm{K}=\frac{\mathrm{c}}{\mathrm{~b}} \mathrm{e}^{\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}}-\mathrm{i}(\mathrm{t}) \cdot \mathrm{e}^{\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \mathrm{t}} \\
\mathrm{~K}=\frac{V}{R_{\mathbf{1}}}-\frac{V}{R_{1}+R_{2}} \\
\therefore \mathbf{i}(\mathbf{t})=\frac{\mathbf{V}}{\mathbf{R}_{\mathbf{1}}}-\left(\frac{V}{\boldsymbol{R}_{\mathbf{1}}}-\frac{V}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}}\right) \mathrm{e}^{-\left(\frac{\mathbf{R}_{\mathbf{1}}}{L}\right) \mathbf{t}} \\
\mathbf{i}(\mathbf{t})=\frac{\mathbf{V}}{\mathbf{R}_{\mathbf{1}}}-\frac{\mathbf{V}}{\mathbf{R}_{\mathbf{1}}} \mathbf{e}^{-\left(\frac{\mathbf{R}_{\mathbf{1}}}{\mathbf{L}}\right) \mathbf{t}}+\frac{\mathbf{V}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}} \mathrm{e}^{-\left(\frac{\mathbf{R}_{\mathbf{1}}}{\mathbf{L}}\right) \mathrm{t}}
\end{gathered}
$$

Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is moved
from the position 1 to 2 at $t=0$. Find $V_{C}(t)$ at $t>0$.

Solution:

C-charged state at $\mathrm{t}=\mathrm{O}$ -
At $\mathrm{t}=\mathrm{o}$ -
Equivalent circuit

At $t>0$, equivalent circuit.

$$
\begin{gathered}
-50=5000 * 10^{-6} \frac{d v_{C}(t)}{d t}+v_{C}(t) \\
5 * 10^{-3} \frac{d v_{C}(t)}{d t}+v_{C}(t)=-50---(1)
\end{gathered}
$$

Equation (1) is in the form of differential equation-2

$$
a \frac{d v(t)}{d t}+b v(t)=c
$$

Solution for the above equation is

$$
v(t)=\frac{c}{b}-K e^{-\left(\frac{b}{a}\right) t}
$$

$$
\begin{aligned}
& \text { Now, } a=5 * 10^{-3}, b=1 \text { and } c=-50 \\
& \text { Also } \\
& \qquad \begin{array}{c}
\text { also } K=\frac{c}{b}-x \\
\text { Where, } x=v_{C}\left(0^{+}\right)=100 \\
\therefore v_{C}(t)=-50-(-50-100) e^{-\left(\frac{1}{5 * 10^{-3}}\right) t} \\
\qquad \mathbf{v}_{\mathbf{c}}(\mathbf{t})=-\mathbf{5 0}+\mathbf{1 5 0} \mathbf{e}^{-\mathbf{2 0 0 t}}
\end{array}
\end{aligned}
$$

Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is moved from the position 1 to 2 at $t=0$. Find $i(t)$ at $t>0$.

Solution:

L-charged state at $\mathrm{t}=\mathrm{O}-$
At $\mathrm{t}=\mathrm{O}$ -
Equivalent circuit

$$
\begin{gathered}
40=2 i(t)+0.5 \frac{d i(t)}{d t} \\
0.5 \frac{d i(t)}{d t}+2 i(t)=40---(1)
\end{gathered}
$$

Equation (1) is in the form of differential equation-2

$$
a \frac{d i(t)}{d t}+b i(t)=c
$$

Solution for the above equation is

$$
i(t)=\frac{c}{b}-K e^{-\left(\frac{b}{a}\right) t}
$$

Now, $a=0.5, b=2$ and $c=40$
Also

$$
\text { also } K=\frac{c}{b}-x
$$

Where, $x=i_{L}\left(0^{-}\right)=4$

$$
\begin{gathered}
i(t)=\frac{40}{2}-\left(\frac{40}{2}-4\right) e^{-\frac{2}{0.5} t} \\
i(t)=20-(20-4) e^{-4 t} \\
\mathbf{i}(\mathbf{t})=\mathbf{2 0}-\mathbf{1 6} \mathbf{e}^{-4 \mathbf{t}}
\end{gathered}
$$

Transient Response Analysis - Introduction

P. For the network shown in figure, steady state is reached with the switch closed. The switch is opened at $t=0$. Obtain expression for $i_{L}(t)$ and $v_{L}(t)$.

Solution:

L-charged state at $\mathrm{t}=\mathrm{o}$ -

At $\mathrm{t}=\mathrm{O}$ -
Equivalent circuit

$i_{L}\left(0^{-}\right)=0.15 A$
At $t>0$, equivalent circuit.

$$
\begin{gathered}
3000 i_{L}(t)+90 * 10^{-3} \frac{d i_{L}(t)}{d t}=0 \\
0.09 \frac{d i_{L}(t)}{d t}+3000 i_{L}(t)=0---(1)
\end{gathered}
$$

Equation (1) is in the form of differential equation-1

$$
a \frac{d i_{L}(t)}{d t}+b i_{L}(t)=0
$$

Solution for the above equation is

$$
i_{L}(t)=K e^{-\left(\frac{b}{a}\right) t}
$$

Transient Response Analysis - Introduction

$$
\begin{gathered}
v_{L}(t)=L \frac{d i_{L}(t)}{d t} \\
v_{L}(t)=0.09 \frac{d}{d t}\left(\mathbf{0 . 1 5} \boldsymbol{e}^{-\mathbf{3 3 . 3 * 1 0} \mathbf{3} \boldsymbol{t}}\right) \\
v_{L}=0.09 * 0.15 *\left(-33.33 * 10^{3}\right) e^{-33.33 * 10^{3} t} \\
\boldsymbol{v}_{\boldsymbol{L}}(\boldsymbol{t})=-\mathbf{4 5 0} \boldsymbol{e}^{\left(-\mathbf{3 3 . 3 3 * 1 0 ^ { 3 }}\right) \boldsymbol{t}}
\end{gathered}
$$

Transient Response Analysis - Introduction

P. For the network shown in figure, the switch is open for a long time and closes at $\mathrm{t}=\mathrm{o}$. Determine $v_{C}(t)$.

Solution:

C-charged state at $\mathrm{t}=\mathrm{O}$ -
At $\mathrm{t}=\mathrm{O}$ -
Equivalent circuit

$v_{C}\left(o^{-}\right)=1200 \mathrm{~V}$
At $\mathrm{t}>\mathrm{O}$, equivalent circuit.

Apply KCL

$$
\begin{gathered}
\frac{1200-v_{c}(t)}{100}=\frac{v_{C}(t)}{300}+50 * 10^{-6} \frac{d v_{C}(t)}{d t} \\
50 * 10^{-6} \frac{d v_{C}(t)}{d t}+0.0133 v_{C}(t)=12---(1)
\end{gathered}
$$

Equation (1) is in the form of differential equation-2

$$
a \frac{d y(t)}{d t}+b y(t)=c
$$

Solution for the above equation is

$$
y(t)=\frac{c}{b}-K e^{-\left(\frac{b}{a}\right) t}
$$

Now, $\mathrm{a}=50 * 10^{-6}, b=0.0133$ and $c=12$.
Also, $K=\frac{c}{b}-x$, where $x=v_{C}\left(0^{-}\right)=1200$

$$
\begin{gathered}
v_{C}(t)=900-(900-1200) e^{-266 t} \\
\mathbf{v}_{\mathbf{C}}(\mathbf{t})=\mathbf{9 0 0}+\mathbf{3 0 0} e^{-266 t}
\end{gathered}
$$

Transient Response Analysis - Introduction
P. Find $i(t)$ for $t>0$.

Solution:
L-charged state at $\mathrm{t}=\mathrm{o}$ -
At $\mathrm{t}=\mathrm{O}$ -
At $t>0$, equivalent circuit

Equivalent circuit

$$
i_{L}\left(o^{-}\right)=17.5 \mathrm{~A}
$$

(o)

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Introduction

Apply KVL

$$
0.3 \frac{d i(t)}{d t}+15 i(t)=0---(1)
$$

Equation (1) is in the form of differential equation-1

$$
a \frac{d i(t)}{d t}+b i(t)=0
$$

Solution for the above equation is

$$
i(t)=K e^{-\left(\frac{b}{a}\right) t}
$$

Now, $\mathrm{a}=0.3$ and $b=15$.
Also, $K=x$, where $x=i_{L}\left(0^{-}\right)=17.5$

$$
i(t)=17.5 e^{-(50) t}
$$

Transient Response Analysis - Introduction

P. For the network shown in figure, the switch is changed the position from a to b at $\mathrm{t}=0$. Find $v(t)$ for $t>0$.

Solution:

C-charged state at $\mathrm{t}=\mathrm{O}$ At $\mathrm{t}=\mathrm{O}$ -
Equivalent circuit

$v_{C}\left(o^{-}\right)=5 \mathrm{~V}$
$v\left(0^{-}\right)=0 V$.
At $\mathrm{t}=\mathrm{O}+$, equivalent circuit.

$$
v\left(0^{+}\right)=-2.5 \mathrm{~V} \text { and } i\left(0^{+}\right)=-1.25 \mathrm{~A}
$$

At $t>0$, equivalent circuit.

Apply KVL

$$
4 i(t)+\frac{1}{\frac{1}{4}} \int i(t) d t=0
$$

Differentiate the equation w.r.t.t

$$
4 \frac{d i(t)}{d t}+4 i(t)=0---(1)
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Transient Response Analysis - Introduction

$$
4 \frac{d i(t)}{d t}+4 i(t)=0---(1)
$$

Equation (1) is in the form of differential equation-1

$$
a \frac{d i(t)}{d t}+b i(t)=0
$$

Solution for the above equation is

$$
i(t)=K e^{-\left(\frac{b}{a}\right) t}
$$

Now, $a=4, b=4$
Also, $K=x$, where $x=i\left(0^{+}\right)=-1.25$

$$
i(t)=-1.25 e^{-t}
$$

From the circuit

$$
\begin{gathered}
v(t)=2 i(t) \\
v(t)=-2.5 e^{-t}
\end{gathered}
$$

Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is in position ' a ' for a long time. At $t=0$, the switch is moved from a to b. Find $v_{2}(t)$. Assume that the initial current in the 2 H inductor is zero.

Solution:

$\mathrm{L} 1=1 \mathrm{H}$-charged state at $\mathrm{t}=0$ -
$\mathrm{L} 2=2 \mathrm{H}-$ Uncharged state at $\mathrm{t}=\mathrm{O}-$
At $\mathrm{t}=\mathrm{O}$ -
$i_{L_{2}}\left(0^{-}\right)=0 A$.
$i_{L_{1}}\left(0^{-}\right)=1 A$
At $\mathrm{t}=\mathrm{O}+$
$v_{2}\left(0^{+}\right)=-0.5 \mathrm{~V}$
At $t>0$

$$
\frac{1}{L_{1}} \int v_{2}(t) d t+\frac{v_{2}(t)}{\frac{1}{2}}+\frac{1}{L_{2}} \int v_{2}(t) d t=0
$$

$$
\begin{gathered}
\int v_{2}(t) d t+2 v_{2}(t)+0.5 \int v_{2}(t) d t=0 \\
\text { d.w.r.t.t } \\
v_{2}(t)+2 \frac{d v_{2}(t)}{d t}+0.5 v_{2}(t)=0 \\
2 \frac{d v_{2}(t)}{d t}+1.5 v_{2}(t)=0---(1)
\end{gathered}
$$

Equation (1) is in the form of

$$
a \frac{d y(t)}{d t}+b y(t)=0
$$

Hence, the solution is

$$
v_{2}(t)=K e^{-\left(\frac{b}{a}\right) t} \Rightarrow-0.5 e^{-(0.75 t)}
$$

Laplace Transforms-Introduction

Laplace Transforms:

Laplace transform is a mathematical technique, which converts time domain equations into frequency domain.

- Integro-differential equations modelling is the well known/conventional mathematical model used to describe the electrical systems.
- Analysis of systems using IDE and finding the solution is difficult for higher order systems.
- Difficult to incorporate initial conditions.
- Laplace Transforms converts Integrodifferential equations into simple algebraic equations.
- Analysis of systems in frequency domain is easy even for higher systems.
- Initial conditions are automatically incorporated.

Laplace Transforms-Introduction

Laplace Transforms:

Definition:

Any continuous time function $f(t)$ defined for $t \geq 0$ and its Laplace transform is given by

$$
L\{f(t)\} \Rightarrow F[s]=\int_{0}^{\infty} f(t) \cdot e^{-(s t)} d t---(1)
$$

Where, \mathbf{s} is the complex variable, i.e., $\boldsymbol{s}=\boldsymbol{\sigma}+\boldsymbol{j} \boldsymbol{\omega}$
Where $\boldsymbol{\sigma}$ is the real part, which controls the amplitude and ω is the imaginary part, which controls the frequency.

Inverse Laplace transform:

Definition:

$$
L^{-1}\{F[s]\} \Rightarrow f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F[s] e^{s t} d s---(2)
$$

Laplace Transforms-Important Functions

Laplace Transforms of standard test input signals:

Unit Step Signal

Unit Ramp Signal

$$
r(t)=\left\{\begin{array}{l|l}
\boldsymbol{t} & \boldsymbol{t} \geq \mathbf{0} \\
\mathbf{0} & \boldsymbol{t}<\mathbf{0}
\end{array}\right\}
$$

$$
R(s)=\frac{1}{s^{2}}
$$

Unit Parabolic Signal

$$
r(t)=\left\{\begin{array}{c|c}
t^{2} \mid t \geq 0 \\
0 & t<0
\end{array}\right\}
$$

$$
R(s)=\frac{2}{s^{3}}
$$

Unit Impulse Signal

$$
\begin{gathered}
r(t)=\left\{\begin{array}{l}
1 \left\lvert\, \begin{array}{l}
t=0 \\
0 \\
\text { else }
\end{array}\right.
\end{array}\right\} \\
R(s)=1
\end{gathered}
$$

$L\{f(t)\} \Rightarrow F[s]=\int_{0}^{\infty} f(t) \cdot e^{-(s t)} d t---(1)$

1. Step signal

$$
\begin{gathered}
f(t)=u(t)=\left\{\begin{array}{l}
A \\
0
\end{array} \left\lvert\, \begin{array}{l}
t \geq 0 \\
t<0
\end{array}\right.\right\} \\
F(s)=\int_{0}^{\infty} A \cdot e^{-s t} d t \\
\left.F(s)=A \cdot \frac{e^{-s t}}{-s} \right\rvert\, t=0 \text { to } \infty \\
F(s)=A \cdot\left[\frac{e^{-\infty}}{-s}-\frac{e^{0}}{-s}\right] \\
F(s)=\frac{\mathrm{A}}{\mathrm{~s}}
\end{gathered}
$$

for unit step signal $A=1$

$$
F(s)=\frac{1}{s}
$$

$$
L\{f(t)\} \Rightarrow F[s]=\int_{0}^{\infty} f(t) \cdot e^{-(s t)} d t---(1)
$$

2. Ramp signal

$$
\left.\begin{array}{c}
f(t)=r(t)=\left\{\left.\begin{array}{c}
A t \\
0
\end{array} \right\rvert\, t \geq 0\right. \\
t<0
\end{array}\right\}, \begin{gathered}
F(s)=\int_{0}^{\infty} A t \cdot e^{-s t} d t \\
F(s)=\frac{A}{s^{2}} \\
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{u} \cdot \mathrm{dv}=\left.\mathrm{u} \cdot \mathrm{v}\right|_{\mathrm{a}} ^{\mathrm{b}}-\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{v} \cdot \mathrm{du} \\
\mathrm{du}=\mathrm{dt} \quad \mathrm{u}=\mathrm{t} \\
\mathrm{v}=-\frac{1}{\mathrm{~s}} \mathrm{e}^{-\mathrm{st}} \mathrm{dv}=\mathrm{e}^{-\mathrm{st}} \\
\mathrm{Y}(\mathrm{~s})=\left[-\frac{\mathrm{t}}{\mathrm{~s}} \mathrm{e}^{-\mathrm{st}}\right]_{0}^{\infty}-\left[\int_{\sigma}^{\infty}-\frac{1}{\mathrm{~s}} \mathrm{e}^{-\mathrm{st}} \cdot \mathrm{dt}\right] \\
=[0-0]-\left[-\frac{1}{\mathrm{~s}} \int_{\sigma}^{\infty} \mathrm{e}^{-\mathrm{st}} \cdot \mathrm{dt}\right]=\frac{1}{\mathrm{~s}} \int_{\sigma_{0}^{\infty} \mathrm{e}^{-s t} \cdot \mathrm{dt}=\frac{1}{\mathrm{~s}} \cdot \frac{1}{\mathrm{~s}}=\frac{1}{\mathrm{~s}^{2}}}^{\mathrm{t}} \stackrel{\mathcal{L}}{\frac{1}{\mathrm{~s}^{2}}}
\end{gathered}
$$

$L\{f(t)\} \Rightarrow F[s]=\int_{0}^{\infty} f(t) \cdot e^{-(s t)} d t---(1)$
3. Unit Impulse signal

$$
\left.\begin{array}{c}
f(t)=\delta(t)=\left\{\left.\begin{array}{l}
1 \\
0
\end{array}\right|_{t<0 \text { or } t>0}\right\}
\end{array}\right\}, \begin{gathered}
F(s)=\int_{0}^{0} 1 \cdot e^{-s t} d t \\
F(s)=1 . e^{-s t} \mid t=0 \\
F(s)=1
\end{gathered}
$$

1. Coswt
2. Sinhwt
3. Coshwt
4. $e^{a t}$
5. $e^{a t}$ sinwt
6. $e^{a t} \cos w t$
7. $e^{-a t}$
8. $e^{-a t} \sin w t$
9. $e^{-a t} \operatorname{coswt}$

$$
L\{f(t)\} \Rightarrow F[s]=\int_{0}^{\infty} f(t) \cdot e^{-(s t)} d t---(1)
$$

4. $f(t)=\sin w t$

$$
\begin{aligned}
& \sin (\theta)=\frac{e^{j \theta}-e^{-j \theta}}{2 j} \\
& Y(s)=\int_{0^{-}}^{\infty} \frac{e^{j \omega t}-e^{-j \omega t}}{2 j} e^{-s t} d t=\frac{1}{2 j} \int_{0^{-}}^{\infty} \mathrm{e}^{j \omega t} \mathrm{e}^{-s t} d t-\frac{1}{2 j} \int_{\sigma^{-}}^{\infty} \mathrm{e}^{-j \omega t} \mathrm{e}^{-s t} d t \\
& Y(s)=\frac{1}{2 j} \frac{1}{s-j \omega}-\frac{1}{2 j} \frac{1}{s+j \omega} \\
& Y(s)=\frac{1}{2 j} \frac{1}{(s-j \omega)} \frac{(s+j \omega)}{(s+j \omega)}-\frac{1}{2 j} \frac{1}{(s+j \omega)} \frac{(s-j \omega)}{(s-j \omega)} \\
& =\frac{1}{2 \mathrm{j}} \frac{(\mathrm{~s}+\mathrm{j} \omega)-(\mathrm{s}-\mathrm{s} \omega)}{\left.\mathrm{s}^{2}-\mathrm{j} \omega+\mathrm{sj} \omega-(\mathrm{j} \omega)^{2}\right)}=\frac{1}{2 \mathrm{j}} \frac{2 \mathrm{j} \omega}{\mathrm{~s}^{2}+\omega^{2}} \\
& =\frac{\omega}{s^{2}+\omega^{2}} \\
& \sin (\omega \mathrm{t}) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{\omega}{\mathrm{s}^{2}+\omega^{2}}
\end{aligned}
$$

Laplace Transforms-Introduction

Laplace Transforms:

Laplace transform is a mathematical technique, which converts time domain equations into frequency domain.

- Integro-differential equations modelling is the well known/conventional mathematical model used to describe the electrical systems.
- Analysis of systems using IDE and finding the solution is difficult for higher order systems.
- Difficult to incorporate initial conditions.
- Laplace Transforms converts Integrodifferential equations into simple algebraic equations.
- Analysis of systems in frequency domain is easy even for higher systems.
- Initial conditions are automatically incorporated.

Laplace Transforms-Introduction

Laplace Transforms:

Definition:

Any continuous time function $f(t)$ defined for $t \geq 0$ and its Laplace transform is given by

$$
L\{f(t)\} \Rightarrow F[s]=\int_{0}^{\infty} f(t) \cdot e^{-(s t)} d t---(1)
$$

Where, \mathbf{s} is the complex variable, i.e., $\boldsymbol{s}=\boldsymbol{\sigma}+\boldsymbol{j} \boldsymbol{\omega}$
Where $\boldsymbol{\sigma}$ is the real part, which controls the amplitude and ω is the imaginary part, which controls the frequency.

Inverse Laplace transform:

Definition:

$$
L^{-1}\{F[s]\} \Rightarrow f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F[s] e^{s t} d s---(2)
$$

$$
\begin{array}{l|l}
\text { 1. } \mathbf{f}(\mathbf{t})=\mathbf{1} & \text { 2.f(t) }=\mathbf{A} \\
\mathrm{L}\{1\}=>\mathrm{F}[\mathrm{~s}]=\int_{0}^{\infty} 1 . \mathrm{e}^{-s t} \mathrm{dt} & \mathrm{~L}\{\mathrm{~A}\}=>\mathrm{F}[\mathrm{~s}]=\int_{0}^{\infty} \mathrm{A} \cdot \mathrm{e}^{-s t} \mathrm{dt} \\
\mathrm{~L}\{1\}=\left.\frac{\mathrm{e}^{-s t}}{-\mathrm{s}}\right|_{0} ^{\infty} & \mathrm{L}\{\mathrm{~A}\}=\left.\mathrm{A} \frac{\mathrm{e}^{-s t}}{-\mathrm{s}}\right|_{0} ^{\infty} \\
\mathrm{L}\{1\}=-\frac{1}{\mathrm{~s}}\left[\mathrm{e}^{-\infty}-\mathrm{e}^{0}\right] & \mathrm{L}\{\mathrm{~A}\}=-\frac{\mathrm{A}}{\mathrm{~s}}\left[\mathrm{e}^{-\infty}-\mathrm{e}^{0}\right] \\
\mathbf{L}\{\mathbf{1}\}=\frac{\mathbf{1}}{\mathbf{s}}\left(\because \mathrm{e}^{-\infty}=0 \text { and } \mathrm{e}^{0}=1\right) & \mathbf{L}\{\mathbf{A}\}=\frac{\mathbf{A}}{\mathbf{s}}\left(\because \mathrm{e}^{-\infty}=0 \text { and } \mathrm{e}^{0}=1\right)
\end{array}
$$

Laplace Transforms-Examples

3. $\mathbf{f}(\mathrm{t})=\mathrm{t}^{\mathrm{n}}$
$L\left\{t^{n}\right\}=>F[s]=\int_{0}^{\infty} t^{n} \cdot e^{-s t} d t$
We know that, Integral by parts
$\int_{0}^{\infty} u . d v=u .\left.v\right|_{0} ^{\infty}-\int_{0}^{\infty} v . d u$
Let, $\mathrm{u}=\mathrm{t}^{\mathrm{n}}$ and $\mathrm{d} v=\mathrm{e}^{-s t} \mathrm{dt}$
$\mathrm{du}=\mathrm{nt}^{\mathrm{n}-1} \mathrm{dt}$
$v=-\frac{e^{-s t}}{s}$
$\therefore \mathrm{L}\left\{\mathrm{t}^{\mathrm{n}}\right\}=-\left.\mathrm{t}^{\mathrm{n}} \cdot \frac{\mathrm{e}^{-\mathrm{st}}}{\mathrm{s}}\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{\mathrm{e}^{-\mathrm{st}}}{\mathrm{s}} . \mathrm{n} \cdot \mathrm{t}^{\mathrm{n}-1} \mathrm{dt}$
$L\left\{t^{n}\right\}=0+\frac{n}{s} \int_{0}^{\infty} t^{n-1} e^{-s t} d t=>\frac{n}{s} L\left\{t^{n-1}\right\}$

Similarly

$\mathrm{L}\left\{\mathrm{t}^{\mathrm{n}-1}\right\}=\frac{\mathrm{n}(\mathrm{n}-1)}{\mathrm{s} . \mathrm{s}} . \mathrm{L}\left\{\mathrm{t}^{\mathrm{n}-2}\right\}$
\cdot
So, Generally
$\mathbf{L}\left\{\mathbf{t}^{\mathbf{n}}\right\}=\frac{\mathbf{n !}}{\mathbf{s}^{\mathbf{n + 1}}}$

Laplace Transforms-Examples

$$
\begin{aligned}
& \text { 4. } f(t)=e^{a t} \\
& L\left\{e^{a t}\right\}=>F[s]=\int_{0}^{\infty} e^{a t} . e^{-s t} d t \\
& L\left\{e^{\mathrm{at}}\right\}=\int_{0}^{\infty} \mathrm{e}^{-(\mathrm{s}-\mathrm{a}) \mathrm{t}} \mathrm{dt} \\
& L\left\{e^{a t}\right\}=\left.\frac{e^{-(s-a) t}}{-(s-a)}\right|_{0} ^{\infty} \\
& \mathrm{L}\left\{\mathbf{e}^{\mathbf{a t}} \mathbf{1}\right\}=\frac{\mathbf{1}}{\mathbf{s}-\mathbf{a}} \\
& \text { Similarly } \\
& L\left\{e^{-a t}\right\}=\frac{1}{s+a} \\
& \text { 5. } f(t)=\sin \omega t \\
& L\{\sin \omega \mathrm{t}\}=\int_{0}^{\infty} \sin \omega \mathrm{t} . \mathrm{e}^{-\mathrm{st}} d t \\
& \text { We know that } \\
& \sin \omega \mathrm{t}=\frac{\mathrm{e}^{\mathrm{j} \omega t}-e^{-j \omega t}}{2 j} \\
& \boldsymbol{L}\{\sin \omega \mathrm{t}\}=\int_{0}^{\infty} \frac{\mathrm{e}^{\mathrm{j} \omega t}-e^{-j \omega t}}{2 j} \cdot \mathrm{e}^{-\mathrm{st}} d t \\
& L\{\sin \omega \mathrm{t}\}=\frac{1}{2 j} \int_{0}^{\infty}\left(e^{j \omega t} e^{-s t}-e^{-j \omega t} e^{-s t}\right) d t \\
& L\{\sin \omega \mathrm{t}\}=\frac{1}{2 \mathrm{j}} \int_{0}^{\infty} e^{-(s-j \omega) t} d t-\frac{1}{2 j} \int_{0}^{\infty} e^{-(s+j \omega) t} d t \\
& L\{\sin \omega \mathrm{t}\}=\frac{1}{2 \mathrm{j}}\left[-\left.\frac{e^{-(s-j \omega) t}}{s-j \omega}\right|_{0} ^{\infty}-\left.\frac{e^{-(s+j \omega) t}}{s+j \omega}\right|_{0} ^{\infty}\right. \\
& L\{\boldsymbol{\operatorname { s i n }} \boldsymbol{\omega} \mathrm{t}\}=\frac{\boldsymbol{\omega}}{\mathbf{s}^{\mathbf{2}}+\boldsymbol{\omega}^{\mathbf{2}}}
\end{aligned}
$$

Laplace Transforms-Examples

6. $f(t)=\cos \omega t$
$L\{\boldsymbol{\operatorname { c o s }} \omega \mathrm{t}\}=\int_{0}^{\infty} \boldsymbol{\operatorname { c o s }} \boldsymbol{\omega} \mathrm{t} . \mathrm{e}^{-\mathrm{st}} d t$
We know that
$\boldsymbol{\operatorname { c o s }} \boldsymbol{\omega} \mathbf{t}=\frac{\mathrm{e}^{\mathrm{j} \omega t}+e^{-j \omega t}}{2}$
$\boldsymbol{L}\{\boldsymbol{\operatorname { c o s }} \boldsymbol{\omega}\}=\int_{0}^{\infty} \frac{\mathrm{e}^{\mathrm{j} \omega t}+e^{-j \omega t}}{2} . \mathrm{e}^{-\mathrm{st}} d t$
$L\{\boldsymbol{\operatorname { c o s }} \boldsymbol{\omega} \mathbf{t}\}=\frac{1}{2} \int_{0}^{\infty}\left(e^{j \omega t} e^{-s t}+e^{-j \omega t} e^{-s t}\right) d t$
$L\{\boldsymbol{\operatorname { c o s }} \boldsymbol{\omega} \mathbf{t}\}=\frac{1}{2} \int_{0}^{\infty} e^{-(s-j \omega) t} d t+\frac{1}{2 j} \int_{0}^{\infty} e^{-(s+j \omega) t} d t$
$L\{\boldsymbol{\operatorname { c o s }} \boldsymbol{\omega} \mathbf{t}\}=\frac{1}{2}\left[-\left.\frac{e^{-(s-j \omega) t}}{s-j \omega}\right|_{0} ^{\infty}+\left.\frac{e^{-(s+j \omega) t}}{s+j \omega}\right|_{0} ^{\infty}\right.$
$\boldsymbol{L}\{\boldsymbol{c o s} \omega \mathrm{t}\}=\frac{\mathrm{s}}{\mathrm{s}^{2}+\omega^{2}}$
7. $\mathbf{f}(\mathrm{t})=\boldsymbol{\operatorname { s i n h }} \boldsymbol{\omega t}$
$L\{\sin \omega t\}=\int_{0}^{\infty} \sin \omega t . \mathrm{e}^{-s t} d t$
We know that
$\sinh \omega \mathrm{t}=\frac{\mathrm{e}^{\omega t}-e^{-\omega t}}{2}$
$L\{\sinh \omega \mathrm{t}\}=\int_{0}^{\infty} \frac{\mathrm{e}^{\omega t}-e^{-\omega t}}{2} . \mathrm{e}^{-s t} d t$
$L\{\sinh \omega \mathrm{t}\}=\frac{1}{2} \int_{0}^{\infty}\left(e^{\omega t} e^{-s t}-e^{-\omega t} e^{-s t}\right) d t$
$L\{\sinh \omega \mathrm{t}\}=\frac{1}{2} \int_{0}^{\infty} e^{-(s-\omega) t} d t-\frac{1}{2} \int_{0}^{\infty} e^{-(s+\omega) t} d t$
$L\{\sinh \omega \mathrm{t}\}=\frac{1}{2}\left[-\left.\frac{e^{-(s-\omega) t}}{s-\omega}\right|_{0} ^{\infty}-\left.\frac{e^{-(s+\omega) t}}{s+\omega}\right|_{0} ^{\infty}\right.$
$\boldsymbol{L}\{\sinh \omega t\}=\frac{\omega}{\mathbf{s}^{2}-\boldsymbol{\omega}^{\boldsymbol{2}}}$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Laplace Transforms-Examples

8. $f(t)=\cosh \omega t$
$L\{\boldsymbol{\operatorname { c o s h }} \omega \mathbf{t}\}=\int_{0}^{\infty} \boldsymbol{\operatorname { c o s h }} \omega \mathrm{t} . \mathrm{e}^{-\mathrm{st}} d t$
We know that
$\boldsymbol{\operatorname { c o s h }} \boldsymbol{\omega} \mathbf{t}=\frac{\mathrm{e}^{\omega t}+e^{-\omega t}}{2}$
$\boldsymbol{L}\{\boldsymbol{\operatorname { c o s h }} \omega \boldsymbol{t}\}=\int_{0}^{\infty} \frac{\mathrm{e}^{\omega t}+e^{-\omega t}}{2} \cdot \mathrm{e}^{-\mathrm{st}} d t$
$L\{\boldsymbol{\operatorname { c o s h }} \boldsymbol{\omega} \mathbf{t}\}=\frac{1}{2} \int_{0}^{\infty}\left(e^{\omega t} e^{-s t}+e^{-\omega t} e^{-s t}\right) d t$
$L\{\boldsymbol{\operatorname { c o s h }} \boldsymbol{\omega t}\}=\frac{1}{2} \int_{0}^{\infty} e^{-(s-\omega) t} d t+\frac{1}{2 j} \int_{0}^{\infty} e^{-(s+\omega) t} d t$
$L\{\boldsymbol{\operatorname { c o s h }} \boldsymbol{\omega} \mathbf{t}\}=\frac{1}{2}\left[-\left.\frac{e^{-(s-\omega) t}}{s-\omega}\right|_{0} ^{\infty}+\left.\frac{e^{-(s+\omega) t}}{s+\omega}\right|_{0} ^{\infty}\right.$
$L\{\cosh \omega t\}=\frac{\mathrm{s}}{\mathbf{s}^{2}-\omega^{2}}$

$$
\begin{gathered}
\boldsymbol{L}\{\sqrt{\boldsymbol{t}}\}=? \\
L\{1 / \sqrt{\boldsymbol{t}}\}=?
\end{gathered}
$$

Exercise:

Find the Laplace transform of the following functions.

1. $\cos 3 t$
2. $\sinh 4 t$
3. $e^{-10 t}$
4. t^{3}

Laplace Transforms-Properties

1. $\cos 3 t$
$L\{\cos 3 t\}=\frac{s}{s^{2}+9}\left(\right.$ since, $\left.L\left\{\cos w t=\frac{s}{s^{2}+w^{2}}\right\}\right)$
2. $\sinh 4 t$
$L\{\sinh 4 t\}=\frac{4}{s^{2}-16}$
3. $e^{-10 t}$
$L\left\{e^{-10 t}\right\}=\frac{1}{s+10}$
4. t^{3}
$L\left\{t^{3}\right\}=\frac{\mathbf{6}}{\boldsymbol{s}^{4}}$

Laplace Transforms-Properties

1. Linearity

$$
L\{f(t) \pm g(t)\}=F[s] \pm G[s]
$$

Proof:

$$
\begin{gathered}
\boldsymbol{L}\{f(t) \pm g(t)\}=\int_{0}^{\infty}(f(t) \pm g(t)) e^{-s t} d t \\
L\{f(t) \pm g(t)\}=\int_{0}^{\infty}(f(t)) e^{-s t} d t \pm \int_{0}^{\infty}(g(t)) e^{-s t} d t \\
\boldsymbol{L}\{\boldsymbol{f}(\boldsymbol{t}) \pm \boldsymbol{g}(\boldsymbol{t})\}=\boldsymbol{F}[\boldsymbol{s}] \pm \boldsymbol{G}[\boldsymbol{s}]
\end{gathered}
$$

Example:

$$
L\left\{\cos 4 t+t^{2}\right\}=L\{\cos 4 t\}+L\left\{t^{2}\right\}=>\frac{s}{s^{2}+16}+\frac{2}{s^{3}}
$$

Laplace Transforms-Properties

2. Function Scaling

$$
\boldsymbol{L}\{\boldsymbol{a} f(t)\}=\boldsymbol{a} L\{\boldsymbol{f}(\boldsymbol{t})\} \Rightarrow \boldsymbol{a} F[\boldsymbol{s}]
$$

Proof:

$$
\begin{gathered}
L\{a f(t)\}=\int_{0}^{\infty} a f(t) e^{-s t} d t \\
L\{a f(t)\}=a \int_{0}^{\infty} f(t) e^{-s t} d t \\
\boldsymbol{L}\{\boldsymbol{a} \boldsymbol{f}(\boldsymbol{t})\}=\boldsymbol{a} \boldsymbol{F}[\boldsymbol{s}]
\end{gathered}
$$

Example:

$$
L\left\{5 e^{-3 t}\right\}=5 L\left\{e^{-3 t}\right\}=>\frac{5}{s+3}
$$

Laplace Transforms-Properties

3. Time shifting

$$
L\{f(t-T)\}=e^{-s T} F[s]
$$

Proof:

$$
L\{f(t-T)\}=\int_{0}^{\infty} f(t-T) e^{-s t} d t
$$

Example:

Let, $t-T=\tau$

$$
\begin{gathered}
t=\tau+T \\
d t=d \tau \\
\therefore L\{f(t-T)\}=\int_{0}^{\infty} f(\tau) e^{-s(\tau+T)} d \tau \\
L\{f(t-T)\}=\int_{0}^{\infty} f(\tau) e^{-s T} \cdot e^{-s \tau} d \tau \\
L\{f(t-T)\}=e^{-s T} \int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau \\
\therefore \boldsymbol{L}\{\boldsymbol{f}(\boldsymbol{t}-\boldsymbol{T})\}=\boldsymbol{e}^{-s \boldsymbol{s}} \boldsymbol{F}[\boldsymbol{s}]
\end{gathered}
$$

Laplace Transforms-Properties

4. Frequency shifting

$$
L\left\{e^{a t} f(t)\right\}=F(s-a)
$$

Example:

$$
\begin{aligned}
\boldsymbol{L}\left\{\boldsymbol{e}^{-\boldsymbol{a} \boldsymbol{t}} \boldsymbol{\operatorname { s i n } \boldsymbol { L } t}\right\} & =\frac{\boldsymbol{b}}{(\boldsymbol{s}+\boldsymbol{a})^{2}+\boldsymbol{b}^{2}} \\
L\{\sin b t\} & =\frac{b}{s^{2}+b^{2}} \\
L\left\{e^{-a t} \sin b t\right\} & =\frac{b}{(s+a)^{2}+b^{2}}
\end{aligned}
$$

$$
\begin{gathered}
L\left\{e^{a t} f(t)\right\}=\int_{0}^{\infty} e^{a t} f(t) e^{-s t} d t \\
L\left\{e^{a t} f(t)\right\}=\int_{0}^{\infty} f(t) e^{-(s-a) t} d t \\
L\left\{e^{a t} f(t)\right\}=F(s-a)
\end{gathered}
$$

Similarly

$$
L\left\{e^{-a t} f(\mathrm{t})\right\}=\mathrm{F}(\mathrm{~s}+\mathrm{a})
$$

$$
\begin{gathered}
L\left\{e^{a t} \cos b t\right\} \Rightarrow \\
L\{\cos b t\}=\frac{s}{s^{2}+b^{2}} \\
\boldsymbol{L}\left\{\boldsymbol{e}^{\boldsymbol{a} t} \boldsymbol{c o s} \boldsymbol{b} \boldsymbol{t}\right\}=\frac{\boldsymbol{s}-\boldsymbol{a}}{(\boldsymbol{s}-\boldsymbol{a})^{2}+\boldsymbol{b}^{\mathbf{2}}}
\end{gathered}
$$

Laplace Transforms-Properties

5. Time scaling

$$
L\{\boldsymbol{f}(\boldsymbol{a} t)\}=\frac{1}{\boldsymbol{a}} \boldsymbol{F}\left[\frac{\boldsymbol{s}}{\boldsymbol{a}}\right]
$$

Proof:

$$
L\{f(a t)\}=\int_{0}^{\infty} f(a t) e^{-s t} d t .
$$

Let, $a t=\tau$

$$
\begin{gathered}
t=\frac{\tau}{a} \\
d t=\frac{1}{a} d \tau \\
\therefore L\{f(a t)\}=\int_{0}^{\infty} \frac{f(\tau) e^{-\left(\frac{s}{a}\right) \tau} d \tau}{a} \\
\therefore L\{f(a t)\}=\frac{1}{a} \int_{0}^{\infty} f(\tau) e^{-\left(\frac{s}{a}\right) \tau} d \tau \\
\therefore \boldsymbol{L}\{\boldsymbol{f}(\boldsymbol{a} \boldsymbol{t})\}=\frac{\mathbf{1}}{\boldsymbol{a}} \boldsymbol{F}\left[\frac{\boldsymbol{s}}{\boldsymbol{a}}\right]
\end{gathered}
$$

Laplace Transforms-Properties

1. $f(t)=e^{a t} \cosh w t$

$$
\begin{gathered}
L\{\cosh w t\}=\frac{s}{s^{2}-w^{2}} \\
L\left\{e^{a t} \cosh w t\right\}=\frac{s-a}{(s-a)^{2}-w^{2}}
\end{gathered}
$$

2. $f(t)=5 \cos 5 t+\frac{t^{2}}{2}+u(t-5)+r(t-2)$

$$
F(s)=\frac{5 s}{s^{2}+25}+\frac{1}{s^{3}}+\frac{e^{-5 s}}{s}+\frac{e^{-2 s}}{s^{2}}
$$

CIE-II Portions
3. $f(t)=e^{a t} u(t-T)$

$$
\begin{aligned}
L\{u(t-T)\} & =\frac{e^{-T s}}{s} \quad \text { Unit-IV-Laplace transforms basic definition and properties } \\
L\left\{e^{a t} u(t-T)\right\} & =\frac{e^{-T(s-a)}}{s-a}
\end{aligned}
$$

Laplace Transforms- Theorems

1. Differentiation theorem (Laplace of derivative of a function).

Statement: Let $f(t)$ is a continuous time function defined for $t \geq 0$,
if $L\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{s})$, then $L\left\{\frac{d}{d t} f(t)\right\}=s F(s)-f(0)$.
In general, $L\left\{\frac{d^{n}}{d t^{n}} f(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-s^{n-3} f^{\prime \prime}(0) \ldots$.

Proof:

$$
L\left\{\frac{d f(t)}{d t}\right\}=\int_{0}^{\infty} \frac{d f(t)}{d t} \cdot e^{-s t} d t
$$

Therefore,

Let, $u=e^{-s t}$ and $d v=\frac{d}{d t} f(t)$ $d u=-s e^{-s t} d t$ and $v=f(t)$
Integration by parts,

$$
\int u \cdot d v=u \cdot v-\int v \cdot d u
$$

$$
\begin{gathered}
\boldsymbol{L}\left\{\frac{d f(t)}{d t}\right\}=\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty} f(t) \cdot-s e^{-s t} d t \\
\boldsymbol{L}\left\{\frac{d f(t)}{d t}\right\}=s \int_{0}^{\infty} f(t) \cdot e^{-s t} d t-f(0) \\
L\left\{\frac{d f(t)}{d t}\right\}=s F(s)-f(0)
\end{gathered}
$$

In general,

$$
L\left\{\frac{d^{n}}{d t^{n}} f(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-s^{n-3} f^{\prime \prime}(0) \ldots .
$$

Laplace Transforms- Theorems

2. Integration theorem (Laplace of Integral of a function).

Statement: Let $f(t)$ is a continuous time function defined for $t \geq 0$,
if $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{s})$, then $L\left\{\int_{0}^{t} f(t) d t\right\}=\frac{F(s)}{s}$.
In general, $L\left\{\int_{0}^{t_{1}} \int_{0}^{t_{2}} \ldots . \int_{0}^{t_{n}} f(t) d t_{1} \cdot d t_{2} \ldots . d t_{n}\right\}=\frac{F(s)}{s^{n}}$

Proof:

$$
L\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\int_{0}^{\infty} \int_{0}^{t} f(t) d t \cdot e^{-s t} d t
$$

Integration by parts,

$$
\int u \cdot d v=u \cdot v-\int v \cdot d u
$$

Let, $u=\int_{0}^{t} f(t) d t$ and $d v=e^{-s t} d t$ $d u=f(\tau) d \tau$ and $v=\frac{e^{-s t}}{-s}$

Therefore,

$$
\boldsymbol{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\left.\int_{0}^{t} f(\tau) d \tau \cdot \frac{e^{-s t}}{-s}\right|_{0} ^{\infty}-\int_{0}^{\infty} f(t) \cdot \frac{e^{-s t}}{-s} d t
$$

$$
L\left\{\int_{0}^{t} f(\tau) d \tau\right\}=-\int_{0}^{\infty} f(t) \cdot \frac{e^{-s t}}{-s} d t
$$

$$
L\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} \int_{0}^{\infty} f(t) \cdot e^{-s t} d t
$$

$$
\boldsymbol{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s}
$$

In general,

$$
L\left\{\int_{0}^{t_{1}} \int_{0}^{t_{2}} \cdots \cdot \int_{0}^{t_{n}} f(t) d t_{1} \cdot d t_{2} \ldots . d t_{n}\right\}=\frac{F(s)}{s^{n}}
$$

Laplace Transforms- Theorems

3. Differentiation by s (Multiplication by t)

Statement: If $\mathrm{F}(\mathrm{s})$ is the Laplace transform of $\mathrm{f}(\mathrm{t})$ then the differentiation by s in the frequency domain corresponds to the multiplication by t in time domain.
i.e., $L\{t f(t)\}=-\frac{d F(s)}{d s}$, In general, $L\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n} F(s)}{d s^{n}}$

Proof:

$$
F(s)=\int_{0}^{\infty} f(t) \cdot e^{-s t} d t---(1)
$$

Differentiating both sides with respect to s ,

$$
\begin{aligned}
& \frac{d F(s)}{d s}=\int_{0}^{\infty} f(t) \cdot-t \cdot e^{-s t} d t \\
& -\frac{d F(s)}{d s}=\int_{0}^{\infty} f(t) \cdot t \cdot e^{-s t} d t \\
& -\frac{d F(s)}{d s}=L\{t \cdot f(t)\}
\end{aligned}
$$

Laplace Transforms- Theorems

4. Integration by s (divided by t)

Statement: If $\mathrm{F}(\mathrm{s})$ is the Laplace transform of $\mathrm{f}(\mathrm{t})$ then the Integration by s in the frequency domain corresponds to the division of t in time domain.
i.e., $L\left\{\frac{f(t)}{t}\right\}=\int_{0}^{\infty} F(s) d s$. In general, $L\left\{\frac{f(t)}{t^{n}}\right\}=\int_{0}^{s_{1}} \int_{0}^{s_{2}} \ldots . \int_{0}^{s_{n}} F(s) d s_{1} . d s_{2} \ldots . d s_{n}$

Proof:

$$
F(s)=\int_{0}^{\boldsymbol{w} \boldsymbol{e} \text { know that, }}
$$

$$
\int_{0}^{\infty} F(s) d s=\left.\int_{0}^{\infty} f(t) d t\left[\frac{e^{-s t}}{-t}\right]\right|_{0} ^{\infty} d s
$$

Integrating on both sides with respect to s ,

$$
\begin{aligned}
& \int_{0}^{\infty} F(s) d s=\int_{0}^{\infty} \int_{0}^{\infty} f(t) \cdot e^{-s t} d t d s \\
& \int_{0}^{\infty} F(s) d s=\int_{0}^{\infty} \int_{0}^{\infty} f(t) \cdot e^{-s t} d t d s \\
& \int_{0}^{\infty} F(s) d s=\int_{0}^{\infty} f(t) d t \int_{0}^{\infty} e^{-s t} d s
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} F(s) d s=\int_{0}^{\infty} f(t) \frac{e^{-s t}}{t} d t \\
& \int_{0}^{\infty} F(s) d s=L\left\{\frac{f(t)}{t}\right\}
\end{aligned}
$$

Laplace Transforms- Theorems

5. Initial Value Theorem

6. Final Value Theorem

Statement: If $\mathrm{F}(\mathrm{s})$ is the Laplace transform of $\mathrm{f}(\mathrm{t})$ thenStatement: If $\mathrm{F}(\mathrm{s})$ is the Laplace transform of $\mathrm{f}(\mathrm{t})$ then

$$
f(0)=\lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s F(s) . \quad f(\infty)=\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

Proof:

we know that,

$$
\begin{gather*}
L\left\{\frac{d f(t)}{d t}\right\}=s F(s)-f(0) \\
\int_{0}^{\infty} \frac{d f(t)}{d t} \cdot e^{-s t} d t=s F(s)-f(0)---(1) \tag{1}
\end{gather*}
$$

Take limit as $s \rightarrow \infty$ on both sides

$$
\begin{gathered}
\lim _{s \rightarrow \infty} \int_{0}^{\infty} \frac{d f(t)}{d t} \cdot e^{-s t} d t=\lim _{s \rightarrow \infty}[s F(s)-f(0)] \\
0=\lim _{s \rightarrow \infty} s F(s)-f(0) \\
f(0)=\lim _{s \rightarrow \infty} s F(s) \\
\boldsymbol{f}(\mathbf{0})=\lim _{\boldsymbol{t} \rightarrow \mathbf{0}} \boldsymbol{f}(\boldsymbol{t})=\lim _{s \rightarrow \infty} \boldsymbol{s} \boldsymbol{F}(\boldsymbol{s})
\end{gathered}
$$

Proof:

we know that,

$$
\begin{gathered}
L\left\{\frac{d f(t)}{d t}\right\}=s F(s)-f(0) \\
\int_{0}^{\infty} \frac{d f(t)}{d t} \cdot e^{-s t} d t=s F(s)-f(0)---(1)
\end{gathered}
$$

Take limit as $s \rightarrow 0$ on both sides

$$
\begin{gathered}
\lim _{s \rightarrow 0} \int_{0}^{\infty} \frac{d f(t)}{d t} \cdot e^{-s t} d t=\lim _{s \rightarrow 0}[s F(s)-f(0)] \\
\left.f(t)\right|_{0} ^{\infty}=\lim _{s \rightarrow 0} s F(s)-f(0) \\
f(\infty)-f(0)=\lim _{s \rightarrow 0} s F(s)-f(0) \\
\boldsymbol{f}(\infty)=\lim _{t \rightarrow \infty} \boldsymbol{f}(\boldsymbol{t})=\lim _{s \rightarrow 0} s \boldsymbol{F}(\boldsymbol{s})
\end{gathered}
$$

Laplace Transforms- Theorems

1. Find the initial and final value for

 the system equation $X(s)=\frac{1}{s(s+2)}$Solution:
w.k.t. IVT

$$
\begin{gathered}
\lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s F(s) \\
f(0)=\lim _{s \rightarrow \infty} s \cdot \frac{1}{s(s+2)} \Rightarrow \mathbf{0}
\end{gathered}
$$

w.k.t. FVT

$$
\begin{gathered}
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s) \\
f(\infty)=\lim _{s \rightarrow 0} s \cdot \frac{1}{s(s+2)} \Rightarrow \frac{\mathbf{1}}{\mathbf{2}}
\end{gathered}
$$

2. Verify the final value theorem for the function $f(t)=2+e^{-3 t} \cos 2 t$
Solution:
LHS is in time domain

$$
\begin{gathered}
f(\infty)=\lim _{t \rightarrow \infty}\left[2+e^{-3 t} \cos 2 t\right] \\
f(\infty)=2
\end{gathered}
$$

RHS is in frequency domain

$$
\begin{gathered}
F(s)=\frac{2}{s}+\frac{s+3}{(s+3)^{2}+4} \\
F(s)=\frac{2}{s}+\frac{s+3}{s^{2}+6 s+13} \\
f(\infty)=\lim _{s \rightarrow 0} s \cdot\left(\frac{2}{s}+\frac{s+3}{s^{2}+6 s+13}\right) \\
f(\infty)=\lim _{s \rightarrow 0}\left(2+\frac{s(s+3)}{s^{2}+6 s+13}\right) \\
f(\infty)=2
\end{gathered}
$$

Laplace Transforms- Theorems

3. Find the Laplace transform of

$$
f(t)=\frac{\cos 4 t-\cos 5 t}{t}
$$

Solıtion-

$\mathcal{L}\{f(t)\}=\mathcal{L}\left[\frac{\cos 4 t-\cos 5 t}{t}\right]$
$\mathcal{L}\{f(t)\}=\mathcal{L}\left[\frac{\cos 4 t}{t}\right]-\mathcal{L}\left[\frac{\cos 5 t}{t}\right]$
Since
$\mathcal{L}(\cos b t)=\frac{s}{s^{2}+b^{2}}$
Then,
$\mathcal{L}\{f(t)\}=\int_{s}^{\infty} \frac{u d u}{u^{2}+4^{2}}-\int_{s}^{\infty} \frac{u d u}{u^{2}+5^{2}}$
$\mathcal{L}\{f(t)\}=\int_{s}^{\infty}\left(\frac{u}{u^{2}+16}-\frac{u}{u^{2}+25}\right) d u$
$\mathcal{L}\{f(t)\}=\frac{1}{2} \int_{s}^{\infty}\left(\frac{2 u}{u^{2}+16}-\frac{2 u}{u^{2}+25}\right) d u$

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\ln \left(u^{2}+16\right)-\ln \left(u^{2}+25\right)\right]_{s}^{\infty} \\
& \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\ln \frac{u^{2}+16}{u^{2}+25}\right]_{s}^{\infty}
\end{aligned}
$$

$$
\mathcal{L}\{f(t)\}=\frac{1}{2}\left[\ln \frac{\frac{u^{2}}{u^{2}}+\frac{16}{u^{2}}}{u^{2}-25}\right]^{\infty} \quad \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\ln 1-\ln \frac{s^{2}+16}{s^{2}+25}\right]
$$

$$
\mathcal{L}\{f(t)\}=\frac{1}{2}\left\{0-\left[\ln \left(s^{2}+16\right)-\ln \left(s^{2}+25\right)\right]\right\}
$$

$$
\mathcal{L}\{f(t)\}=\frac{1}{2}\left\{\ln \left(s^{2}+25\right)-\ln \left(s^{2}+16\right)\right\}
$$

$$
\mathcal{L}\{f(t)\}=\frac{1}{2} \ln \frac{s^{2}+25}{s^{2}+16} \quad \text { answer }
$$

$$
\mathcal{L}\{f(t)\}=\frac{1}{2}\left[\ln \frac{1+\frac{16}{\infty^{2}}}{1+\frac{25}{\infty^{2}}}-\ln \frac{1+\frac{16}{s^{2}}}{1+\frac{25}{s^{2}}}\right]
$$

$$
\mathcal{L}\{f(t)\}=\frac{1}{2}\left[\ln \frac{1+0}{1+0}-\ln \frac{\frac{s^{2}+16}{s^{2}}}{\frac{s^{2}+25}{s^{2}}}\right]
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Laplace Transforms- Applications

4. In the circuit shown in figure, the switch is closed at $t=0$. find the current $i(t)$ at $t>0$ using Laplace transforms. Solution:
At $t=0$-, Inductor is uncharged and hence, $i_{L}(0-)=O A=i_{L}(0+)=i(0+)$

At t>0

Apply KVL

$$
V=R i(t)+L \frac{d i(t)}{d t}---(\mathbf{1})
$$

Apply Laplace transform on both sides

Apply Inverse LT.

$$
\begin{aligned}
L^{-1}\{I(s)\} & =\frac{V}{L} L^{-1}\left\{\frac{1}{s+\frac{R}{L}}\right\} \\
\boldsymbol{i}(\boldsymbol{t}) & =\frac{\boldsymbol{V}}{\boldsymbol{L}} \cdot \boldsymbol{e}^{-\left(\frac{\boldsymbol{R}}{L}\right) \boldsymbol{t}}
\end{aligned}
$$

$$
\begin{gathered}
V=R I(s)+L[s I(s)-i(0)]---(2) \\
V=R I(s)+L s I(s) \\
V=I(s)(R+L s) \\
I(s)=\frac{V}{R+L s} \\
I(s)=\frac{V}{L\left(\frac{R}{L}+s\right)} \Rightarrow \frac{V}{L} \frac{1}{\left(s+\frac{R}{L}\right)}
\end{gathered}
$$

Laplace Transforms- Applications

5. In the circuit shown in figure, the switch changed the position from 1 to 2 at $\mathrm{t}=\mathrm{o}$. find the current $\mathrm{i}(\mathrm{t})$ at $\mathrm{t}>\mathrm{O}$ using Laplace transforms.

Solution:

L is the energy storage element-charged state(reached steady
 state at $\mathbf{t}=\mathbf{o}$-)

At $\mathrm{t}>0$
Apply KVL to the circuit

$$
1 i(t)+1 i(t)+1 \frac{d i(t)}{d t}=0---(1)
$$

Apply L.T.

$$
I(s)+I(s)+s I(s)-i(0)=0
$$

Laplace Transforms- Applications

6. In the circuit shown in figure, the switch is closed at $t=0$. find the Voltage $\mathrm{v}_{\mathrm{C}} \mathrm{t}$) at $\mathrm{t}>\mathrm{O}$ using Laplace transforms.

Solution:

C -energy storage element-uncharged state at $\mathrm{t}=\mathrm{o}-$.

$$
v_{C}\left(0^{-}\right)=v_{C}\left(0^{+}\right)=0 V
$$

At $\mathrm{t}>\mathrm{O}$
KCL at node $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$

$$
\begin{aligned}
& 1-\frac{v_{C}(t)}{10}-\frac{v_{C}(t)}{10}=2 \frac{d v_{C}(t)}{d t} \\
& 2 \frac{d v_{C}(t)}{d t}+\frac{v_{C}(t)}{5}=1---(2)
\end{aligned}
$$

$$
2 \frac{d v_{C}(t)}{d t}+\frac{v_{C}(t)}{5}=1---(2)
$$

LT.

$$
\begin{gather*}
2\left[s v_{C}(s)-v_{C}(0)\right]+\frac{1}{5} v_{C}(s)=\frac{1}{s} \tag{1}\\
2 s v_{C}(s)+0.2 v_{C}(s)=\frac{1}{s} \\
v_{C}(s)[2 s+0.2]=\frac{1}{s} \\
v_{C}(s)=\frac{1}{s(2 s+0.2)}---(3)
\end{gather*}
$$

$$
\begin{gathered}
v_{C}(s)=\frac{1}{s(2 s+0.2)}---(3) \\
v_{C}(s)=\frac{A}{s}+\frac{B}{2 s+0.2}--(4) \\
A(2 s+0.2)+B s=1
\end{gathered}
$$

If $\mathrm{s}=\mathrm{O}, \mathrm{A}=5$, and if $\mathrm{s}=-0.1, \mathrm{~B}=-10$

$$
\begin{gathered}
v_{C}(s)=\frac{5}{s}-\frac{10}{2 s+0.2} \\
v_{C}(s)=\frac{2}{s}-\frac{5}{s+0.1}---(5)
\end{gathered}
$$

ILT

$$
v_{C}(t)=5-5 e^{-0.1 t}
$$

Laplace Transforms- Applications

7. In the circuit shown in figure, the switch changed the position from a to b at $t=0$. find the Voltage $v(t)$ at $t>0$ using Laplace transforms.

Solution:

2 H and 1 H are energy storage elements
$\mathbf{2 H}$ inductor reached steady state at $t=0$ - and 1 H inductor is in uncharged state.

$$
\begin{aligned}
& i_{L 1}\left(0^{-}\right)=i_{L 1}\left(0^{+}\right)=1 A . \\
& i_{L 2}\left(0^{-}\right)=i_{L 2}\left(0^{+}\right)=0 A .
\end{aligned}
$$

At $\mathbf{t}>\mathbf{O}$
KCL

$$
\begin{gather*}
\frac{v(s)-2}{2 s}+\frac{v(s)}{1}+\frac{v(s)}{s}=0---(1) \tag{1}\\
\frac{v(s)}{2 s}-\frac{2}{2 s}+v(s)+\frac{v(s)}{s}=0 \\
v(s)\left[\frac{1}{2 s}+1+\frac{1}{s}\right]=\frac{1}{s}
\end{gather*}
$$

$$
\begin{gathered}
\boldsymbol{v}(\boldsymbol{s})\left[\frac{\mathbf{1}}{\mathbf{2} \boldsymbol{s}}+\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{s}}\right]=\frac{\mathbf{1}}{\boldsymbol{s}} \\
v(s)\left[\frac{1+2 s+2}{2 s}\right]=\frac{1}{s} \\
\frac{v(s)(2 s+3)}{2 s}=\frac{1}{s} \\
v(s)=\frac{2}{2 s+3} \\
v(s)=\frac{1}{s+1.5}---(2) \\
\text { ILT } \quad v(\boldsymbol{t})=\boldsymbol{e}^{-\mathbf{1} .5 \boldsymbol{t}}
\end{gathered}
$$

Laplace Transforms- Analysis of electrical circuits

Procedure to Analyse electrical circuits using Laplace Transforms:

Step-1: Identify the energy storage elements.
Step-2: Find the state of energy storage elements at $t=0$-, by either general prediction or calculating by drawing equivalent circuit.

Example: $\boldsymbol{i}_{\boldsymbol{L}}\left(0^{-}\right), \boldsymbol{i}_{L}\left(0^{+}\right), v_{C}\left(0^{-}\right)$and $v_{C}\left(0^{+}\right)$
Step-3: Draw the equivalent circuit at $t=0+$. And find the initial values of branch currents/loop currents/branch voltages/node voltages depending on the load quantity.

$$
\text { Example: } i\left(0^{+}\right), v\left(o^{+}\right) \text {etc. }
$$

Step-4: Draw the equivalent circuit at $\mathrm{t}>\mathrm{o}$.
Step-5: Describe the behaviour of the given electrical circuit using differential equations (Apply KVL or KCL).
Step-6: Covert Differential equations to algebraic equations by applying Laplace Transform.
Step-7: Simplify the equation for required variable in frequency domain.
Step-8: Apply partial fractions.
Step-9: Take inverse Laplace transform to get the solution in time domain.

Laplace Transforms- Analysis of electrical circuits

Laplace transform.

$$
\begin{aligned}
& i(t) \rightarrow I(s) \\
& v(t) \rightarrow V(s) \\
& R i(t) \rightarrow R I(s) \\
& \frac{v(t)}{R} \rightarrow \frac{V(s)}{R} \\
& L \frac{d i(t)}{d t} \rightarrow L[s I(s)-i(0)]=L s I(s)-L i(0) \\
& C \frac{d v(t)}{d t} \rightarrow C[s V(s)-v(0)]=C s V(s)-C v(0) \\
& \frac{1}{L} \int v(t) d t \rightarrow \int_{-\infty}^{t} v(t) \Rightarrow \frac{1}{L} \int_{-\infty}^{0} v(t) d t+\frac{1}{L} \int_{0}^{t} v(t) d t \Rightarrow i_{L}(0)+\frac{1}{L} \int_{0}^{t} v(t) d t \Rightarrow \frac{1}{L s} V(s)+\frac{i_{L}(0)}{s} \\
& \frac{1}{C} \int i(t) d t \rightarrow \frac{1}{C s} I(s)+\frac{v_{C}(0)}{s}
\end{aligned}
$$

Laplace Transforms- Analysis of electrical circuits

Examples

1. Find the voltage $v(t)$ at $t>0$ for the electrical circuit shown in figure.

Solution:

0.5 H and 0.5 F are energy storage elements, and they are in uncharged state at $t=0-$. Hence $i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0 A$.

Apply KCL at node $v(t)$

$$
v_{C}\left(0^{-}\right)=v_{C}\left(0^{+}\right)=\mathbf{0 V} .
$$

At t=o+

$$
v\left(0^{+}\right)=0 \text { volts } .
$$

At t>0

$$
\begin{gathered}
\frac{2}{s}=\frac{V(s)}{0.5}+2 \frac{V(s)}{s}+i(0)+0+0.5[s V(s)-v(0)] \\
\frac{2}{s}=2 V(s)+\frac{2}{s} V(s)+0.5 s V(s) \\
\frac{2}{s}=V(s)\left[2+\frac{2}{s}+0.5 s\right] \\
V(s)=\frac{\frac{2}{s}}{\frac{2 s+2+0.5 s^{2}}{S}} \Rightarrow \frac{4}{s^{2}+4 s+4} \Rightarrow \frac{4}{(s+2)^{2}} \\
\text { ApplyILT, } \boldsymbol{v}(\boldsymbol{t})=4 . \boldsymbol{t} \cdot \boldsymbol{e}^{-2 \boldsymbol{t}}
\end{gathered}
$$

Laplace Transforms- Analysis of electrical circuits

Examples

2. Find the current through the inductor at $\mathrm{t}>\mathrm{o}$ for the electrical circuit shown in figure.

Solution:

$200 u F$ and 0.5 H are energy storage elements, and attained steady state at $t=0$ -
At $t=0-$, the equivalent circuit.

$$
v_{C}\left(0^{-}\right)=0 V \cdot i_{L}\left(0^{-}\right)=2 A
$$

$$
v_{C}\left(0^{+}\right)=0 V \cdot i_{L}\left(0^{+}\right)=2 A .
$$

Apply KVL

$$
\begin{gathered}
\frac{1}{C} \int i(t) d t+L \frac{d i(t)}{d t}=0 \\
\frac{1}{C s} I(s)+\frac{v(0)}{s}+L s I(s)-L i(0)=0 \\
\frac{1}{C s} I(s)+L s I(s)-2 \mathrm{~L}=0 \\
\frac{I(s)\left[1+L C s^{2}\right]}{C s}=2 L \\
I(s)=\frac{2 L C s}{1+L C s^{2}}
\end{gathered}
$$

$$
\begin{aligned}
I(s)=\frac{2 L C s}{1+L C s^{2}} \Rightarrow \frac{2 \times 200 \times 10^{-6} \times 0.5 s}{1+0.5 \times 200 \times 10^{-6} s^{2}} & =\frac{800 \times 10^{-6} s}{1+400 \times 10^{-6} s^{2}}=\frac{2 s}{2500+s^{2}} \Rightarrow 2 \cdot \frac{s}{50^{2}+s^{2}} \\
\boldsymbol{i}(\boldsymbol{t})= & \mathbf{2} \cdot \boldsymbol{c o s} 50 \boldsymbol{t} .
\end{aligned}
$$

Laplace Transforms- Analysis of electrical circuits

Examples

3. Find $\mathrm{v}(\mathrm{t})$ at $\mathrm{t}>\mathrm{o}$ for the electrical circuit shown in figure.

Solution:

$1 F$ capacitor is energy storage element and attained steady state at $t=0$-.

$$
v_{C}\left(0^{-}\right)=v\left(0^{+}\right)=2 V=v\left(0^{-}\right)=v\left(0^{+}\right)
$$

At $\mathbf{t}>\mathbf{O}$

LT

Apply KCL

$$
\frac{d v(t)}{d t}+\frac{2}{3} v(t)=0---(1)
$$

$$
\begin{gathered}
s V(s)-v(0)+\frac{2}{3} v(s)=0 \\
s V(s)-2+\frac{2}{3} V(s)=0
\end{gathered}
$$

$$
-\frac{v(t)}{6}=\frac{d v(t)}{d t}+\frac{v(t)}{2}
$$

$$
V(s)\left[s+\frac{2}{3}\right]=2
$$

$$
\frac{d v(t)}{d t}+\frac{2}{3} v(t)=0---(1)
$$

$$
V(s)=\frac{2}{s+\frac{2}{3}}---(2)
$$

$$
V(s)=\frac{2}{s+\frac{2}{3}}
$$

ILT

$$
v(t)=2 . e^{-\left(\frac{2}{3} t\right)}
$$

Laplace Transforms- Analysis of electrical circuits

Examples

1. Find the voltage $v(t)$ at $t>0$ for the electrical circuit shown in figure.

Solution:

Both Inductor and Capacitor are in uncharged condition, hence

$$
i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0 A \text { and } v_{\mathrm{C}}\left(0^{-}\right)=\mathrm{v}_{\mathrm{C}}\left(0^{+}\right)=0 \mathrm{~V}
$$

At $\mathrm{t}>0$
KVL equation

$$
V=\operatorname{Ri}(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int i(t) d t---(1)
$$

Apply L.T

$$
\begin{gathered}
\frac{V}{s}=R I(s)+L[s I(s)-i(0)]+\frac{1}{C s} I(s)+\frac{v_{C}(0)}{s}---(2) \\
\frac{V}{s}=\left(R+L s+\frac{1}{C s}\right) I(s) \\
\frac{V}{s} C s=\left(R C s+L C s^{2}+1\right) I(s)---(3)
\end{gathered}
$$

Divide LC on both sides

$$
\frac{V}{s} C s \cdot \frac{1}{L C}=\left(\frac{R C s}{L C}+\frac{L C s^{2}}{L C}+\frac{1}{L C}\right) I(s)
$$

$$
I(s)=\frac{\frac{V}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}---(4)
$$

$$
I(s)=\frac{\frac{V}{L}}{(s+\alpha-\beta)(s+\alpha+\beta)}
$$

Where, $\alpha=-\frac{R}{2 L}$ and $\beta=\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}$

Laplace Transforms- Analysis of electrical circuits

$$
I(s)=\frac{\bar{L}}{(s+\alpha-\beta)(s+\alpha+\beta)}
$$

Where, $\alpha=-\frac{R}{2 L}$ and $\beta=\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}$

Laplace Transforms- Analysis of electrical circuits

Examples

2. Find the current through the inductor at $\mathrm{t}>\mathrm{o}$ for the electrical circuit shown in figure.

Solution:

$200 u F$ and 0.5 H are energy storage elements, and attained steady state at $t=0$ -
At $t=0-$, the equivalent circuit.

$$
v_{C}\left(0^{-}\right)=0 V \cdot i_{L}\left(0^{-}\right)=2 A
$$

$$
v_{C}\left(0^{+}\right)=0 V \cdot i_{L}\left(0^{+}\right)=2 A .
$$

Apply KVL

$$
\begin{gathered}
\frac{1}{C} \int i(t) d t+L \frac{d i(t)}{d t}=0 \\
\frac{1}{C s} I(s)+\frac{v(0)}{s}+L s I(s)-L i(0)=0 \\
\frac{1}{C s} I(s)+L s I(s)-2 \mathrm{~L}=0 \\
\frac{I(s)\left[1+L C s^{2}\right]}{C s}=2 L \\
I(s)=\frac{2 L C s}{1+L C s^{2}}
\end{gathered}
$$

$$
\begin{aligned}
I(s)=\frac{2 L C s}{1+L C s^{2}} \Rightarrow \frac{2 \times 200 \times 10^{-6} \times 0.5 s}{1+0.5 \times 200 \times 10^{-6} s^{2}} & =\frac{800 \times 10^{-6} s}{1+400 \times 10^{-6} s^{2}}=\frac{2 s}{2500+s^{2}} \Rightarrow 2 \cdot \frac{s}{50^{2}+s^{2}} \\
\boldsymbol{i}(\boldsymbol{t})= & \mathbf{2} \cdot \boldsymbol{c o s} 50 \boldsymbol{t} .
\end{aligned}
$$

Laplace Transforms- Analysis of electrical circuits

Examples

3. Find $\mathrm{v}(\mathrm{t})$ at $\mathrm{t}>\mathrm{o}$ for the electrical circuit shown in figure.

Solution:

$1 F$ capacitor is energy storage element and attained steady state at $t=0$-.

$$
v_{C}\left(0^{-}\right)=v\left(0^{+}\right)=2 V=v\left(0^{-}\right)=v\left(0^{+}\right)
$$

At $\mathbf{t}>\mathbf{O}$

LT

Apply KCL

$$
\frac{d v(t)}{d t}+\frac{2}{3} v(t)=0---(1)
$$

$$
\begin{gathered}
s V(s)-v(0)+\frac{2}{3} v(s)=0 \\
s V(s)-2+\frac{2}{3} V(s)=0
\end{gathered}
$$

$$
-\frac{v(t)}{6}=\frac{d v(t)}{d t}+\frac{v(t)}{2}
$$

$$
V(s)\left[s+\frac{2}{3}\right]=2
$$

$$
\frac{d v(t)}{d t}+\frac{2}{3} v(t)=0---(1)
$$

$$
V(s)=\frac{2}{s+\frac{2}{3}}---(2)
$$

$$
V(s)=\frac{2}{s+\frac{2}{3}}
$$

ILT

$$
v(t)=2 . e^{-\left(\frac{2}{3} t\right)}
$$

Laplace Transforms- Waveform synthesis

Introduction:

- Waveforms- signals
- Signals-Quantities which convey information (Current/Voltage)
- Two types

1. Periodic and 2. Aperiodic Signals

Periodic signal one which repeats the pattern exactly after a fixed time interval for all t . i.e., $\boldsymbol{f}(\boldsymbol{t}+\boldsymbol{T})=\boldsymbol{f}(\boldsymbol{t})$, Where, $T=$ is the fixed time interval called Period.

A periodic signal is one for which no value of T satisfies the above equation i.e., $f(t+T) \neq f(t)$

Examples:

Laplace Transforms- Waveform synthesis
Basic Signals- step, ramp, exponential and sinusoidal signals

- No discontinuities - combination of only ramp signals
- Discontinuities and constant -only step signals

Laplace Transforms- Waveform synthesis - Examples

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Laplace Transforms- Waveform synthesis - Examples

$$
f(t)=u(t)-u(t-1)+2 u(t-2)-2 u(t-3)---(1)
$$

$$
\begin{gathered}
F(s)=\frac{1}{s}-\frac{e^{-s}}{s}+2 \frac{1}{s} e^{-2 s}-2 \frac{e^{-3 s}}{s} \\
\boldsymbol{F}(\boldsymbol{s})=\frac{\mathbf{1}}{\boldsymbol{s}}\left(\mathbf{1}-\boldsymbol{e}^{-s}+\mathbf{2} \boldsymbol{e}^{-2 s}-\mathbf{2} \boldsymbol{e}^{-\mathbf{3 s}}\right)--(\mathbf{2})
\end{gathered}
$$

Method-II

$$
\begin{gathered}
f(t)=(1-0) u(t)+(0-1) u(t-1))+(2-0) u(t-2)+(0-2) u(t-3)---(1) \\
f(t)=u(t)-u(t-1)+2 u(t-2)-2 u(t-3)
\end{gathered}
$$

Laplace Transforms- Waveform synthesis - Examples

$$
\begin{gathered}
y=m x+c \\
m=\frac{y}{x} \Rightarrow \frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

Laplace Transforms- Waveform synthesis - Examples

$$
f(t)=r(t)-r(t-1)---(1)
$$

LT

$$
F(s)=\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}}
$$

$$
\begin{aligned}
& \text { Method-III } \\
& \qquad \begin{array}{c}
f(t)=1 \cdot r(t)-1 \cdot r(t-1) \\
f(t)=r(t)-r(t-1)
\end{array}
\end{aligned}
$$

Method-II

$$
\begin{gathered}
f(t)=\mathrm{r}(\mathrm{t})+(-1-1) \mathrm{r}(\mathrm{t}-1)+(0-(-1)) \mathrm{r}(\mathrm{t}-2) \\
f(t)=r(t)-2 r(t-1)+r(t-2)---(1)
\end{gathered}
$$

LT

$$
F(s)=\frac{1}{s^{2}}-\frac{2 e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Laplace Transforms- Waveform synthesis - Examples

$$
\begin{gathered}
f(t)=u(t+2)-u(t+1)+2 \cdot r(t)-2 r(t-1)-u(t-1)+u(t-2) \\
-2 r(t-3)+2 r(t-4)
\end{gathered}
$$

$$
f(t)=1 r(t)-r(t-1)+1 . u(t-3)-2 u(t-4)
$$

Laplace Transforms- Waveform synthesis - Examples

Find the Laplace Transform of the following signal.

$$
\begin{aligned}
i(t)= & r(t)-\mathrm{r}(\mathrm{t}-1)-\mathrm{u}(\mathrm{t}-2)+\mathrm{r}(\mathrm{t}-2)-\mathrm{r}(\mathrm{t}-3)-2 \mathrm{u}(\mathrm{t}-3)+\mathrm{r}(\mathrm{t}-3)-\mathrm{r}(\mathrm{t}-4)+\mathrm{A} \delta(t-5) \\
& i(t)=r(t)-r(t-1)-u(t-2)+r(t-2)-2 u(t-3)-r(t-4)+A \delta(t-5)---(1)
\end{aligned}
$$

L.T.

$$
I(s)=\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}}-\frac{e^{-2 s}}{s}+\frac{e^{-2 s}}{s^{2}}-\frac{2 e^{-3 s}}{s}-\frac{e^{-4 s}}{s^{2}}+\frac{A}{e^{-5 s}}
$$

Laplace Transforms- Waveform synthesis - Examples

Find the Laplace Transform of the following signal.

$$
\begin{gathered}
f(t)=\sin \omega t+\sin (\omega t-p i)---(1) \\
\quad F(s)=\frac{w}{s^{2}+w^{2}}+e^{-\pi s} \cdot \frac{w}{s^{2}+w^{2}}
\end{gathered}
$$

Find the Laplace Transform for following periodic signal.
$L\{f(t)\}=\frac{1}{1-e^{-T s}} F_{1}(s)$
Where, $f(\mathrm{t})$ is a periodic signal/waveform and $F_{1}(s)$ is the laplace transform of single/first cycle signal Example: $\mathrm{T}=1$.

$$
\begin{gathered}
F(s)=\frac{1}{1-e^{-s}} F_{1}(s) \\
F_{1}(s)=L\left\{f_{1}(t)\right\} \\
f_{1}(t)=A r(t)-A r(t-1)-A u(t-1) \\
F(s)=\frac{1}{1-e^{-s}}\left[\frac{A}{s^{2}}-\frac{A e^{-s}}{s^{2}}-\frac{A e^{-s}}{s}\right] \\
F(s)=\frac{A}{s^{2}\left(1-e^{-s}\right)}\left[1-\mathrm{e}^{-s}-\mathrm{se}^{-s}\right)
\end{gathered}
$$

Two port Networks - Introduction

Port - A Pair of terminals, where electrical signal enters or leaves.
One port Network - Single pair of terminals, Current enters through one terminal and leaves through another terminal. Example: R, L, C

Two port Network - Two pairs of terminals, Current enters through one terminal and leaves through another terminal.

Two port Networks - Introduction

Three Port Network - Three pairs of terminal, Example: Co-axial circulars

Four Port Network - Four pairs of terminal, Example: Directional Couplers.

Two port Networks - Introduction

Two port Network - Two pairs of terminals, Current enters through one terminal and leaves through another terminal.

Two port Network - Two pairs of terminals, Current enters through one terminal and leaves through another terminal of each port.
Here, 1-1' and 2-2' are two ports, Port-1 and Port-2.
Four variables are associated with the network, they are I1, I2, V1 and V2.
Two variables are dependent variables and the remaining two variables are independent variables.
Six possible pairs of equations, these equations represents the dependent variables in terms of independent variables.
The co-efficients of independent variables are called Parameters.
$\mathrm{Z}, \mathrm{Y}, \mathrm{h}$ and T parameters are most important for the analysis of electrical and electronic circuits.

- V1 and V2 are dependent variables and I1 and I2 are independent variables

$$
\begin{aligned}
& V_{1}=f\left(I_{1}, I_{2}\right)---(1) \\
& V_{2}=f\left(I_{1}, I_{2}\right)---(2)
\end{aligned}
$$

- Definition

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2}---(3) \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}---(4)
\end{aligned}
$$

- In Matrix form

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]---(5)
$$

- Equivalent circuit

Two port Networks - Introduction

Z - Parameters

- Definition

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2}---(3) \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}---(4)
\end{aligned}
$$

- Where,

$$
\begin{gathered}
Z_{11}=\frac{V_{1}}{I_{1}} \Rightarrow \text { Open circuit input impedance } \\
Z_{12}=\frac{V_{1}}{I_{2}} \Rightarrow \text { Open Circuit reverse transfer impedance } \\
Z_{21}=\frac{V_{2}}{I_{1}} \Rightarrow \text { Open circuit forward tranfer impedance } \\
Z_{22}=\frac{V_{2}}{I_{2}} \Rightarrow \text { Open circuit output impedance. }
\end{gathered}
$$

Two port Networks - Introduction

Y - Parameters

- I1 and I2 are dependent variables, V1 and V2 are independent variables.

$$
\begin{aligned}
& I_{1}=f\left(V_{1}, V_{2}\right)---(1) \\
& I_{2}=f\left(V_{1}, V_{2}\right)---(2)
\end{aligned}
$$

Definition

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2}---(3) \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}---(4)
\end{aligned}
$$

Matrix form

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]---(5)
$$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Two port Networks - Introduction

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2}---(3) \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}---(4)
\end{aligned}
$$

For V2=0, Short circuit the output port

$$
\begin{aligned}
Y_{11} & =\frac{I_{1}}{V_{1}} \Rightarrow \text { Short cicuit Input admittance } \\
Y_{21} \Rightarrow & \frac{I_{2}}{V_{1}} \Rightarrow \text { short circuit forward tranfer admittance }
\end{aligned}
$$

For V1=0, sort circuit the input port

$$
\begin{gathered}
Y_{12}=\frac{I_{1}}{V_{2}} \Rightarrow \text { short circuit revrese transfer admittance } \\
Y_{22}=\frac{I_{2}}{V_{2}} \Rightarrow \text { short circuit output admittance }
\end{gathered}
$$

Y parameters are also called as Admittance parameters/short circuit admittance parameters.
Note: Reciprocal of Y parameters are not equal to the Z parameters.
Example: $Z_{11} \neq \frac{1}{Y_{11}}$

- V1 and I2 are dependent variables and I1 and V2 are independent variables

$$
\begin{aligned}
& V_{1}=f\left(I_{1}, V_{2}\right)--(1) \\
& I_{2}=f\left(I_{1}, V_{2}\right)---(2)
\end{aligned}
$$

- Definition

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2}---(3) \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}---(4)
\end{aligned}
$$

- In Matrix form

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]---(5)
$$

- Equivalent circuit

Two port Networks - Introduction

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2}---(3) \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}---(4)
\end{aligned}
$$

$\mathrm{V} 2=0$, short circuit the output port

$$
\begin{gathered}
h_{11}=\frac{V_{1}}{I_{1}} \Rightarrow \text { Short circuit input impedance } \\
h_{21}=\frac{I_{2}}{I_{1}} \Rightarrow \text { Short circuit forward current gain }
\end{gathered}
$$

I1=0, open circuit the input port

$$
\begin{gathered}
h_{12}=\frac{V_{1}}{V_{2}} \Rightarrow \text { open circuit reverse voltage gain } \\
h_{22}=\frac{I_{2}}{V_{2}} \Rightarrow \text { open circuit output admittance. }
\end{gathered}
$$

Also called as hybrid parameters.

- V1 and I2 are dependent variables and I1 and V2 are independent variables

$$
\begin{aligned}
& V_{1}=f\left(V_{2},-I_{2}\right)---(1) \\
& I_{1}=f\left(V_{2},-I_{2}\right)---(2)
\end{aligned}
$$

- Definition

$$
\begin{aligned}
& V_{1}=A V_{2}-B I_{2}---(3) \\
& I_{1}=C V_{2}-D I_{2}---(4)
\end{aligned}
$$

- In Matrix form

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
-I_{2}
\end{array}\right]---(5)
$$

- Equivalent circuit

Two port Networks - Introduction

- Definition

$$
\begin{aligned}
& V_{1}=A V_{2}-B I_{2}---(3) \\
& I_{1}=C V_{2}-D I_{2}---(4)
\end{aligned}
$$

$12=0$, output port is open circuit

$$
\begin{gathered}
A=\frac{V_{1}}{V_{2}} \Rightarrow \text { Open circuit reverse voltage gain } \\
C=\frac{I_{1}}{V_{2}} \Rightarrow \text { Open circuit reverse admittance }
\end{gathered}
$$

V2 $=0$, output port is short circuit

$$
\begin{aligned}
B & =-\frac{V_{1}}{I_{2}} \Rightarrow \text { Short circuit reverse impedance } \\
D & =-\frac{I_{1}}{I_{2}} \Rightarrow \text { short circuit reverse current gain }
\end{aligned}
$$

Two port Networks - Relation Between Z and Y

Relation Between Z and Y, Z in terms of Y

Definition of Z- parameters

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2}---(1) \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}---(2)
\end{aligned}
$$

Definition of Y - parameters

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2}---(3) \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}---(4)
\end{aligned}
$$

Fromm equation (3)

$$
\begin{gathered}
Y_{12} V_{2}=I_{1}-Y_{11} V_{1} \\
V_{2}=\frac{1}{Y_{12}} I_{1}-\frac{Y_{11}}{Y_{12}} V_{1}---(5)
\end{gathered}
$$

Substitute equation (5) in (4)

$$
\begin{aligned}
I_{2} & =Y_{21} V_{1}+Y_{22}\left[\frac{1}{Y_{12}} I_{1}-\frac{Y_{11}}{Y_{12}} V_{1}\right] \\
I_{2} & =Y_{21} V_{1}+\frac{Y_{22}}{Y_{12}} I_{1}-\frac{Y_{11} Y_{22}}{Y_{12}} V_{1} \\
I_{2} & =\left[Y_{21}-\frac{Y_{11} Y_{22}}{Y_{12}}\right] V_{1}+\frac{Y_{22}}{Y_{12}} I_{1}
\end{aligned}
$$

$$
I_{2}=\left[\frac{Y_{21} Y_{12}-Y_{11} Y_{22}}{Y_{12}}\right] V_{1}+\frac{Y_{22}}{Y_{12}} I_{1}
$$

$$
I_{2}-\frac{Y_{22}}{Y_{12}} I_{1}=\left[\frac{Y_{21} Y_{12}-Y_{11} Y_{22}}{Y_{12}}\right] V_{1}
$$

$$
\frac{Y_{12} I_{2}-Y_{22} I_{1}}{Y_{12}}=\left[\frac{Y_{21} Y_{12}-Y_{11} Y_{22}}{Y_{12}}\right] V_{1}
$$

$$
V_{1}=\frac{Y_{12}}{Y_{21} Y_{12}-Y_{11} Y_{22}} I_{2}-\frac{Y_{22}}{Y_{21} Y_{12}-Y_{11} Y_{22}} I_{1}
$$

Put $Y_{11} Y_{22}-Y_{12} Y_{21}=\Delta Y$

$$
V_{1}=\frac{Y_{22}}{\Delta Y} I_{1}-\frac{Y_{12}}{\Delta Y} I_{2}----(6)
$$

Compare equation (1) and (6)

$$
Z_{11}=\frac{Y_{22}}{\Delta Y} \text { and } Z_{12}=-\frac{Y_{12}}{\Delta Y}
$$

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2}---(3) \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}---(4)
\end{aligned}
$$

$$
V_{1}=\frac{1}{Y_{11}} I_{1}-\frac{Y_{12}}{Y_{11}} V_{2}---(7)
$$

$$
\begin{gathered}
\frac{Y_{11} I_{2}-Y_{21} I_{1}}{Y_{11}}=\frac{\Delta Y}{Y_{11}} V_{2} \\
\frac{Y_{11} I_{2}-Y_{21} I_{1}}{\Delta Y}=V_{2} \\
V_{2}=- \\
-\frac{Y_{21}}{\Delta Y} I_{1}+\frac{Y_{11}}{\Delta Y} I_{2}-- \text { (8) }
\end{gathered}
$$

Substitute (7) in (4)

$$
\begin{gathered}
I_{2}=Y_{21}\left[\frac{1}{Y_{11}} I_{1}-\frac{Y_{12}}{Y_{11}} V_{2}\right]+Y_{22} V_{2} \\
I_{2}=\frac{Y_{21}}{Y_{11}} I_{1}+\left[Y_{22}-\frac{Y_{21} Y_{12}}{Y_{11}}\right] V_{2} \\
I_{2}=\frac{Y_{21}}{Y_{11}} I_{1}+\frac{\left[Y_{11} Y_{22}-Y_{21} Y_{12}\right]}{Y_{11}} V_{2} \\
I_{2}=\frac{Y_{21}}{Y_{11}} I_{1}+\frac{\Delta Y}{Y_{11}} V_{2} \\
I_{2}-\frac{Y_{21}}{Y_{11}} I_{1}=\frac{\Delta Y}{Y_{11}} V_{2}
\end{gathered}
$$

Compare equation (2) and (8)

$$
Z_{21}=-\frac{Y_{21}}{\Delta Y} \text { and } Z_{22}=\frac{Y_{11}}{\Delta Y}
$$

Two port Networks - Relation Between Z and Y

- Learner Activity:

Obtain the relation between,
i) Z and h
ii) Z and T
iii) Y and h
iv) Y and T
v) h and T
vi) Y in terms of Z

Two port Networks - Examples

- Find Z parameters for the two port network shown in figure.
SOLUTION:

$$
\begin{gathered}
\text { Apply KVL to input circuit } \\
V_{1}=1 . I_{1}+6 I_{1}-6 I_{3} \\
V_{1}=7 I_{1}-6 I_{3}---(1) \\
\text { Apply KVL to Output circuit } \\
V_{2}=2 I_{2}+2 I_{3}---(2)
\end{gathered}
$$

$$
Z_{12}=10 \mathrm{hm} .
$$

Apply KVL to loop 2

$$
-6 I_{1}+2 I_{2}+12 I_{3}=0---(3)
$$

w. k. T.

$$
\begin{aligned}
V_{1} & =Z_{11} I_{1}+Z_{12} I_{2}---(4) \\
V_{2} & =Z_{21} I_{1}+Z_{22} I_{2}---(5) \\
I_{3} & =\frac{1}{2} I_{1}-\frac{1}{6} I_{2}---(6)
\end{aligned}
$$

Compare (4) and (7)

$$
Z_{11}=40 \mathrm{hms}
$$

Subsitute (6)in (2)

$$
V_{2}=2 I_{2}+2\left(\frac{1}{2} I_{1}-\frac{1}{6} I_{2}\right)
$$

$$
V_{2}=I_{1}+\frac{5}{6} I_{2}---(8)
$$

Compare (5) and (8)

$$
\begin{aligned}
Z_{21} & =10 \mathrm{hm} \\
Z_{22} & =\frac{5}{6} 0 \mathrm{hms} .
\end{aligned}
$$

Substitute (6) in (1)

$$
\begin{gathered}
V_{1}=7 I_{1}-6\left(\frac{1}{2} I_{1}-\frac{1}{6} I_{2}\right) \\
V_{1}=4 I_{1}+I_{2}--(7)
\end{gathered}
$$

Two port Networks - Examples

1. Find Z - Parameters for the two port network shown in figure.

SOLUTION

i) $\mathrm{I}_{2}=0$ (open circuit port 2). Redraw the circuit.

ii) $I_{1}=0$ (open circuit port 1). Redraw the circuit.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Two port Networks - Examples

2. Find Y - Parameters for the two port network shown in figure.

SOLUTION

$$
V_{1}=20 I_{a} \ldots \ldots . .(\mathbb{l})
$$

i) $\quad V_{2}=0$
$I_{a}=\frac{5}{25} I_{1} \ldots \ldots$, (2)
ii) $V_{1}=0$

$$
\begin{align*}
& \operatorname{sub}(1) \rightarrow(2) \\
& \therefore Y_{11}=\frac{I_{1}}{V_{1}}=\frac{1}{4} S \tag{4}\\
& V_{1}=-5 I_{2} \\
& \therefore Y_{21}=\frac{I_{2}}{V_{1}}=-\frac{1}{5} S
\end{align*}
$$

$$
\text { In matrix form; } \quad[Y]=\left[\begin{array}{cc}
\frac{1}{4} & -\frac{1}{5} \\
-\frac{1}{5} & \frac{4}{15}
\end{array}\right] S
$$

$$
\begin{aligned}
& V_{2}=15 I_{x} \ldots \ldots .(\text {) } \\
& I_{x}=\frac{5}{25} I_{2} \ldots \ldots \text { (4) } \\
& \operatorname{sub}(3) \rightarrow(4) \\
& \therefore Y_{22}=\frac{I_{2}}{V_{2}}=\frac{4}{15} S
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=-5 I_{1} \\
& \therefore Y_{12}=\frac{I_{1}}{V_{2}}=-\frac{1}{5} S
\end{aligned}
$$

Two port Networks - Examples

3. Find T - Parameters for the two port network shown in figure.

SOLUTION

i) $\mathrm{I}_{2}=0$,

$$
\begin{aligned}
& V_{2}=10 I_{1} \\
& \therefore C=\frac{I_{1}}{V_{2}}=0.1 S
\end{aligned}
$$

ii) $\mathrm{V}_{2}=0$,

$$
V_{1}=2 I_{1}+V_{2}
$$

$$
V_{1}=2\left(\frac{V_{2}}{10}\right)+V_{2}=\frac{6}{5} V_{2}
$$

$V_{1}=2\left(\frac{V_{2}}{10}\right)+V_{2}=\frac{6}{5} V_{2}$
$I_{2}=-\frac{10}{14} I_{1}$
$\therefore A=\frac{V_{1}}{V_{2}}=1.2$

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Two port Networks - Examples

4. Find h - Parameters for the two port network shown in figure.

We get \mathbf{h}_{11} and \mathbf{h}_{21} by considering the circuit in Fig. (a).

(a)

At node 1,

$$
\begin{equation*}
\mathbf{I}_{1}=\frac{\mathbf{V}_{3}}{2}+\frac{\mathbf{V}_{3}-\mathbf{V}_{4}}{2} \longrightarrow 2 \mathbf{I}_{1}=2 \mathbf{V}_{3}-\mathbf{V}_{4} \tag{1}
\end{equation*}
$$

At node 2,

$$
\begin{align*}
& \frac{\mathbf{V}_{3}-\mathbf{V}_{4}}{2}+4 \mathbf{I}_{1}=\frac{\mathbf{V}_{4}}{1} \\
& 8 \mathbf{I}_{1}=-\mathbf{V}_{3}+3 \mathbf{V}_{4} \longrightarrow 16 \mathbf{I}_{1}=-2 \mathbf{V}_{3}+6 \mathbf{V}_{4} \tag{2}
\end{align*}
$$

Adding (1) and (2),

$$
\begin{aligned}
& 18 \mathbf{I}_{1}=5 \mathbf{V}_{4} \longrightarrow \mathbf{V}_{4}=3.6 \mathbf{I}_{1} \\
& \mathbf{V}_{3}=3 \mathbf{V}_{4}-8 \mathbf{I}_{1}=2.8 \mathbf{I}_{1} \\
& \mathbf{V}_{1}=\mathbf{V}_{3}+\mathbf{I}_{1}=3.8 \mathbf{I}_{1} \\
& \mathbf{h}_{11}=\frac{\mathbf{V}_{1}}{\mathbf{I}_{1}}=3.8 \Omega
\end{aligned}
$$

$$
\mathbf{I}_{2}=\frac{-\mathbf{V}_{4}}{1}=-3.6 \mathbf{I}_{1} \longrightarrow \quad \mathbf{h}_{21}=\frac{\mathbf{I}_{2}}{\mathbf{I}_{1}}=-3.6
$$

Two port Networks - Examples

To get \mathbf{h}_{22} and \mathbf{h}_{12}, refer to the circuit in Fig. (b). The dependent current source can be replaced by an open circuit since $4 \mathbf{I}_{1}=0$.

(b)

Thus,
$[h]=\underline{\left[\begin{array}{cc}38 \Omega & 0.4 \\ -3.6 & 0.2 \mathrm{~S}\end{array}\right]}$

$$
\mathbf{V}_{1}=\frac{2}{2+2+1} \mathbf{V}_{2}=\frac{2}{5} \mathbf{V}_{2} \longrightarrow \mathbf{h}_{12}=\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}=0.4
$$

$$
\mathbf{I}_{2}=\frac{\mathbf{V}_{2}}{2+2+1}=\frac{\mathbf{V}_{2}}{5} \longrightarrow \mathbf{h}_{22}=\frac{\mathbf{I}_{2}}{\mathbf{V}_{2}}=\frac{1}{5}=0.2 \mathrm{~S}
$$

Two port Networks - Examples

Two port Networks - Examples

Two port Networks - Examples

Some Contents and Images showed in this PPT have been taken from the various internet sources for educational purpose only.

Thank You

