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Network Theory (19EC33)

Overview of Syllabus

* Subject Title : Network Theory

* Subject code : 19EC33

* Credits: 04

* Total number of Contact hours : 52 hours

« Number of teaching hours per week: 04 hours

 3-CIE’s, 25 marks each

 Final CIE=Sum of two best CIE marks and reduced it to 40 marks + 5 marks
Assignment + 5 marks Group Activity.

« Assignments — Problems

* Group Activity — PSPICE Simulation
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Network Theory (19EC33)

Overview of Syllabus...

Pre-requisites:
« Engineering Mathematics
« Basic Electrical Engineering
Objectives:
 Different types of Electrical Elements and their characteristics.
 Circuit Analysis Techniques such as Circuit simplification, loop analysis and node analysis.
 Different Network Theorems and its applications,.
« Concepts of Resonance and its importance.
« Study of dynamic behavior(Transient and steady state response) of electrical systems using initial
conditions
« Applications of Laplace Transforms to electrical systems.

« Two port networks and its importance in the analysis of electrical circuits.
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Overview of Syllabus...

Contents:

Unit-I:

Ch-1: Basic Circuit Concepts
Unit-11:

Ch-1: Network Theorems

Ch-2: Resonant Circuits
Unit-I11:

Ch-1: Transient Behaviour and Initial Conditions
Unit-IV:

Ch-1: Laplace Transforms
Unit-V:

Ch-1: Two Port Network Parameters
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Overview of Syllabus...
Outcomes:

« Apply the network reduction techniques to simplify the electrical circuits and analyze electrical
circuits using loop and nodal analysis.
« Apply the network theorems to find the load quantities, explain the resonant parameters and the
analyze the circuit.
« Explain and find the transient behavior of electrical circuits with initial conditions.
« Apply the Laplace Transforms for the analysis of electrical circuits.
« Define, explain and find the two port network parameters of electrical circuits and derive the
relationship between one parameter to other parameter.
Pre-Requisite for:
 Electronic Circuits
« Communications

e Power Electronics
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Overview of Syllabus...

 Text Books:
e Charles K Alexander and Mathew N O Sadiku, “Fundamentals of Electric

Circuits”, 3rd edition, Tata McGraw-Hill, 20009.
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Network Theory (19EC33)
Introduction

Definition: Network Theory

Theory: A set of Principles or Ideas are used to perform an activity ( In this

context activity is to study and analysis of a Networks). —— W\
Network ( Electrical ): Interconnection or combination of electrical

Network
elements is called an electrical network, generally network.
Network Theory: Set of principles or ideas are used to study the behaviour
of electrical networks.
Circuit and Network:

— AW\,
Network- Open loop or Closed Loop

Network/Circuit

Circuit- Closed Loop

All circuits are networks but all networks are not circuits
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Introduction...

Electrical Elements

Electrical Elements

Active
Elements

Passive
Elements

. . Independent
Resistors Capacitors Inductors SOUTCes Dependent sources
Ideal Practical VCVS VCIS ICVS ICIS
Voltage Current voltage current
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Introduction...

Basic principles
1. Current: Rate of change of Charge is called current, it is denoted as “I” and unit is Amperes.
_dQ
dt
1. Voltage: Rate of change of Flux is called Voltage, it is denoted as “V” and unit is volts.

,_do
T dt

1. Power: Product of Voltage and Current is called Power, it is denoted as “P” and unit is watts.

P=VXI

I

Branch: A Path of element is connecting between two nodes is called Branch.
Node: Two or more elements connected at a Point/Junction is called as a Node.

Ohm’s law: Ohm’s law states that the voltage across an element is directly proportional to the current flowing
through that element.

i.e., Val
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Passive Elements
1. Resistor[R]:
«A resistor opposes the flow of electric current.
«Resistors dissipate energy in the form of heat.
«Resistors exhibit negative temperature effects.
«Obeys ohm’s Law

Val, V=R I ohms.

Where, R is the Proportionality constant called Resistance measured in Ohms,

V is the Voltage and I is the Current.

«If Resistors are connected in Series. R, = Y11 R;

. . 1 1
oIf Resistors are connected in Parallel. = =%, -
l

Req

2
Power P = VxI = V? = 2R Watts

Network Theory (19EC33)

i
Circuit Symbol
> R;
=& I
R, R2

Resistors are in Series

A

Ry SRy <R,

Bl

Resistors are in Parallel
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Introduction...

Resistors are connected in Star form.

X

Resistors are connected in Delta form.

e Star to Delta conversion

_ Ri{Ry+R;R3+RiR3 , _ RiR;+RpR3+RiRs; . _ RyRp+RyR3+R{R;
Ra — ) Rb — ) RC -_ .
R, R, Rs
e Delta to Star conversion
_ RbRC ] _ RaRC . _ RaRb
Rl - y N2 » N3 — .
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Introduction...

2, Capacitor [C]:
« Capacitors stores energy in the form of Electrostatic Field.
« Q=CV C

dv(t)
dt

¢ V(== [i(0).dt; i(t) = C

1
+ E=2C V2 Joules. Circuit Symbol

1

* Coq = ; If the Capacitors are connected in Series.

* Coq = Xi=1 C; ; If the Capacitors are connected in Parallel.
 Star to delta and delta to star conversion is applicable to capacitors, only if it

1s in Reactance form.

« Capacitive Reactance X, = ﬁ Ohms.
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Introduction...

3. Inductor [L]:

« Inductors stores energy in the form of Electro Magnetic Field.

e @ =1LI .

¢ vO=LE; i) = 1 [ v(D).dt. [
« E= %LI 2 Joules. Circuit Symbol
* Lgg = Xi-1L;; If the Inductors are connected in Series.

© Loy = Z?=111 s If the Inductors are connected in Parallel.

 Star to delta and delta to star conversion applicable to Inductors also, only if
it is in Reactance form.

« Inductive Reactance, X; = 2rfL Ohms.
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Basic Concepts

Electrical Elements

Active
Elements

Passive
Elements

. . Independent
Resistors Capacitors Inductors Sources Dependent sources
Ideal Practical VCVS VCIS ICVS ICIS
Voltage Current voltage current
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Basic Concepts......

Independent Ideal Sources

Sources which maintains a constant value and does not affected by any other quantity

1. Ideal Voltage Source

Source which maintains a constant voltage, and its is independent of the current drawn from it. These
sources are having zero internal Impedance/Resistance.

2, Ideal Current Source

Source which maintains a constant current, and its is independent of the terminal voltage. These sources

are having Infinite internal Impedance/Resistance.

oA 9A A Vig —

I Ideal Voltage Source I Ideal Current Source

= Vae Cj\ha C)V e v (D : Q | |

| or Time in Hours

V or Time in Hours

I —_— — —_—
B oB
©B ®B Figure A Figure C
— Idedl*'Voltage Source Ideal Current Source
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Basic Concepts...

Independent Practical Sources

Sources having some internal resistance or impedance are

Practical Source

'Y
N
<
<
&
< —

called practical sources.

| or Time in Hours
—

e

1. Practical Voltage Source

: : : Practical Voltage Source
Due to internal impedance or resistance voltage drop takes

A
place and it causes terminal voltage to reduce. .
Vig=V —Ir ]
2, Practical Current Source Q I § || TEESERre
Current drop takes place. —
9 —
Ijg=1- % )

Practical Current Source
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Circuit Simplification

5V
Simplification @ . A O - A
« Ideal Voltage sources in series- Can be replaced by a . T . ]
T(_)mv 15V ! C)mv 5V
single voltage source. | ]
10V +5V =15V 10V + (-5V) = 5V
o 1 1 1 » B > B
Equivalent voltage is the sum or difference of Series Ading Valtoane Series Opposing Voltaes
individual voltages source values. (Voltage Addtion) (Voltage Subtraction)
——d S —— ]

i () Vi (2 "
= @”"_v’ ~ C‘ (V> V)

\r', 6 w.'?"\i':.} ‘d": e i '.I
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Circuit Simplification

Simplification
« Ideal Current sources in parallel — Can be replaced by =0A L =2,
- -
a single current source. SR b SR b
. . . bA, BA v BA Ty v
« Equivalent current is the sum or difference of T )
— - )
individual current source values. =0 > °
—— ———o
5 Wi, ly (D Or ~ (D Iy
(1y>15) (i3 > 14)
] )
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Circuit Simplification

Simplification
« Ideal Voltage Sources in Parallel and Ideal current

sources in Series

&
5
u
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Source Transformation

Source Transformation
« TItis a process of converting practical voltage source into practical current source.
« Used for circuit/ network simplifications

« Not applicable to ideal sources.

R

— VW= e . — AAA—
V(j e A0} gR I R =) (5‘“’

oy Y . .

Voltage source to current source
Current source to Voltage source
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Source Transformation

Key Points

1.

2.

Source Transformation is applicable to Practical sources only.

Ignore the resistors that are connected across ideal voltage sources.

3. Ignore the resistors that are connected in series with ideal Current sources.

While converting practical current source into practical voltage source, polarity of voltage source is

always positive terminal at the arrow head and negative terminal at the other side.

. While converting practical voltage source into practical current source, polarity of current source i.e.,

arrow head of current source must be indicated at the positive terminal of the voltage source.
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Source Transformation

Procedure to simplify the electrical networks/Circuits

1.

N

N oo s W

Identify the load element, remove the load element and name the load terminals as A and B or X and
Y etc.

Reduce the ideal voltage sources, that are connected in series.

Reduce the ideal current sources, that are connected in parallel.

Apply Source transformation.

Apply Source shifting.

Repeat the steps 2 to 5 until simplified form is obtained between the load terminals.

Connect the load element and find the load current or load voltage or power delivered or absorbed by

the load element.
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Examples

‘ i
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Examples

‘ i
D O\D*d\n 9\ t\a\L ?TOL’N (o-‘ Q%ﬁ

S wha
eebicol ewots Aawa T FFR
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Examples
¥
g =
e
e LR
—0 T
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Examples
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Examples
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Examples
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Examples
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Examples
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Examples

99 obtam vﬁk Pm(}»b-‘ “4“81 lowrec blhiun A o8
we o Ahewa ™

§
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Examples
1 bliun A B
2) Obtaw Quﬁk Pm}»bl V\“rnal ourG

W ma Ahewae

f%%»v

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Examples

) H(E) 5oV }

|$°\' 'y o .}?- = Pntf(kl

g ,__ “J’b ‘o) MH Qour“‘
feval Dl getRe fand  fourta .
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Examples
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Examples
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Examples

3. Obtain the single practical current source between the terminals A and B

10 A if_‘) % 61}

=

Y — 5 {3

O B
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Examples

3. Obtain the single practical current source between the tarminals A and B

) 14
m,n-ﬂ:j %ﬁﬂ v
60
v L 50 )V L
ok B
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Examples

3. Obtain the single practical current source between the tarminals A and B

) 14 34
1A -’T) %&ﬂ o0V Wy
N
60 61l
WV L 50 a0}y
1]
. Ly
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Examples

3. Obtain the single practical current source between the tarminals A and B

o 4 1 i-"'
SONRS ov-L o
60 61l
0V L 50 Ay
g
o Ly
A

1333 a@) 611

£u il
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Examples

4. Practice Problem

: p4
%rn %:u
LA} AV
ifl 10
1Y — 1"
.5
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Key Points

1.

Source Transformation is applicable to Practical sources only.

2
3.
4

. While converting practical current source into practical voltage source, polarity of voltage

Ignore the resistors that are connected across ideal voltage sources.

Ignore the resistors that are connected in series with ideal Current sources.

source is always positive terminal at the arrow head and negative terminal at the other side.
While converting practical voltage source into practical current source, polarity of current source i.e.,

arrow head of current source must be indicated at the positive terminal of the voltage source.
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Procedure to simplify the electrical networks/Circuits
1. Identify the load element, remove the load element and name the load terminals as Aand B or X and

Y etc.

Reduce the ideal voltage sources, that are connected in series.
Reduce the ideal current sources, that are connected in parallel.
Apply Source transformation.

Apply Source shifting.

Repeat the steps 2 to 5 until simplified form is obtained between the load terminals.
Connect the load element and find the load current or load voltage or power delivered or absorbed by

S A R

the load element.
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3. Obtain the single practical current source between the terminals A and B

oA NOTE: 5 Ohms

! A resistor IS

Iﬂhé 612 &0 connected across
the voltage

&0 source, hence 5
Ohm resistor IS
redundant. We can

Bv |
I’: ignore for the

analysis.




Examples

4. Find the current through 10 Ohm resistor for the circuit shown in figure using source

transformation.
PR S Sk -
A Ww 2. W
W | : | oy |
iy & i ' .
)
- an = A
#51\- R : | 2 A o s SA} ! wJ\-’|L‘al
va IOU-( 15'/ l' I elamant
L ==
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f, = R? ;
i ) VR RS
lt(‘) R, l R, l Vs R, R,? - R |
* R+R
A I, | .
R; R,
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5. Simplify the network shown in figure.

502

—W— a0
on ®

1002

1002




Network Theory (19EC33)

Source Shifting

Voltage Source Shifting
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Source Shifting

Current Source Shifting
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5. Simplify the network shown in figure.

502

—W— a0
on ®

1002

1002
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2A 6.66 0
© A 008V 0,00V
3330 666 0
. A AAN—
AN E B B
3330 1A

999 0
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Examples

6. Find the Current IL in the circuit shown in figure.

10 02
VY 1A Identify the load element and remove it,
I @ I then name the load terminals
—AAN AN 100
20 60 L —ANN
100 i&l
I N I
+ 50 —A\AN ANN o A

— 5V 50 60

10V .
‘ ‘ 100

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Examples

Apply Voltage source shifting for 10

V source Convert voltage sources[(10 V,5 Q) , (5V, 10 Q) ] into
current sources
10 0
00 AN
AN _3A
A <,
o)
by AN * A
—A\\N ANV o A A
E0 60
oo 2a® §5n 0o ® osa
— —— 10V
WWle VT oV ———
= ;
® B e
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Examples

Combine Voltage sources (8.33V,18V)

Combine Current sources (1A , 0.5A) and Series Resistors (6 Q, 3.33Q)

and parallel Resistors (5 Q, 10 Q)

100
. ANN
AN 18V
IA
o) :l—'\/v\.* ¢ A
p— E 0
A\ .
60 §3_33n
25A ‘H‘) §3_33n 10V
— ——=s33v
10V T TV
Y
T ® 0
oG
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Examples

Re-arranging the elements Convert voltage sources[(10 V, 10 Q) ,
(26.33V, 9.33 Q) ] into current sources

100
M\
o A
* A 10 ﬂé
9330
§9.33 Q
wov|, .
ov] | . == == 2633V
_ = 2633V P}
® B
o A
10 0
Combine Current sources (1A, 2.82 A) @ 14 9.330 ® 2824
and parallel Resistors (9.33 Q, 10 Q) '
e B
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Examples

Connect the load element across AB

e A

g:l_azn @ 3824

A
Apply current division formula
4.82
IL=1.24A _
48200 () 382A 0o I =3.82 (4_ 82 + 10)
I, = 1.244
e B
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Star to delta and delta to start conversion

DELTA AND STAR CONNECTED RESISTORS
A A

R3 R1 RA

RC

C B RB Tee (T) network
Pi (r) network R2 C B
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Delta to Star Conversion Formula

Delta to Start Conversion

R{R
A Ry = —
Ri+ R, + R
R1R;
RB —
R3 R'I R1 + RZ + R3
R>R
RC R = 23
: R{+ R, + R4
C B NOTE: Denominator is common
R2
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Star to delta Conversion Formula

Star to Delta Conversion

_ R4Rp +RgR¢ + RcR,

R,
A R
o R, Rgz + RgR, + R-R,
2 =
R
R3 R1 A
o R, Rgz + RgR; + R-R,
3 =
RC Rp
B
C B NOTE: Numerator is common
R2

NOTE: Star to delta and delta to start conversion applicable to
Capacitors and Inductors also, but should be in reactance format.
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Examples

7. Convert the given network into equivalent star network

a4l 100

5x10

R, = = 1.667 2
17" 54+10+15

154

10x15

R, = = 5N
27 5+10+ 15

5x15

R, = = 2.5
37 5+10+ 15
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8. Convert the given network into equivalent Delta network

1

1.670

2.50 62

_ 1.67x2.5 + 2.5x5 + 5x1.67

R, Ry = - =50
1.67x2.5 + 2.5x5 + 5x1.67
R12 - = 10 ﬂ
2.5
1.67x2.5 4+ 2.5x5 + 5x1.67
R23 = 1 67 = 15 .ﬂ
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Examples

9. Find the equivalent resistance between the terminals A and B

Z2{) in 40

201 %Eﬂ 602 201

203 S50 50

3Ll

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)
Examples

Combine the Series connected resistors

20) ]| 40

2% 3% Zpg

20 5t 50

i
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Examples
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Examples

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Examples

10. Find the equivalent resistance between the terminals A and B
a0 40

450 450

A §3n in B B
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Examples

Ry
Ry
4.5%7.5
= = =27
Ri=Re= 5475+3 ~ D%
R
1 R.=R.= 7.9%3 =15Q
PTIB T 454+75+3
4.5%3
R.=R = ().
50 PN 4547543 =
362
715802
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Examples

41
ANy 5810
090 090N ——A A
2250 2250
A B A 0—"\W\— —\AN—C B
: 22502 22502
150 150 —ANN————
AN 60
in
22511 2.950) 2250 Ao w of
Ar—" \N—— "N AN—— AN NN—0 B
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Examples

11. Find the equivalent resistance between the terminals A and B

C
10 2

10 £2 10 02 10 £2

10x10 10
= == )
10+104+10 3
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Examples

0 o
3
Ra ANN— Ya Lgq
Ao——ANN, ——0 i A O—AAN——AAAN—0 B

AAN——
40
D 0

10 Q

Ao vy oR
Ry =100Q
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Network Analysis Techniques

Network Analysis: To study the behaviour ( Finding the voltages, currents) of electrical circuits.

Types:
1. Mesh Analysis

2. Node Analysis

Terminologies and definitions A Ro B Il"! C
"

Loop: Any closed path l R E Ry

Example: A-B-E-F-A, B-C-D-E-B, E-D-G-F-E, A-B-C-D-E-F-A, A-B-C-D-G-F-A, v, ! |
A-B-E-D-G-F-A and B-C-D-E-F-G-D. P E

AL NW\—4 D
Mesh: Closed path without closed loops inside it. R; Ry
Example: A-B-E-F-A, B-C-D-E-B and F-E-D-G-F o
|F——AA
Node: Point or junction where two or more elements are connected together. Vi Rs

Example: A, B, C, D, E, F and G.

Fundamental Node: Point or Junction where current is dividing.
Example: B, E, D and F.

Note:
1. All meshes are loops and vice-versa is not true.
2. All fundamental nodes are nodes and vice-versa is not true
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Network Theory (19EC33)

Network Analysis Techniques

KVL: Kirchhoff's Voltage Law
Statement:
Algebraic sum of the voltages in any Loop is equal to zero.
i.e., 2 Vigop =0
OR
Algebraic sum of the voltages applied is equal to the algebraic sum of the voltage developed across the
elements in a loop. Ro

A Ih
L.e., Z VApplied = Z Vdrop
Example:

KVL to loop ABEFA
_Vl + R011 + R112 + R215 = O,

OR

Vl == Roll + R1]2 + R2]5
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Network Theory (19EC33)

Network Analysis Techniques

KCL: Kirchhoff's Current Law

Statement:
Algebraic sum of the branch Currents meeting at a node is equal to zero.

l.e. , Z Inode = O;
OR

Algebraic sum of the Current entering the node is equal to the algebraic sum of the currents leaving the
node.
Ro

AL
i. e., Z IEntering - Z Ileaving

Example:
At Node B
Apply KCL
Il — Iz — 13 = O,
OR
Il = Iz -+ 13 )
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Network Theory (19EC33)

Examples:

1. Find the branch currents and voltages for the electrical circuit shown in figure.

LIV R —10 + 51, + 15, = 0 —— —(1)
- ) 1015 + 201, — 151, = 0 —— —(2)
10V = 15 8
o I; =1, — —(3)
=1+ — —(4)
Substitute 4in 1
I, =0.4 A 5(I, + I3) + 151, = 10
I;=0.24 20I, + 5I; = 10 — —(5)
I, =0.2A Substitute 3 in 2
I; =0.6 A 1015 + 2015 — 151,
—15I, + 301, = 0 — —(6)
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Network Theory (19EC33)

Examples:

2. Find the branch currents for the electrical circuit shown in figure.

0.02(x — 80) + 0.02x + 0.01(x — 30) + 0.01(x + 40)
+0.03(x — 80) + 0.01(x — 20) = 0 —— —(1)

0.1x = 4.1

x = 414
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Network Theory (19EC33)

Examples:

3. Find the voltage “V,,” for the electrical circuit shown in figure.

Vs

e

—2+43L,+2,=0———(1)
I, =0.44
—4+ 31,4+ 5, =0——(2)

ny — VxA + VAB + VBy
ny =3(—1y) + (—4) + 3(;)

Vey = —3.7Volts
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Network Theory (19EC33)

Mesh Analysis

Branch Current Method
, R B W

Al . c

« Number of unknowns is equal to the number of
branches.

« Difficult for complex circuits.

Ro V.
Mesh Current Method - AN o | : C
. J. I Ry I ERE
« Number of unknowns is equal to the number Vi
F
of Meshes(Fundamental Loops) WA 2 AP
* [;,I, and I;are Mesh Currents ’ 13>
| ——A
V3 Rs
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Network Theory (19EC33)

Mesh Analysis

Procedure to apply Mesh Analysis:

Step-1: As far as possible try to shift current sources into voltage sources without affecting the
load elements.

Step-2: Identify the number of meshes (Fundamental Loops)
Step-3: Name the loops as Loop-1, Loop-2 and so on.

Step-4: Assign Mesh currents as I1, 12 etc.(or x, y etc.) to all the meshes and choose all the mesh
currents direction are either clockwise or anticlockwise.

Step-5: Apply KVL to each mesh.
NOTE: Number of KVL equations is equal to number of Meshes (Mesh currents / Unknowns).

Step-6: Solve KVL equations using variable elimination method or by applying Cramer’s Rule to
find Mesh current.

Step-7: Find branch currents and /or branch voltages and/or powers from the mesh currents using
Ohm’s Law.
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Network Theory (19EC33)

Examples:

1. Find the branch currents and voltages for the electrical circuit shown in figure.

oE2 B 10 £2 C
A AAN We get Power
I, = 0.66A Pioy = 10xI; = 6.66W
I, = 0.22A P:q = 3.33x0.66 = 2.19W
s I, 150 12 Branch Current Py5q = 6.66x0.44 = 2.90W
208 Ipg = ley = I; = 0.66A Pioq = 6.66x0.22 = 0.48W
Mesh-1 Mesh-2 Iag = Isq = 1; = 0.66A Pyoq = 4.44x0.22 = 0.97W
Igc = lipq =1, = 0.22A Law of conservation of
D Icp = o0 =1, = 0.22A energy
Igp = lisqg =1, — 1, = 0.44 A Psy
Apply KVL to Mesh — 1 Branch Voltages = Psq + Pisq + Proq
—10+5I; +15(I; - 1,) =0 Vpa = Vigy = —10V + Pyoq
20I; — 151, =10 —— —(1) Vap = Viov = +10V
Apply KVL to Mesh — 2 Vap = Vs = 5xI; = 3.33V
Vge = Vigq = 10xI, = 2.22V
15(1, — I;) + 101, + 201, = 0 . . .
. VCD = Vzo_Q = ZOXIZ = 4.44V
150 + 451, = 0 —= ~(2) Ve = Viso = 15(I; - 1) =6.66V
Solve equations (1) and (2)
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Network Theory (19EC33)

Examples:

2. Find the Mesh currents for the electrical circuit shown in figure.
Apply KVL to mesh — 1

20 £2 5V
MeSh'3 ID 3011 — 2012 — 1013 =10 —— _(1)
3
:j\i B éﬁi Apply KVL to mesh — 2
A c 20(I, — I,) + 20(I, — I3) + 101, = 0

Apply KVL to mesh — 3
Mesh- Mesh-
esh-1 €s 10(I; — 1) + 2013 + 5+ 20(I; —1,) = 0

10V =" 1 200 100
2

D —101, — 201, + 50I; = =5 —— —(3)
Solve equations (1).(2) and (3)we get.
I, = 0.26A
I, = 0.11A
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Network Theory (19EC33)

Cramer’s Rule

a111 + bllz + Cllg = d1
a211 + bzlz + Czlg = dz
3311 + b312 + C313 = d3

d, by
A]_: dz b2 C2
ds; b3 c3

bl C1 d1  where,a,b and c are co —
b2 Coy X =1|d 5 ef ficients of unknowns
b C d * dq,d, and d; are constant terms
3 (3 a3
Zl . ap by dy
o As=|ay by dy
3 3 as b3 d3
11 = Al/ A
12 = Az/ A
I; = A3/ A
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Network Theory (19EC33)

Examples:
3. Find the mesh current for the electrical circuit shown in figure suing mesh analysis.

Apply KVL to Mesh — 1

20V 20 10V L, —20+2(;, — ;) +40=0

[, — 2I, = =20 — —(1
19 7 -[41:*\: L 220 <, 3L, — 21, 0 (1)

Apply KVL to Mesh — 11
Mesh | Mesh 11 Mesh |l —40+2(I, — 1) +10+2(I, — I3) = 0
=21 + 41, — 2I3 =30 —— —(2)

Apply KVL to Mesh — III
2(I; —1,) —10+ 413 =0

Solve equations (1), (2)and (3)

I; =0A,1, = 10Aand I; = 5A
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Network Theory (19EC33)

Examples:
4. Find the mesh currents I1, I2 and I3 for the electrical circuit shown in figure suing mesh

analysis.

1142

4,502

40

Mesh |

Mesh Il

Mesh I

Apply KVL to Mesh — 1
—20+1L,+5(;-1,)=0
6l; — 51, = 20 —— —(1)
Apply KVL to Mesh — 11

—51; + 11.51, — 2I; = 0 —— —(2)

Mesh — II1

I, = —1A —— —(3)

Solve equations (1), (2)and (3)

I; =5A,1, =2AandI; = —1A
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Network Theory (19EC33)

Examples:

5. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

c D Apply KVL to Mesh — 1
s 18 2 —5+4+2I,+1(;, - 3) +2I;,=0
5L -1, =5—-(1
pply o Mesh —
A % B T E _5+212+12+12+2(12—I3)=0
20 20 6, —2[3 =5-———(2)
Apply KVL toMesh — III
- ! 10 |/ 20
VT D § D § 13— 1) +2(3—1,)+2I3+5+2I5=0
_
I, I, I, =2, + 73 = =5 — —(3)
H 20 G 20 5y F Solve equations (1), (2)and (3)

I; =1.14A,1, = 0.71A and I; = —0.34A
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Network Theory (19EC33)

Examples:

6. Find the mesh currents I1, I2 and I3 for the electrical circuit shown in figure suing mesh

analysis.
Mesh — 1
A B C D
"""""""""""""""" MWW I, = 1A — —(1)
142 10
g Apply KVL to Mesh — 11
A ® —D gz}D gz—D _ 2(I, = ) + I, + 2(I, — I5)=0
. ,2 710V —2I; + 51, — 213 = 0 —— —(2)
H Meshl o Meshll F Meshlll E Apply KVL toMesh — III
2(13 —12)+I3 _10 = O
21, +3I; =10 —— —(3)

Solve equations (1), (2)and (3)

I;,=1A1,=2.36AandI; =4.9A
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Network Theory (19EC33)

Examples:

7. Find the mesh currents for the electrical circuit shown in figure using mesh analysis.

Apply KVL to Mesh — 1

§5“ §E“ é*‘-‘“ 5I; +2(I; —1,) + 20 =50 = 0
71, — 21, = 30 —— —(1)

- 50V — 20V =10V Apply KVL to Mesh — 11
T 2(I, — 1) + 31, +10 — 20 =0

Solve equations (1) and(2)

’D ’D I, =5.48A,1, =4.19A

S50V Iy - 20V I,

¢l
i
ik
o
-

Mesh | Mesh I

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Examples:

8. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

60V = GD“ §ﬁﬂ; _.__—__

Apply KVL to supermesh

-]- ) . Apply KVL toMesh — III
f e
e 5A Current source is common to meshes 1 and 2 6(I3 —1;) +3I3+50=0
Consider current source separately
* Le,hL-L=5-—"=—(1) —6I, + 913 = =50 —— —(3)

e combine the meshes 1 and 2 without considering

common current source to form a single mesh, Called
Supermesh.

Solve equations (1), (2)and (3)

I;,=0.74A1,=5.74AandI; = -1.72 A
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Network Theory (19EC33)

Examples:

9. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

1q A - g > | Apply KVL to supermesh
c :10: D :‘30: E.
. ~ I L—L)+3(,—1) +4l, —24 =0
2av(* 8A é’“’%) ;)G 8?29 340 (I —I3) + 30, — I3) + 41,
| F 3 H 2 I, + 71, — 413 = 24 — —(2)
A & B
oA —2— W —E Apply KVL toMesh — III

1 2

(I; Q ) ?

G

I, = —2A———(3)
* 8 A Current source is common to meshes 1 and 2 :
Consider current source separately Solve equations (1), (2)and (3)
e hel,—1 =8 ————(1)
* combine the meshes 1 and 2 without considering
common current source to form a single source, Called L =-5A=3Aandl3=-2A
= Supermesh.
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Examples:

Network Theory (19EC33)

10. Find the mesh currents for the electrical circuit shown in figure using mesh analysis.

Apply KVL to supermesh

1, — L) +3Us—L) + I +2(s— 1) +2(, — 1) —7=0
[, —4l, + 41, =7 —— —(2)

Apply KVL toMesh — III

(I, -1+ 2, +3(1, —13) =0———-(3)

7 A Current source is common to meshes 1 and 3
Consider current source separately

e, 3—1,=7——(1)

combine the meshes 1 and 3 without considering

common current source to form a single source, Called

Supermesh.

Solve equations (1), (2)and (3)

I;,=9A1,=25Aandl; =2A




Network Theory (19EC33)

Examples:

11. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

gor D é”’ I, —I3=2—-——-(1)
S0V F:.) @“ 0 KVL to supermesh
o ) S 2L, + 1, +5(1, —1,) + 10(I, —1,) = 0
’ —151, + 121, + 613 = 0 —— —(2)
Super Mesh KVL10 mesh 1
10(I; —I,) + 5, —13) —50=0
oa 1) |32 Solve equations (1), (2) and (3)
et 0 y ,=20A, 1,=17.33A and 1,=15.33A
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Network Theory (19EC33)
Examples:

12. Find the mesh currents for the electrical circuit shown in figure suing mesh analysis.

Ib—I;,=5———(1)
I;—1, =8———(2)
KVL to Supermesh
50 20 | 30 51, + 21, + 313+ 50 — 60 = 0
51, + 21, + 313 = 10 —— —(3)
' Solve the equations (1), (2) and (3)
- e 4 [,=-3.0A
60\!.- —-_SOV L=11A
[,=9.1A
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Network Theory (19EC33)

Dependent/Controlled Sources

Dependent Sources
Current and voltage of source depends on some other current and voltage.

Example: c

. @ ! e l—8> <£: Cc

_ .
B —— b
Gy 101 mn <> 2y @— Vee = Vee = 81
» a

, LA Vee - ‘L =
N 1 Ie
# —

¥ !“17") E E
o

Applications: Analysis of amplifiers

Types:

. Voltage Dependent Voltage source V = AV, V=Bl <> = GV, | = Dly
. Current Dependent Voltage source |

1
2
3. Voltage Dependent Current Source
4. Current dependent Current source
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Network Theory (19EC33)

Examples:

1. Find the mesh currents for the electrical circuit shown in figure.

50 10/g 50 50 107 S0
— AT ANA—— MA—L S VWY
—l-fl. —I-Il —=I —Ig
sV 10V 5V j ) - v
Sty | h Sy
Obtain the control variables in terms of KVL to Mesh-2
mesh currents. —5I,+10(I, — ;) + 51, + 10 = 0
, Iy=1y;1p =1 —51, +10(I, — 1) + 51, + 10 = 0
KVL to Mesh-1 ~151 + 151, = —10
L] { ] ., i ]
—5 + 511 + 1012 + 10(11 — Iz) + 511 == 0 Therefore 12 — —O4-16A
2011 =5

Therefore I, = 0.254
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Network Theory (19EC33)

Examples:

2. Find the mesh currents for the electrical circuit shown in figure.

102 1102 A |0
A8 1 $ 13 10 14 1 "In..f?ﬁ..

3V SV =

4
I
N
gy
=
-
|

1L -1) -1, +1L +1,+1(01, —-1,) =0
Obtain the control variables in terms of (I = 1) ~1y 20X (1 3)_
L—-L—L+L+L+l+L,—1;=0
mesh currents. 2L, = 0
Iy =11y =1 — I3 122=0A.
KVL to mesh-1 Mesh-3
—5+1l;+1,+1(I; - 1) =0 I; = —1A
_5+Il+12_13+11_12 =0
2Iy =13 =5-—=-(1) I, =24 I, =0Aand I, = —1A
KVL to mesh-2 1= 72 T andls = —
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Network Theory (19EC33)

Examples:

3. Find the mesh currents for the electrical circuit shown in figure.

2V 412 2102
>

- 10V = 10V

Obtain the control variables in terms of
mesh currents.
Vi=-5I;Vy = 2I;
Apply KVL to mesh-1
+5 + 511 + ZVZ +4'Il + 1(11 —Iz) - 2V1 =0
5+51;+4l, +4l{+1; — I, +10I; =0

Apply KVL to mesh-2
2V1+1(12—11)+212+10=0
—1011+12—11+212+10=0

—111; + 31, = —10 —— —(2)

I,=0.1614 and I, = —2.7 A
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Network Theory (19EC33)

Examples:

Obtaining the relationship between control variables and mesh currents

Case(i) Case(ii) Case(iii) Case(iv)
+ + +
I I +
R< Vx l R< Vx = LIRS Vx ' LIRS Vx =
V,=RI V,=R(-1,) V=R —1,) V=R, —I>)
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Network Theory (19EC33)

Examples:

4. Find the mesh currents I1, 12, I3 and I4 for the electrical circuit shown in figure.

1 1 1

6 o i5 9

AN AAA AN
- 5V,

} . L
g ) V7)) 3
6V * (1) s0a

I
1
Lo
N &

Obtain the control variables in terms of
mesh currents.
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Network Theory (19EC33)

Examples:

5. Find the mesh currents I1 and 12 for the electrical circuit shown in figure.

100
140 40 ey
AAA- AMA _.1:)

=

iy

nuv—.r- 5 ﬂg}l o5V, ) §"’ Q
) ,1

Obtain the control variables in terms of
mesh currents.
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Network Theory (19EC33)

Examples:

Obtaining the relationship between control variables and mesh currents

Case(i) Case(ii) Case(iii) Case(iv)
+ + +
I I +
R< Vx l R< Vx = LIRS Vx ' LIRS Vx =
V,=RI V,=R(-1,) V=R —1,) V=R, —I>)
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Network Theory (19EC33)

Examples:

4. Find the mesh currents I1, 12, I3 and I4 for the electrical circuit shown in figure.

13 —Iz — 5Vx
1
I3 -1, = 5-3(12 —1I4)
6V I1 —2I,+13=0—- —(3)

KVL to supermesh

1 1 1 1
—Iz +_13 +E(I3 —14)+§(12 —11) =0

20 15
—0.21; +0.25I, + 0.561; — 0.4, = 0 ——— —(4)
Obtain the control variables in terms of
mesh currents. At mesh 4
1 I, = 404
V= 5(12 —1I) — —(1)
KVL at mesh-1
16 +1_10,1 +%(11 1) +%(11 1) =0 I; = 104,1, = 204,I; = 304 and I, = 404
0.461, + 0.21, — 0.1661, = —6 —— —(2)
5Vx current source is common to mesh-2
and 3.
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Network Theory (19EC33)

Examples:

5. Find the mesh currents I1 and 12 for the electrical circuit shown in figure.

(LI #)
140 40 MWV .
AN AAA ; D 0.5V, current source is common to
: > mesh-2 and 3,
* —
110V— Iﬂg'ﬁ 05V, | §ﬁﬂ 0.5V1—I3—Iz
- 05(2 (11—12))=13—12
h ! Iy =1I3--(3)

KVL to supermesh
1013 + 61, +2(I, — 1) =0

Obtain the control variables in terms of
mesh currents.

Vi=2,-1;) —-(1)
KVL to mesh 1
—110+ 141, + 41, +2(I; - 1,) = 0
201, — 21, = 110 —— —(2)

—2I, + 81, + 1013 = 0 — —(4)
Solve equations (2, 3 and 4)
We get.

11 = 5A,12 = —5Aand13 =54
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Network Theory (19EC33)

Node Analysis

Vi Rs Vi

 Node: A junction or a point where two or more elements are

connected.
« Example:
 Fundamental Node : A node where Current division takes
place
« Number of unknowns is equal to the number of nodes-1.
 V,,V,,V;5...are node voltages
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Network Theory (19EC33)

Node Analysis
Procedure to apply Node Analysis:

Step-1: As for as possible try to convert voltage sources into current sources, without affecting the
load elements.

Step-2: Identify the number of fundamental nodes.
Step-3: Name the nodes and assign node voltages as V1, V2, V3...

NOTE: Ground potential is always zero.
Step-4: Assign branch currents to each branch as I1, 12, I3 etc., and choose the directions randomly.
Step-5: Apply KCL at each node

NOTE: Number of KCL equations is equal to the number of nodes-1/number of
unknowns.

Step-6: Replace branch currents in terms of node voltages.
Step-7: Solve KCL equations using any mathematical technique to find node voltages.
Step-8: Find the branch currents/branch voltages/power from node voltages using ohm’s law.
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Network Theory (19EC33)

Node Analysis

Vi Rs Vi

 Node: A junction or a point where two or more elements are

connected.
« Example:
 Fundamental Node : A node where Current division takes
place
« Number of unknowns is equal to the number of nodes-1.
 V,,V,,V;5...are node voltages
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Network Theory (19EC33)

Node Analysis
Procedure to apply Node Analysis:

Step-1: As for as possible try to convert voltage sources into current sources, without affecting the
load elements.

Step-2: Identify the number of fundamental nodes.
Step-3: Name the nodes and assign node voltages as V1, V2, V3...
NOTE: Ground potential is always zero.

Step-4: Assign branch currents to each branch as I1, 12, I3 etc., and choose the directions
randomly.

Step-5: Apply KCL at each node

NOTE: Number of KCL equations is equal to the number of nodes-1/number of
unknowns.

Step-6: Replace branch currents in terms of node voltages.
Step-7: Solve KCL equations using any mathematical technique to find node voltages.
Step-8: Find the branch currents/branch voltages/power from node voltages using ohm’s law.
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Node Analysis-Tips

Network Theory (19EC33)

I,
Vi—-V;
Il — R
R
—A\\—e V2
E
I
Vi —I_
Va
Ve Vi—V
L R
V, - V;

(Since Vg = 0V)

"3

V2 - V1 'V{}

11 =
R 11 —

Vi Vi

L ] 9 "

R§ I Rg I

* Vi, =V, *
Ve 11 _ 1 G Vo

R
Vi
I, = R (Since Vg = 0V)

Ve — (V1) = V;
R
(Since Vg = 0V)

Il =
Vi—-V,
R

I

Ve — V3
R

—Vi .
=] (Since V; = 0V)

11=
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Network Theory (19EC33)

Node Analysis-Tips

Vi [Vs N V2 1Fh'—| 3 M—e V-
._I > -+
I Il
R AR
1 — R 11 — VZ - VS - V1
R
Vi+V, =V,
1= R
vl’_l ‘vﬂ R Vs Vi Vs R Vo
—_— | -+ v vV
I; I
Vi—-V, -V,
I, = = V, = (=Vs) =V
[, = R
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Network Theory (19EC33)

Node Analysis-Examples

1. Find the branch currents and branch voltages for the electrical circuit shown in figure.

Identify the fundamental nodes

1 82 2401 10 V1 20 V2
Vv 0'A"A e aumd VAVAY
1A 20 10 CI 2A MC’D gm 1Q G 2A
L
Va=Ve=0V
KCL at node 1
Assign branch currents I=5L+1
Express branch currents in terms of node
1Q Vi, 2Q V2 voltages
I Ia 1 =V1_VG iV
2 2
1A 20 1Q G 2A 1=V, -05V, — —(1)
KCL at node 2
o L+2=1I Answer:
V3=Vg=0V =V, 19— Vo = Ve V,=2V
2 1 V,=2V
0.5V; — 1.5V, = -2 —— —(2)

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Node Analysis-Examples

Branch currents

A 10Q ‘“’112 20 Va
I; |B I3 c
IACD 20 1Q G 2A
D
‘ L
V3=Vg=0V
IAB - 1A
Vi
IBD - 11 - 7 1A
V, -V
Igc=1,=——2=0A
2
V,
ICD=I3=T_2A'
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Node Analysis-Examples

2. Find the Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes

hRe iQ
AN AN G A
20
1 L 2402
gmn §15ﬂ 3A T 8Y 00 . Ia 18V
oV T v ]‘
Assign branch currents KCL at node A
Il + 12 - 13
Valz 50 Va Is 3Q Express branch currents in terms of node voltages
+ > 1O—VA+( VA)_VA—VB "
241 Iz 14" " 2 10/ 5 ( )
T4 0q g 150 1 18V 8V, — 2Vz = 50 —— —(1)
OV T KCL at node B .
1 13 = 14, + 15 + §
: Vo—Vg Vg Vp—18
ASB=1_l;+BB @
Answer: V4, = 9.39Vand Vg = 12.58V 3V, — 9V, = —30 —— —(2)
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Node Analysis-Examples

3. Find the Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes Assign branch currents
9A
- A 9A
0 o —6—

48 40
—W M Is 10
. 25} 50} -. "
A —T—AAN | AR AR s
I
12y T 12V p nl |
100 gmn
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Node Analysis-Examples

9A
/:_\ KCL at node 1, I%/= I%/+ I3V+ 9 o vy
dnu R
M —V; + 0.5V, + 0.25V; = 6 — —(1)
KCLatnode2,I, +1,+1s =0
20 50 V,-v, V, V,—V
v, I» V5 Is Vi e S BN 3_0
2 100 5
Iig —0.5V; + 0.71V, — 0,2V = 0 — —(2)
44 100 Q 200 KCLatnode 3,9+ I3+ 1+ 1,=0
Vi—=Vs Vo—=V3 —V;
9 + + + =0
12V 114 I 4 5 20
'|' 6 0.25V; 4+ 0.2V, — 0.5V; = =9 —— —(3)

Answer: V; = 6.35V,V, =11.76V and V; = 25.88V
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Node Analysis-Examples

4. Find the V1 and V2 using Node voltage analysis for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

Q- vI2 500

_l_ I Ia
00 sov 00 08 <00
-‘- I1

v
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Node Analysis-Examples

_|_ 2040
50V 400 10}
10V
I
=
at node — 1
50V source is connected between non reference Answer: V; = 50V and V,=8.82V
node -1 to ground node.
V, =50V —— —(1)
Apply KCL at node-2
12 == 13 + 14_
Vi=Ve _V2-10 V,
50 20 10
0.02V; —0.17V, = =0.5 —— —(2)
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Network Theory (19EC33)

Node Analysis-Examples

5. Find the V1 and V2 using Node voltage analysis for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Node Analysis-Examples

V. =20V —— —(1)
KCL at node a.
I, =1, +2
80—V, V,—V,
s0 10 ¢
—0.12V, + 0.1V, = 0.4 —— —(2)
KCL atnode b
I3 I =1 +1,

Va_Vb_Vb_I_Vb_Vc
10 50 20

0.1V, — 0.17V, + 0.05V. = 0 —— —(3)

Answer:V, = 3.08V,V, =7.69V,V,. = 20V,

Vi=Va—VpVa=Vp -V,
V; = —4.61Vand V; = —12.31V

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Node Analysis-Examples

6. Find Node voltages for the electrical circuit shown in figure.

| 20 6V 2V
zﬂg 30
3A

410

Identify

the fundamental nodes and assign branch currents

Network Theory (19EC33)

2A

- AAA——
20 6V 2V
Vi '—W\{Tb-!: v2 :: Vs
2
') Q§ i 40
.! I3
In JA
Va=Vge=0

2A
) A
\_J Super Node
2¢€0 6V
Vi '—'VWTED-!:
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Node Analysis-Examples

2A 20 NOTE: if an ideal voltage source is connected between two non
(- ANN—— reference nodes, consider that common voltage source independently
~ 6V Super Node and write mathematical equation corresponding to the common
2Q voltage sources.
v Vy=Vs=2-——(1)

For further analysis, no need to consider that voltage source. Combine
nodes 2 and 3 to form a single node called as super node.

Apply KCL at super node.
] L+3+2=1
= V,—6-V, Vs

> +5 =" ————(2);0.5V; — 0.5V, — 0.25V5 = 2

Apply KCL at node1
11 = 12 + 2
|74 Vi—6-—V
(—71) = — > 242 ———(3); -V, + 0.5V, = —1

Answer: V, =4V ;V, =6V ; V3 =4V.
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Node Analysis-Practice problems

1. Carryout nodal analysis and find V,,.

V, =0.06Volts

2. Carryout nodal analysis and find node voltages.

602 v
10£2 10£2 ImaA

e
<
+

V,=-0.17VandV, — 6.17V

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Node Analysis-Practice problems

3. Carryout nodal analysis and find voltage across 2 Ohms resistor (Connected Vertically).

A 4A

V,(Vertically connected) = 0.31 Volts

e,
4k 15mA ~
i N |
15V
2Kk (»P 30mA fum 6kQ2
P =0.29 Watts

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Node Analysis-Practice problems

5. Find the current through 50 Ohms resistor using mesh analysis.

20!1
Q Q

50Q ‘
- j
. Il T 20V %

b

100V

150 Ohms — 0.24A4 (b to (l)

6. Find the power dissipated in 6KOhms resistor using Mesh analysis.

&
15mA
hirl O J
15V
2kQ (»P 30mA fum lam

P =0.29 Watts

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Node Analysis-Examples

7. Find V1 and V2 using Node voltage method for the electrical circuit shown in figure.

11, 12 and VZ
Express control variables in terms of node voltages.

V2 Vi
11 =_,12 = — andVZ
A 10 10
* — * Apply KCL at node-1.

211 == 12 +I3 + ZVZ

% VN V=V
: . (- ()
' "’“§| '““él 4 2\170)=\10) t —10 T2
I I 0.2V, = 0.1V, + 0.1V, — 0.1V, + 2V,
Vo, =0Volts

Apply KCL at node-2
Iy + 2V, + 21, = I
Vi =1, Vi V2
10 T4Vt (E) B (E)
0.1V; — 0.1V, + 2V, + 0.2V; = 0.1V,
0.3V; +1.8V, =0—-—(1)
Vi=0Volts.

Answer:V; = 0Vand V, = 0V
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Node Analysis-Examples

8. Find Node voltages for the electrical circuit shown in figure.
V, and Vy,are control varoables.
Express control variables in terms of node voltages.

Ve=Vo =V —— —=(1)
Vy =V, =V; — —(2)
Node-1
V, =—-12Volts —— —(3)
Apply KCL at node 2

L+1L+14=0

Vi=V, Vz=1;
+ +14 = 0—— —(4); 2V, — 2V, + 0.5V; — 0.5V, = —14

0.5 2
2V, — 2.5V, + 0.5V; = —14
0.2V, voltage source is between V, and V,.
0.2V, = Vs — V; —— —(5); 0.2V, — V;) = V5 — V3 —— —(5)
—02V1 - V3 + 2V4_ =0
Apply KCL at super node.
12 + 14, + OSVx - 13
V; =V, V3 —
12 - T (V) + 05V, — V) == 2 2 ———(6)

Answer:V, = -12,V, —4V,V; =0Vand V, = -2V
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AC Quantities

AC quantities are represented in two different formats.
Polar form

Format=Mz20
Where, M is the magnitude and @ is the phase angle

Rectangular form
X+jy
Where, x is the real part and y is the imaginary part.

Conversion from rectangular to polar
Given: x+jy, To find: M and @

M=,x?+y?and @ = tan‘l(ﬁ)
Conversion from polar to rectangular

Given : M and @, To find: x and y

X = Mcos® and y = Msin@®

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

AC Quantities

Conversions are used to perform mathematical calculations.

NOTE:

For addition and subtraction-Rectangular form A=10;A=1040°=>10+j0
Consider

A=x;+jy;and B =x, +jy, A =10490°= 0 +j10

A+ B = (x;+x3) +j(y; +y2)
Similarly A—B=(x; — %) +ijly; —v3) A=102£-90"=0-j10
For multiplication and division-Polar form A=10+j0= 10o0r 100"
Consider

A=M;2 @, and B= M,z 0, A=j10 = 10290°

A*B=M1*M2L®1+¢2
Similarly % - %4 0, — @, A =—j10 = 102 — 90° or — 10290°
2
1 .

Also A=—-=—j

AxB =(x; +jy)(x; +jy2) ]
= X1X + jX1¥2 +X2¥1 +J°V1Y2

. 2 A=j*j=i=—1.
= (x4X; —V1V2) +j(x1y5 + X,y4) sincej? = —1 J*) =)

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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AC Quantities

Resistors: ®
R Ohms (Same for both DC and AC)

Voltage in phase with the current

Resistors v

Capacitors: _—

C Farads (DC analysis) I Vs

-jX . Ohms (Capacitive reactance AC analysis) (Negative sign- 0

Voltage lags current by 90°) - -

1 .

Where, X, = — = 1/wC,where, f is the frequency. m Inductors
Capacitors —

Inductors: I

L Henry (DC analysis)

+jX; Ohms (Inductive reactance AC analysis) (Positive sign-
voltage leads current by 90°)
Where, X; = 2nfL = wL,where, f is the frequency.
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Mesh Analysis-Examples

1. Find the mesh currents using mesh analysis

3020° v (~)

50 2 jaq 40
AW A — T Wiy
—_—

gfﬁﬂ

gﬂﬂ

(~) 35.36245°

KVL at mesh-1
51, +j5(1; —1,) — 30200 = 0
(5+j5)I; —j5I, = 3020° —— —(1)

KVL at mesh-2

21, +j3L, + 6(1, — I3) +j5(, — 1) = 0

(—j5)1; + (8 +j8)I, — 613 = 0 —— —(2)
KVL at mesh-3

413 + 35.362£45° + 6(I1; —1,) = 0
(—6)I, + (10)I3 = —35.36245° — —(3)
Solve equations (1), (2) and (3), we get
[;,I, and I3

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Mesh Analysis-Examples

Cramer’s rule: A= 1320 + j2400 — j750 + 750
Ay= 2070 + j1650 or 2647.14,38.55°
(5+j5) —j5 0 30 + 50
A= —j5 84,8 —6[X= 0 Similarly evaluate A, and A
0 -6 10 —25—j25

. . . . _ A1 _ 0
A= (5 +j5)[(8 + j8)(10) — 6(6)] — (—j5)[j5(10) — 0] | | Therefore Iy =70 =4.24245.01°4
A= (5 + j5)[80 + j80 — 36] + j5[—;50]
A= (5 + j5)(44 +j80) + 250 Similarly evaluate I, = AXZ and I; = %
A= 220 + j400 + j220 — 400 + 250
A= 70+ j620 or 623.9,83.55°

30+j0 —j5 0
A= 0 8+j8 —6
-25—j25 -6 10
A;=30[(8 +j8)10 — 36] + j5(—6(25 + j25))
A= 30[(80 + j80) — 36] + j5(—150 — j150)
A= 30[44 + j80] — j750 + 750

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Mesh Analysis-Examples

using mesh analysis

2. Find the currentdll

g
- bk
wr@ ™) a0 |* 3 a2 ()= [ 5]
2 4—j41]|12 —j30
A~ ON EEI J y J
from which we obtain the determinants
Eﬂ% (TI) 1 A= 848 J2 =32(14+ M1 —j)+4=068
Applying KVL to mesh 1, we obtain:
(8 +j10 = )1, = (~2)1, - j10L, = 0 Ay = ]3 'HE -J,?a?u‘ =340 — j240 = 416,17/ — 35.22°
Formesh 2, Ay 41617/ —35.220
2 . - o
(4 = j2 = j2)Ih — (= j2)T) — (—j2)I3 +20/90° =0 =7 = 68 =6.12/_3522" A
The desired current 15
Formesh 3, I; = 5. I, =-1,=6.12/14478° A

(8 + j8)1 + j2Ih = j50
J2I + (4 — jhI = —j20 — j10

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Mesh Analysis-Examples
3. Find the Node voltages using node analysis | KCL at node-1

50 20 jao 40 IL=L+1I,
VAT T WW 30200 -V, (Vi\ Vi—V;
5 ~\y5) 2+j3
3020°V (=) jsq gﬁﬂ (~) 35.36.245° 6 02V, = —i0.2V Vi —
3 <= TN T 3 56 30

6 — 0.2V, = —j0.2V, + 0.153V, — j0.23V, — 0.153V, + j0.23V,
6 = 0.2V, — j0.2V, + 0.153V, — j0.23V, — 0.153V, + j0.23V,
(0.353 — j0.43)V; + (—=0.153 + j0.23)V, = 6 —— —(1)

KCL at node-2

+ I3 +1y =I5
(~) 35.36245° Vi Ve + (— &) = (V,—35.36245%) /4
- 2 +j3 6

0.153V, — j0.23V, — 0.153V, + j0.23V, — 0.166V, = 0.25V, — 8.84245
0.153V, — j0.23V, — 0.153V, + j0.23V, — 0.166V, — 0.25V, = 8.84,45

(0.153 — j0.23)V; + (—0.569 + j0.23)V, = 8.84.,45 —— —(2)
Solve (1) and (2) to findV, and V,
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Problems
4. Find I using node analysis.

Transform to frequency domain.

102 1H
AN STIR 20cosdt — 20/0°, w = 4 rad’s
l.fx 1H =  joL=j4
20 cos 4t V =0 P, FosH 0SH = joL=)2
0.1F — — 1 _ —j2.5
Jwl
= Applying KCL atnode 1,
20-V, _ V) n Vi—1V»
10 —j2.5 j4
1002 3 j440 A3 or
t_I i} il ! (14 j1.5V) + j2.5V, =20
X
At node 2,
20,00V 2250 2L {1}} g 20 v
21, = —
T T i
1 ButI, = V/—j2.5. Substituting this gives
- 2V Vi—Vo "
—j2.5 e j4  j2

By siumplifying, we get
11V + 15V, = 0
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Problems
14j15 j2.57[v] _[z20
11 15 Val | 0
We obtain the determinants as
1415 j2s) .
|20 j2s| |1+ 515 20]
4-'1'|L1-||:I 15‘—3{‘!0, ﬂg—l 11 H[- 220
A 300
V= = = 18,97 /18.43°V
YTTA T 15— 5
An —220
V= = = 13.91,/198.3°V
=3 o3
The current I, 1s given by

vy 18.97/1843°
—j2.5 25/ gpe
Transfornung this to the time domain,
ip = 7.59 cos(4t + 108.4°) A

=7.59/108.4° A

I:
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Practice problems
1. Find node voltages

10/45°V

_@_

V, | 4Q 1 |V,
# - -

WWW—¢

woeA®d) = _j30 3;’69 120

2. Find node voltages and mesh currents for the electrical circuit shown in figure.

BT A S i T S YTY
2H _I]. 4H

+
ganﬂ 5mF = Flglﬁﬂ 30ﬂ§v2

£ =}
N/
18cosl0f V

V,=3318£-393°V and V,=4452/-127°V

3H

1,=04319--259"A and 1,=02099--577"A
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Practice problems
3. Find node voltages

oy 2000 uF £5(0) v, -j5 02 Vv,
n r—
2 sin(1001) § 1002 0.1 H CT) 1.5 cos{100r) 2/-90° g 10 2 +i10 €2 1.5/0°

—1 -

v, =16.1cos(100t +29.74°) V

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Network Theorems

Theorems:

Theorems are statements that can be demonstrated to be true by some accepted mathematical arguments

and functions. Generally theorems are general principles. The process of showing a theorem to be correct is

called a proof.

« Proved theorems can be used to analyze the given system, and theorems helps to analyze the complex
systems easily.

 In electrical system most popular theorems are

1. Thevenin’s Theorem

Norton’s Theorem

N

Superposition Theorem
Reciprocity theorem

Millman’s Theorem and

SO AN Sl

Maximum Power Transfer Theorem

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Thevenin’s Theorem

1. Thevenin’s Theorem

Statement: Any active linear bilateral complex electrical network between open circuited load terminals can be replaced
by a single practical voltage source between the same open circuited load terminals.

A practical voltage source is a series combination of ideal voltages source and a resistor (DC circuit)/Impedance(AC
Circuits).

The voltage source being equal to the voltage measured between the open circuited load terminals, denoted as Vyyor V.
and Resistor/Impedance being equal to the equivalent Resistance / Impedance measured between open circuited load
terminals by replacing all independent sources by their internal impedances, denoted as Ry or Zy.

Internal Impedance of an ideal voltage sources is zero, Hence replace it by short circuit.

Internal Impedance of an ideal current sources is infinity , hence replace it by open circuit.

A Linear
Network
Containing
Several emf's

Il
)

Resislances

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Thevenin’s Theorem
Procedure to obtain Thevenin’s equivalent circuit.

Step-1: Identify the load element, remove the load element and name the load terminals.

Step-2: Find the open circuit voltage using any network analysis technique.

Step-3: Find the equivalent resistance/Impedance between the open circuited terminals by replacing all
independent sources by their internal impedance.

Step-4: Replace the given circuit between the open circuited load terminals by the Thevenin’s equivalent
circuit.

Step-5: Connect the load element between the load terminals and find the required load quantity using

current division or voltage division formula.

NOTE: For the circuits with dependent sources, find R using the ratio=V /I

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Thevenin’s Theorem-Examples
xample:
1. Obtain the Thevenin’s equivalent circuit between the terminals A and B.

Step-2. To find Vy

1.5 A/_\ VAB = VOC = VTH = VlO + VZO
N Ve = 10(1y) + 20(1;) —— —(1)
5Q < I, Apply KVL at mesh-1
— A ANN—e A 51, + 201, = 20
10 Q . =1 L 14 Ohms=
251, = 20 L
I, = 0.84. .
+
20V _> Iy 200 § At mesh-2 v (Y317
12 = 15A THY -
| B
—a B
. Vry = 10(1.5) + 20(0.8) = 31 Volts ¢
ALY AN —eo A

Step-3: To find Ry
2003 Rry = Rap = Req = 20]|5 + 10
RTH - 14‘ Oth

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru
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Thevenin’s Theorem-Examples

2. Obtain the Thevenin’s equivalent circuit to find the current through R of 10 ohms

Remove the load element and name the load terminals.
L

Ve = Vs + Vigo = 5.2(11) + 10.9(—13)
Vrg = V71 + Vige = 7.1(—11) + 19.6(13)
Ve = Ve 5 — 100 + Vig e = 5.2(1;) — 100 + 19.6(1,)
Ve = Vo1 + 100 + Vygo = 7.1 (1) + 100 + 10.9(—1,)
Apply KVL at mesh-1; 12.31; = 100;[; = 8.134
Apply KVL at mesh-2; 30.51, = 100; I, = 3.28 A.
VTH = 6.63V
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Thevenin’s Theorem-Examples

To find Ry Re arranging the resistors Thevenin’s Equivalent circuit
Rag
o @ —A—
100
520 7116 Vm
: ' 65375V I) g R
=—Req
10.9 4 186140
Given R=10 Ohms
o o b
V
I =—— =0.33A.
Rry = (5.2[|7.1) + (10.9([19.6) Req + R
~—Feg Rpy = 10 Ohms
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Thevenin’s Theorem-Examples

3. Obtain the Thevenin’s equivalent circuit and find the current through RL of 20 Ohms

600 S0V R a0 600 50V 0N
—— =W W | P4 -
mv.l, W00 gmn .[ 100V eov—L 00 600 —L 100V

80 lz,,, 12”
fn . 3o 3e %ﬁ; h%m
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Norton’s Theorem
1. Norton’s Theorem

Statement: Any active linear complex bilateral electrical network between open circuited load terminals
can be replaced by a single practical current source between the same open circuited load terminals.

A practical current source is a parallel combination of ideal current source and a resistor (DC
circuit)/Impedance(AC Circuits).

The Current source being equal to the current measured through the short circuited load
terminals, denoted as Iy or Iy, and Resistor/Impedance being equal to the equivalent Resistance /

Impedance measured between open circuited load terminals, denoted as Ry or Zy

A Linear
Network
containing —_
= =R
several energy ‘ In Ry=Rr
sources and
resistances
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Norton’s Theorem

Procedure to obtain Norton’s equivalent circuit.

Step-1: Identify the load element, remove the load element, name the load terminals and short the load
terminals.

Step-2: Find the short circuit current using any network analysis technique.

Step-3: Find the equivalent resistance/Impedance between the open circuited terminals by replacing all
independent sources by their internal impedances. (NOTE: Ry=Ry)

Step-4: Replace the given circuit between the open circuited load terminals by the Norton’s equivalent circuit.
Step-5: Connect the load element between the load terminals and find the required load quantity using current

division or voltage division formula.

NOTE:

* For the circuits with dependent sources, find Ry using the ratio=V,./I5c; Rrg=Ry

 Thevenin’s Theorem is the dual of Norton’s Theorem

« Thevenin’s equivalent circuit can be converted into Norton’s Equivalent circuit and vice-versa
using source transformation
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Norton’s Theorem
Example:

2. Obtain the Norton’s equivalent circuit between the terminals A and B.

L5A
C(’/ To find I
I
_/E\S/\S/)\, et A Iy =1Ip =1Is¢c=1I3
10 Q
251, — 2015 = 20 —— —(1)
20v(®) [N0Q3 I3 —201, — 101, + 30I; = 0 —— —(2)
I, = 1.54 — —(3)
| B I3 =2.2.4
50 Iy=Isc=13 =224 ° A
oy wr—y A 2.2A
To find Ry T (I z,, 14 Ohms
2003 Rag = Rrg = Ry = (5]|20) + 10
RN == 14‘9
| B o B
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Network Theory (19EC33)

Norton's Theorem

3. Obtain the Thevenin’s and Norton's equivalent circuit
between the terminals A and B. Al — 6L, + 6(I; — I,) = 20 —— —(1)

ﬁ o8 Q . —61; + 61, =0———(2)
EI:I L' HI. 17 11 - 12
mg sa=} mg I, {gm } L=hL—-1

-9k I Iy From (1), I; = I, = 54

To find I

i ob I, | I, =1y =1, =5A.
l":',_:iﬂ — ] — To find Ry
11 20V Re = VOC
N s
To find V¢
O o 4] — 6L, + 6] —20 =0
- ;1 * Ix =]
“f (" HFea 1=sa.
+ i - iI: VOC=6*5=30V.
* = a
30
v Ry = — = 6 Ohms
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Superposition Theorem
3. Superposition Theorem

Statement: Any active linear complex multisource electrical network, the voltage across or current
through any given element is equal to the algebraic sum of individual voltages or currents, produced

independently across or in that element by each source acting independently, with all the remaining sources

are replaced by their respective internal impedances.

Inp = Inp + Ijp and Vg = Vap + Vip
fler+x3) = f(x1) + f(x2)
NOTE: Superposition theorem not applicable to find the power
P(I?R) # P(I5R) + P(I5R)
P(I?’R) = P((y + I2)*R) = P(I5R + I3R + 2111,R) # P(I5R) + P(I5R)
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Network Theory (19EC33)

Superposition Theorem

Procedure to apply superposition theorem.

Step-1: Identify the load element and load quantity (either current or voltage)

Step-2: Consider only one source and set remaining sources equal to zero (replaced by their internal
impedance) (NOTE: Internal Impedance of the voltage source is zero, hence replaced by short
circuit. Internal Impedance of the current source is infinity, hence replaced by open circuit.)
Step-3: Find the required quantity and denote that quantity as I’ or V’ (for other source I” or V’ and so on.)
Step-4: Repeat the steps 2 and 3 for all the sources.

Step-5: Find the resultant(Total) output using the following relation.

Iap=lap +Igp + .
and
VAB - VAB + VA’B + s,
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Superposition Theorem

Example:
4. Find the current through the branch PQ using superposition theorem. 2 b
Case (1): active 4.2V source and set 3.5V to zero. '
, I+(R3) Fro
_ - &7 +
PQ Ry + R, 42V 3 2
s
42V35 Ipg = (4. 2)/(3 +3(12) G132
Case (2): active 3.5V source and set 4.2V to zero. 4,& P
o —Ir(Ry)
. . Iro =% TR
Cross Verification: 12 (3) 33 1115, 2
6l —3I,=4.2——(1) Ipg = —(3.5)/(2+3][3) .— 3713
—311+512 =3.5— —(2) n .=
Isg = —0.5A l
I, =1.54 PQ W I
I, =1.64 Resultant current
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Find the current through 2 Ohms resistor using superposition theorem and also verify the same.

Case(1): Activate 5V source and set 4A source to zero
Control variable, V,

V; =3I"———(1)
KVL equation

3"+ 4V, +2I' =5 =10
31" + 431" +2I' =5=10

L—1 =4———(1) 171" =5
KVL at supermesh . I'=0. 2?41'4 .
5+ 21, — 4V, + 31, = 0 —— —(3) Case(2): Ac.tlvatg 4A source and deactivate 5V source.
V, = =31, —— —(3) Control variable is V,
5+42I,+ 121 +31, =0 | V3 =3(=I) = =3I, —— —(2)
151, + 21, = =5 —— —(4) 4A, source is common to mesh 1 and 2
Solve (1) and (4) we get. IL—-1,=4——-(3)
I, = 3.23A. Super mesh KVL equation
From the circuit., 2l —4V3+ 31 =0
I1=-1,=-3.234 2, —4(=3I;) +3, =0
151, + 21, =0 — —(4)
I, = —0.474
I, = 3.53A.

I'" = -1, = -3.53A.
According to the superposition theorem, I=I'+l""=>-3.23A




Network Theory (19EC33)

Reciprocity Theorem
4. Reciprocity Theorem

Statement: Any active linear single source electrical network, the ratio of response to excitation remains
same even after interchanging their position.

If the response is voltage, excitation is current and vice-versa.

R1 Rz R1 RZ
M\ M\ M\ M\

-4

v ™o 3 O

Procedure:
Step 1 — Firstly, select the branches between which reciprocity has to be established.

Step 2 — The current in the branch is obtained using any conventional network analysis method.

Step 3 — The voltage source is interchanged between the branch which is selected.

Step 4 — The current in the branch where the voltage source was existing earlier is calculated.

Step 5 — Now, it is seen that the current obtained in the previous connection, i.e., in step 2 and the current which
is calculated when the source is interchanged, i.e., in step 4 are identical to each other.
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Reciprocity Theorem
5. Verify the reciprocity theorem for the electrical circuit shown in figure by finding I,.

x —/\WW—>— VW14 x —/ W
20 h 10 20
20
+ A\ 3Q '
<___>10V 3iQ %20 10y
I3 2 VW I3
y ' b y
Apply Reciprocity theorem,
I, =1 > 3
2= T3 13 . '1=IT<2+3>
I, =10/2 + 3||3)(>—— 3
2 = 10/2 + 313G It =10/G3 + 2/ E)
I; =1.434 I, = 1.434

If I1 and I2 are equal, then the given system
is reciprocal in nature.
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Reciprocity Theorem
6. Verify the reciprocity theorem for the electrical circuit shown in figure by finding V.

D c

10L0%A

Current division formula

(5)
. 0
lz—lOLO 5+4_]4

Vg =15 * (_j4')
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Millman’s Theorem
5. Millman’s Theorem

Statement: Any active linear electrical network of two or more practical voltages sources are connected
between the two terminals can be replaced by a single practical voltage source between the same two

terminals.

Resultant practical voltage source consisting of an ideal voltage source of V volts, connected in series with

the single resistor/impedance of R Ohms.

Where, V = Z}le:;i and R = Z{Llé (G; = Rli and n is the number of ptactical voltage sources)
L 1.\ —0aA
Ré R2§ ............ §Rn . R§
v,z) _t)v2 4C)v ki t)"
o3 5
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Millman’s Theorem-Example
7. Find the current through 2 Ohms resistor using Millman’s Theorem

VG + VoG + V3G 1 V =26 Voltsand R = 20}
G +G+G T G+ G+ Gy Millman’s Equivalent circuit

Vl = SOV, VZ = —20V and V3 = 16V

Rl = SQ, RzZOQ and R3 = 4 ()

1 1 1
NG =—=025G6G,=—=>005Sand G; =—=0.25S
1 R, 2 R, ana Gs R,
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Network Theory (19EC33)

Maximum Power Transfer Theorem

6. Maximum Power Transfer Theorem

* As the name implies, it evaluates the condition( Resistance or Impedance) to be satisfied to transfer
maximum power from source to the load.

» Defined under different cases, depending on the type of circuit and load.

» Case(1): DC network - Resistive Load - Variable Resistive Load

o Case(2): AC network - Resistive Load - Variable Resistive Load

» Case(3): AC Network - Complex Load - Variable Resistive and Fixed Reactance Load

» Case(4): AC Network - Complex Load - Fixed Resistive and Variable Reactance Load

» Case(5): AC Network - Complex Load - Both Resistive and Reactance are variable
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Maximum Power Transfer Theorem

Case(1): DC network - Resistive Load - Variable Resistive Load
Consider a DC electrical circuit with variable resistive load shown in figure. Where, R is the network resistance, R; is
the load resistance and V is the applied voltage.

A Power delivered to the load resistor is given by
I, P = I?R,, Watts —— —(1)
From the circuit,
R _ Vo). ap= VR
R, L= R+R,, (2); = P = (R+Rp)2 (3)
+ As per the maxima theorem, P is maximum when its derivative with respect to RL is
=y equal to zero.
B . deaX O
B i.e., =
dR,
Differentiate equation (3) w.r.t RL and find RL

Statement: In any DC electrical network with variable Resistive load, the maximum power will be transferred
from source to the load if the load resistance is equal to the network resistance.

i.e.,RL=R.
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VZR,

P =
(R + Rp)?
dp  (R+R)%:VZE1L-V?R,.2(R+R).1 0
dR;, Dr?2 B

(R+R)2V?—-V?R,2(R+R,) =0
(R+R;)?>—2RR, — 2R} =0

R?+ R? + 2RR;, — 2RR, —2R? =0 P max
R?—R: =0
R=RL




Network Theory (19EC33)

Maximum Power Transfer Theorem

Case(2): AC network - Resistive Load - Variable Resistive Load
Consider an AC electrical circuit with variable resistive load shown in figure. Where, R+jX is the network Impedance,
R, is the load resistance and V is the applied voltage.

Iy

R+jX Power delivered to the load resistor is given by
P = [?R;, Watts —— —(1)
v L From the circuit,
__V |4 oy b V*RL
L= RaxrRy . RERDAX? (2); =~ P = (R+RL)2+X? (3)

As per the maxima theorem, P is maximum when its derivative with respect to RL is

equal to zero.

. deax -0
1. €., dRL =

Differentiate equation (3) w.r.t RL and find RL

RL = RZ +X2

Statement: In any AC electrical network with variable Resistive load, the maximum power will be transferred

from source to the load if the load resistance is equal to the magnitude of the network

Impedance. i.e., R, =V R%+ X2
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V2R,
P =
(R + Ry)? + X2

(R+Rp)?+X%V2.1—-V?RL.2(R+Ry).1.=0
(R+R.)?>+X?—2RR, — 2R} =0
R? + R + 2RR;, + X? — 2RR; — 2R?=0
R>—R; +X?=0
Rf = R* + X?

R, = R?% + X2




Network Theory (19EC33)

Maximum Power Transfer Theorem

Case(3): AC network — Complex Load — Fixed Reactance and Variable Resistive Load
Consider an AC electrical circuit with variable resistive load shown in figure. Where, R+jX is the network Impedance,
R, is the load resistance, X is the fixed load reactance and V is the applied voltage.

R+X Power delivered to the load resistor is given by
Xy P = I?R;, Watts —— —(1)
ve From the circuit, ,
Y v V2R,
~ L= R+jX+Rp+jXL, = JRIRZ+(X+X)2 —(2); ~P= (R+RL)Z+(X+X0)2 —(3)
As per the maxima theorem, P is maximum when its derivative with respect to RL is
equal to zero.

. deax -0
1. €., dRL =

Differentiate equation (3) w.r.t RL and find RL
RL = \/Rz + (X+XL)2

Statement: In any AC electrical network with fixed reactance load and variable Resistive load, the maximum

power will be transferred from source to the load if the load resistance is equal to the magnitude of the network

Impedance along with load reactance. i.e.,Rp =+R%+ (X +X,)2
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Maximum Power Transfer Theorem

Case(4): AC network — Complex Load — Fixed Resistive and Variable Reactance Load
Consider an AC electrical circuit with variable resistive load shown in figure. Where, R+jX is the network Impedance,
R, is the load resistance, X is the fixed load reactance and V is the applied voltage.

Power delivered to the load resistor is given by

Ip

- P = I2R,, Watts —— —(1)
. | From the circuit,
— \'% vV L L. . VZRL L
YO Ry 'L = xRN, VR+RL)?+(X+X)? (2); =P = (R+Rp)2+(X+X])? (3)

As per the maxima theorem, P is maximum when its derivative with respect to RL is
equal to zero.

. deax =0
i.e., X,
Differentiate equation (3) w.r.t XL and find XL

o XL = —X

Statement: In any AC electrical network with fixed resistive load and variable reactance load, the maximum power
will be transferred from source to the load if the load reactance is equal to the conjugate of the network

reactance. l.e.,X; = —X.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Network Theory (19EC33)

Maximum Power Transfer Theorem

Case(5): AC network — Complex Load — Both Resistive Reactance are variable
Consider an AC electrical circuit with variable resistive load shown in figure. Where, R+jX is the network Impedance,
R, is the load resistance, X; is the load reactance and V is the applied voltage.

Power delivered to the load resistor is given by P = IfR;, Watts —— —(1)
I . _ \4 14 Y. . Db V2R, L
R+jX From the circuit,l; = R N TS (2); ~P= RIR2 T XL (3)

. | Case(i): Consider X;,
As per the maxima theorem, P is maximum when its derivative with respect to RL is equal to zero.
dP

MO R, ie., d)?zx =0

Differentiate equation (3) w.r.t XL and find RL . X; = —X

Case(i): Consider R,

As per the maxima theorem, P is maximum when its derivative with respect to RL is equal to zero.
dP,.

e.,——=0

T

i

Differentiate equation (3) w.r.t RL and find RL - Ry = \/ R2+ (X+X,)%R, =R

Statement: In any AC electrical network with variable resistive load and variable reactance load, the maximum
power will be transferred from source to the load if the load Impedance is equal to the complex conjugate of the

network Impedance. i.e., Rp +jX; = R —jX.
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Maximum Power Transfer Theorem

Procedure to solve problems on maximum power transfer theorem
Identify the load element, Remove the load element and name the load terminals as A

1.

N

B ®

and B.

Obtain the Thevenin’s equivalent circuit between the terminals A and B.
Reconnect the load element between the terminals
Apply the maximum power transfer theorem and find the load element required to

transfer maximum power.
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Maximum Power Transfer Theorem-Examples

1. Find the value of R that will receive maximum power and determine the maximum power

Remove the load element and name the load terminals.

Obtain the Thevenin’s equivalent circuit between the
terminals a and b.
To find Vy

Vrg = V71 + Vige
Vo = 7.1(=1,) + 19.6(L,)
KVL at Mesh-1 12.31, = 100;I; = 8.134
KVL at Mesh-2 20.5], = 100;1, = 3.2786A
Vi = 7.1(=1) + 19.6(I,) = 6.5375 Volts — - - -
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Maximum Power Transfer Theorem-Examples

To find Ryy Re arranging the resistors Thevenin’s Equivalent circuit
o Reg
o8 —AMMA————
100
520 710 v
' ' 6.5375 V I) g R
=— Rgq
—ab 10.9 4 186140
-0
Apply MPT theorem
° ob As per the statement, R=Req
Therefore, R=10 Ohms.
" Ry = (5.2]]7.1) + (10.9][19.6) Maximum Power
- Rry =10 Ohms P =% = 1.068Watts
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Maximum Power Transfer Theorem-Examples

2. Find the value of RL that will receive maximum power and determine the maximum power
600 sov Ry 400 60 |2
o

_rw- = =Wy
| e
60V 00 gmn 100V

’ 0 3w o
|

| 24
— o fZyg= 20+24=840
gﬁlﬂﬂﬂ 0 s~ Ry = 44Qfor Py,
=20Q =240 To find P_,,, find Thevenin's voltage Vy
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Maximum Power Transfer Theorem-Examples

800 0V oy 400
_""W_ [ - "fM
s A B =

* + &* +*
V= ] ganﬂ uun{ - 100V

Applying KVL to the two | Tm:ingpathfmmhtnﬂwegctthewltagﬁuﬂwwnintheﬁg
- 601y -30I; +60 =0 . ~Vp=50+20-60=10V
I; = 0.6667 A A B
1 P "llrm -lﬂ‘-"
— 401, - 601, + 100 = 0 20v(*) eov oL O
I, =1A “ Tmax S TPRE
Drop across 30 0= 30x1;, =20V nm1
= = 0.5681 W
and drop across 60 Q=60 xI, =60V 4x44
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Maximum Power Transfer Theorem-Examples

3. Find the load element and its value that will be connected between the terminals A and B for
receive maximum power and determine the maximum power

-j1ﬂ'ﬂﬂ -{100 O ={100 02 :
1 oA (] o A @A
§1m:1 ——Zpq
1mv@ 200 1000 =—Z,
o B
e a B

As there is direct short across 20 Q, it becomes redundant.

100 x -j100 _  10% £-50°
100 =jI00 141421 Z-45°

Zoq = (100) || (- j100) =

= 70.7106 £-45*=50-{50 Q
ZL = E:‘I l!nﬂ*iimﬂ
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Maximum Power Transfer Theorem-Examples

il A - 201, +201, +100 = 0
+ I o -l =5A  ..(1)
100V 0 ;‘m“ V™M 1, (= {100 + 100) - 201, +201, = ©
) Iy Iz ln 201, =[120 = j100]1, =0 .. (2)
Multiply equation (1) by 20 and subtract
from equation (2),

[-100+j100]1, = —100

- 100 + 100 £ 180°

2 = TTo0epm0 " Tz - Y0701 £+4SA

Vg = [;%100 = +7071£+ 457V

_ vy )2 o)

Prax = g ="axm0 -2 W
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Network Theory (19EC33)
Resonance

Definition:
« A phenomenon in which applied voltage and resulting current are in phase.
« An A.C. circuit is said to be resonance if it exhibits unity power factor condition- Applied voltage is in
phase with the resulting current.
« Two types
Series Resonance
*Parallel Resonance
- Applications:
Communication - radio receiver has ability to select the desired frequency signal, transmitted by

station.(Selection of required frequency components and rejecting the unwanted signals).
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Series Resonance

In electrical system, the basic elements Resistor, Inductor and Capacitors are connected in series and the

circuit is excited by an A.C. source which undergo resonance based on certain conditions is called series

R L ¢
P
Definition: 4
» Applied voltage is in phase with the resulting current
» Power factor is unity
» Net imaginary part is equal to zero.

» Inductive reactance is equal to the capacitive reactance.
> Net impedance is equal to only resistive

» Resulting current is maximum and net impedance is minimum.

resonance.

)
7
v

Realization:

» Varying the frequency of the source with C and L are fixed - frequency tuning
» Varying C with L and frequency are fixed - Capacitive tuning
» Varying L with C and Frequency are fixed - Inductive tuning
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Series Resonance

1. Frequency tuning

Varying the frequency to achieve, Inductive reactance and capacitive reactance. Hence net imaginary part get cancelled
out and applied voltage is inphase with the resulting current.

Consider an RLC series electrical circuit.

Net Impedance, Zt = R+ j( X, ~Xc) —— —(1)

R JwL
1Zr] = VR2 + (XL~X0)? —— —(2) — MW —
[=—————(3)
|ZT| V.=V_ /0 (%t I —_— 1
By varying the frequency, at some particular frequency G <_> JwC
. X, =Xc——-(4)
Sl oy = ] Amperes (Voltage is inphase with the current) —— —(5)
Peak power delivered at the load is
VZ
Ppear = R Watts —— —(6)
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Series Resonance
Important Parameters:

1. Resonant frequency:

The frequency at which inductive reactance is equal

to the capacitive reactance

2, Frequency Response:
The response of magnitude of current vs frequency is

the frequency response.

is called resonant

f 4 : !
1
frequency. allll . |
ioeo, XL - XC E
. 0707 lyax [r==m=mm———a—— Y
We know that, X;, = wLand X¢ = — E i i
v ; Bandlvidth i
! ; Pl
TR ° N
1 1 1 f 12 Frequency, s
wo = erad /secor fo = ——Herts —— —(8) Bandwidth of a Series Resonant Ciecuit
where, w, is the resonant frequency in radians per Where, f, and f, are half power
second and {; is the resonant frequency in Hertz. frequencies/Corner frequencies/cutott

frequencies. f,-lower cut off frequency and f,-

upper cu off freguencz,
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Series Resonance

3. Bandwidth Derivation of Q.
The difference between the two half power 1 ]2
_ 2
frequencies is called Bandwidth. Q=2m3 -
- Rt
i.e., B.W. (B) = fz — f1 or w, —wq —— —(9) (l)oL 2
=g~ ~12)
4. Quality factor Or
The ratio of resonant frequency to the bandwidth is % CV2
called quality factor. Q=zm I? R
ie,Q=————(10) 1C(L)2
0 =2m 2 \wC
Also defined as the ratio of the energy stored in the 12 Rt
—_ . 2
oscillating resonator to the energy dissipated per 0 (13)
cycle. ~ woCR
or
. . Energy Stored L
Le,Q = 27-[Average Energy dissipated per cycle (11) 1 (L
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Series Resonance

>

Amplitude
Q, (least sclectivity)

(> (medium selectivity)

Q1 (greatest sclectivity)

« Sharpness of the response could be measured by Quality factor.
o If Q>10 (called as high Q circuit)

« If Q<10 (Called low Q circuit)

« Higher the Q, lower the Bandwidth and higher the selectivity.

« lower the QQ, higher the bandwidth and higher the selectivity.

X

pommmm e n-----.---

ettt ettt
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Series Resonance

Pr 1 f Series Resonance:
operties o 2, Current Response curve

1. Voltage Response curve

V] A -
[yR VIR
07071 R 0.707V,, /R
-
0 W) Wy W )
Bandwidth B Bandwidth B
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Series Resonance

3. Impedance Curve

L apacidive Induchwe
Zip Mo XL XL Ko
A -
8
T
=3
g =]
o
E

(i [ e —— gy p——— o e —— e — — —

-

-

I
Dynamic iy
impedance  Series Hesonance

Frequency,

Network Theory (19EC33)

Inducte
Susceplarca

Raaclanze

-1BL

Incuctive

X » X
- ! -
Inductive and Capacitive
Reactances are equal hers
: XL=Xe i

, Capscitive
TP Xos X,

X

& ieactaree in Chms

&
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Series Resonance

4. Phase Curve

Ly a=10 |

I?I!-I-:-.r_lqu_ Lmocdrm
1 kiart Wy JCE]

-w -I'-I-I-'IT-----------

L .|I:F|
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Series Resonance
Derivation of Half power frequencies

Refer the frequency response of series RLC circuit shown in figure.
At resonance frequency f, £ = I and eurrent is 1,

At halfl power frequencies f; and f; the current is %

Z=v2R
Z=R+jX; —JXo=+RE+ Xy — Xp)2

=]? b=
VIZ+ (X, - Xc)? = V2R ‘
R*+(Xp - Xg)? = 2R R
[XL—XQ}E = .RE iy =
XL—XQ = I

. Frequency is always positive
At frequeney wy the eirenit impedance X > X

3

Xo-X; = R __r . fray, o

1 “ 2L+\/(2L tIC

— —wnL = R

e ('

1— wf Lo In terms of frequency fi

—l " - R

e 1| R RN, 1
wnC —14+wilC = = — |—= - —
fun€ +MIIG ° h zﬂ[zLJ“\/(zL) *Ic
Ld%-FELd]_—E = )
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Series Resonance

At frequenecy two the eirenit impedance Xy > X

L—— =
w2 Ldgc i
walC—1
o = R
walC — RunC—1 = 0
I 1
2 _ = —_—— =
(et ng ic 0
R 1
ﬂ-—l, h——E: ﬂ——m
_Eey@® e _m, [rENT L
we = 9 ~3ar 9L LC

Network Theory (19EC33)

Frequency is always positive

R RYE 1
“’E_Eﬂ,/(ﬁ) tIc

In terms of frequency fa

1 | R Y 1
fFﬁ[ﬁﬂ/(ﬁ) T I0
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Network Theory (19EC33)

Series Resonance
« Relation between resonant frequency and half power frequencies.
 Show that the resonant frequency is the geometrical mean of half power frequencies.

We know that at half power frequencies,

m?’L_EbI_E = + R
. =

al-

= =R

£
T,
|
|
:

But from condition of resonance, wy = ﬁ
Adding the above two equations

.0 =
(@ +@) L= +=|z = 0 .
Lmz mIJ ie. l'rf: = iﬂ
f oo, +40, % 1 '
(W:'”ﬁﬂ--k%l"&?‘iﬁ =0 fo = Jhi-f
L = 2121)1
() +03) (“’1‘“1 ¢
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Network Theory (19EC33)

Series Resonance
Derivation of Half power frequencies

Refer the frequency response of series RLC circuit shown in figure.
At resonance frequency f, £ = I and eurrent is 1,

At halfl power frequencies f; and f; the current is %

Z=v2R
Z=R+jX; —JXo=+RE+ Xy — Xp)2

=]? b=
VIZ+ (X, - Xc)? = V2R ‘
R*+(Xp - Xg)? = 2R R
[XL—XQ}E = .RE iy =
XL—XQ = I

. Frequency is always positive
At frequeney wy the eirenit impedance X > X

3

Xo-X; = R __r . fray, o

1 “ 2L+\/(2L tIC

— —wnL = R

e ('

1— wf Lo In terms of frequency fi

—l " - R

e 1| R RN, 1
wnC —14+wilC = = — |—= - —
fun€ +MIIG ° h zﬂ[zLJ“\/(zL) *Ic
Ld%-FELd]_—E = )
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Series Resonance

At frequenecy two the eirenit impedance Xy > X

L—— =
w2 Ldgc i
walC—1
o = R
walC — RunC—1 = 0
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Network Theory (19EC33)
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Network Theory (19EC33)

Series Resonance
« Relation between resonant frequency and half power frequencies.
 Show that the resonant frequency is the geometrical mean of half power frequencies.

We know that at half power frequencies,

m?’L_EbI_E = + R
. =

al-

= =R

£
T,
|
|
:

But from condition of resonance, wy = ﬁ
Adding the above two equations

.0 =
(@ +@) L= +=|z = 0 .
Lmz mIJ ie. l'rf: = iﬂ
f oo, +40, % 1 '
(W:'”ﬁﬂ--k%l"&?‘iﬁ =0 fo = Jhi-f
L = 2121)1
() +03) (“’1‘“1 ¢
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s Network Theory (19EC33)

 Derivation of Bandwidth

We know that
We know that at half power frequencies, 1
Mo = 1c
L - --l— = + R
|
L-— = =R
TN (0; ~wy) + (0 ~1y) = 1—5’
: : R
Subtracting the above two equations (@ -m) = 3
S T 0§ R, Le: (-1 = mr
(wy —uy) L+ [E'E]E = -
{ ~ }+ {ﬂz-tﬂl 1 - E Eﬂ:ﬂﬁdﬂl'{fj-ﬂ}-ﬁ
0z =y wo, JLC L
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Network Theory (19EC33)

Series Resonance

« Derivation of frequencies at which maximum voltage across the L and C.

Variation of Vy, V. and V with frequency is as shown in Fig.

it is clear that, voltage
across C and voltage across L is not
maximum at resonant frequency. At
resonant frequency f;, the voltages V.
and V; are equal in magnitude but
oppesite in phase. The voltage V. is
maximum at frequency f. which is less
than f, and the voltage V| is maximum

at frequency f; which is greater than f,.
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\ Network Theory (19EC33)
Series Resonance

Consider that voltage across capacitor is V; and it is given by,

Vo = 1[&} butI=

v

Ve = — e 8)
: . —

wC, R +(mL mﬂ]

To find frequency at which V. is maximum, we have to differentiate V. with respect
to o and equate it to zero. But first removing radical sign by squaring expression. Then

d V3 :
eqmﬁngﬁ-ﬂ;ﬂmwhm?& is maximum, V. is maximum. By squaring equation (3),
we have,
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\ Network Theory (19EC33)
Series Resonance
Vv

C = WRICI+(w? LC-1)!

‘Now, differentiating V2 with respect to mand equating to zero, we have,

dVi _ VRoR*CP+2PLC-DROLO) _ | - ? - Lo
do [0? R? C? +(w? LC-1)}]
W = L-F‘—I rad/sec
Then equating only numerator terms to zero, we have, _ LC 22
vi I‘zmni c? +z[u2 LC-1)(2alC)]=0 Therefore, the frequency f. at which capacitor voltage V. is maximum, is given by,
2
But V is input voltage which can not be zero. fo = ;—t &-:? s (6)
20R? C? +2(20LC){w?LC-1) = 0 T
From equation (6), fe = J
20R?C? +40’L’C? - 40lC = 0 :"_LC
40°L2C? = 4wlC-2wRIC?

fe = fory1-BC . @)

: o = AelC 20RIC2
dol?C? 4qol?cC?
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\ Network Theory (19EC33)
Series Resonance

Similarly let us calculate the frequency at which the voltage across the inductance is at

its maximum.
The voltage across inductor is V| and is given by, By differentiating V with respect to @ and equating only numerator term to zero, we
have,
o= L{ol) b“”“; 20 LC-w?R2C2E-2 = 0
v, = L: w? QLC-R¥C?) = 2
R? +fwL-—L - (8) . - 2
( mf..‘) N ot 2LC-R3C?
Squaring equation (8), , | oo 1
W vi? 12 - R? C?
L = F: LC-—5
1
RI+(NL—E) 1
8 W= s rad/sec
V2 o? 12 I-C'—rn
o =
K RIC? o? +{w? LC- 1)
o 2 ' Therefore, the frequency | at which inductor voltage V; is maximum is given by,

‘lﬂ*ﬁl‘ L]c! . f],. = 1

@ o ' - :
L @ RIC? +{wPLC- 1) - quLc-.F‘—IiEi - 0)
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Network Theory (19EC33)

Series Resonance Resonance by varying circuit capacitance

Resonance by varying circuit inductance Consider a series RLC cirenit as shown in Figure is
become resonant by varying capacitance of the circuit.

Consider a series RLC cireuit as shown in Figure is .
become resonant by varying inductance of the eircunit. i;’-‘ {7591

+
c m% wngy it %H

+
vy i{1) R

Figure: Resonanee by varying capacitance
Let € is the eapacitance at wy

Figure : Resonance by varying inductance

Let L, is the inductance at w 1
Xp—-XL = R = —unl =R
tw C
1
Xp—-Xp = R — = R+uwl
1 . n i O
—_— et —]
wC ! c = _il_
I 1 R wil +w 1
1 7 P20 o Let 5 is the capacitance at s
Let Lo is the inductance at w
Xp—Xe = R =wl-— =
Ar—Xpg = R . (s
]. = MEL — R
Iy — — = .
i L e, Iis ttgLrg ,
1 n Oy = —/———
Ly = s += wil — wo R
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Network Theory (19EC33)

Series Resonance

Following are the important properties of the series resonant circuit,
1) Under resonance, applied a.c. voltage and resulting a.c. current are in phase.
2) Under resonance, the series resonance circuit shows unity power factor condition.

3) Under resonance, the total reactance of the circuit becomes zero. The impedance of
the circuit becomes purely resistive, thus the voltage and current are in phase.

4) The impedance under resonance is of minimum value as compared to the

impedance at any frequency other than the resonant frequency.
5) Under resonance, the current in the drcuit is of maximum value (as impedance is
minimum) and hence power in the circuit is maximum under resonance. Series Resonance-Examples

6) Under resonance only, the series resonant circuit acts as voltage amplifier with the
quality factor of the circuit ie. Q, acting as amplification or the magnification
factor.

7) Under resonance, energy stored by L and C is of equal value, hence quality factor
of the circuit is nothing but the quality factor of L and C at resonating frequency.

8) The quality factor of the circuit decides selectivity of the circuit. Its required value
must be large encugh. It decides how much the rescnant circuit is selective.

9) The impedance under resonance is capacitive in nature while above resonance it is
inductive in nature. In general, the series resonant circuit is used when high power
output is required at a perticular frequency and impedance requirement is lower.
Basically in series resonant circuit under resonance impedance is minimum (ideally
zero), hence it is used in m-derived filters (to be discussed latter) to increase
attenuation to infinity suddenly.
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Network Theory (19EC33)

Series Resonance- Problems

1. Determine the resonant frequency for the circuit shown in figure. Also find the
current at resonance and the voltage across each element and the impedance at

resonance. 20 0 1 mH 20 pF
Solution: ——AAN———TT I8
Given data:
R=20 Ohms, L=1mH and C=20 uF, Vs=50V. )
To find: p—y
V=50V

fO’ Imax» VR' VL' VC' ZT'BSOTLClTlCB
Ve=1__R= 50V

max

1 _ 3 -3
f, = — —(1);f, = 1.125K Hz. Vi, = Ima, X, = 2.5x2x3.14x1.125x10°x1x10
2V LC V; =17.66Volts
% 2.5
Zr =R =200hms;I =—=2.5A. V.=] —X) = .
T max — p c = Ima(=Xe) = o o 1252103220210
Ve = —17.66V
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Network Theory (19EC33)

Series Resonance- Problems

2. A series RLC circuit has a capacitance of o.5microfarads and a resistance of 10
ohms. Find the value of the inductance that will produce a resonant frequency of
5000Hz. Also calculate the maximum energy stored in the inductor at resonance.
Assume the supply voltage to be 220V.

Given data:

R=10 Ohms, C=0.5uF, f =5KHz, Vs=220V.

To find: NOTE: ]qstatantene(ius maXimu;n energy
E =_—LJ? = —_L(\/2]
L, EmaX max 2 max 2 (\/_ max)
Solution: E,..x = 0.98 Joules.
1 1

Jo 2x3.14\LC 2x3.14VLx0.5x10~6
L=2.0285mH

— 2
Emax — EL | max

Ear = 0.49 Joules.
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Network Theory (19EC33)

Series Resonance- Problems

3. A series RLC circuit with R=20 Ohms and L=1H results in a leading phase angle of
40° at a frequency of 50Hz. At what frequency will the circuit be resonant?
Given data:
R=20 Ohms, L=1H, ¢p=40°, f=50Hz
To find:
C,f{,
Solution:
Zr =R+ j(Xc~X)
Leading phase angle(I leads V)- Capacitor: XC>XL
NOTE: Lagging phase angle (V leads I/ I lags V)-Inductor: XL>XC

@ =tan""((Xc — X.)/R)
tang = 2L = 0.839; X, = — 1:x50xc; X, = 2x3.14x50x1

R
C=9.618 uF, f, = 51.32Hz.
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Network Theory (19EC33)

Series Resonance- Problems

4. A 40 Ohms resistor is in series with a coil, a capacitor and a 200V variable
frequency supply as shown in figure. At a frequency of 250Hz, a maximum current of
0.8A flows through the circuit and voltage across capacitor is 400V. Determine

a) The Capacitance of the capacitor. And 00 R+ X, e
b) The resistance of the coil AR MA— - —] €
NOTE: Hov”
Coil=series combination of L and R(coil resistance) )

Given data: 200V

R= 40 Ohms, Vs=200V, Imax=0.8A, fo=250Hz, VC=400V

To find:

C, L, R(Colil resistance)
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Network Theory (19EC33)

Series Resonance- Problems
Given data:
R= 40 Ohms, Vs=200V, Imax=0.8A, fo=250Hz, VC=400V

To find:
C, L, R(Colil resistance)
Solution:
Ve = Imax x X
400V = 0.8x —— C =1.27uF

2x3.14x foxC’

At resonance X, = X;
- = 2nf,L; L=0.318H

21t f,C
At resonance Zr=40+R
Imax=V/Z;
0.8 = 200 'R =210 Oh
CT20+RT ms:
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Network Theory (19EC33)

Series Resonance- Problems

5. A series circuit has a resonance frequency of 150KHz, a bandwidth of 60KHz and
Q=4. Determine the cut off frequencies.
Given data:

fo=150Khz, BW=60KHz, Q=4. 1(\21(>)§E:

To find: W B
f1, fo fi="o 5 an fa=fot >
Solution:

fo = \/f1f2 ———(1)
BW =f,—fi——(2)
fZ 4+ 60000f; — 225x108 = 0
fi =122.97KHz and — 182.95KHz,; f; = 122.97KHz.

f, =BW + f, = 182.97KHZ.
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Network Theory (19EC33)

Series Resonance- Problems

6. A Series RLC circuit has R=20 Ohms, L=0.02 H and C=0.06 micro Farads,
Vs=200V. Find

a) Resonant frequency

b) Circuit impedance and current under resonant condition

c) Maximum value of the voltage across the L and f;

d) Maximum vale of the voltage across the C and f.

% 1
Vemax = 1.Xc = 1-(5=) i Zr = R+ (e = X)% Xc =
Vemax = 2887.17 Volts
f.=4592.88Hz.
VLmax — IXL — %(ZﬂfLL),ZT — \/R + (XC —XL)Z; XC =

Vimax = 2887.16Volts

1
2t fcC

and XL —_ 277:ch

1
2tf1.C

and XL —_ ZﬂfLL
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Network Theory (19EC33)

Parallel Resonance - Introduction

« Electrical elements, such as R, L. and C and its combinations are connected in parallel called
Parallel Circuits.

- Similar to the series circuit, parallel circuits also exhibits the resonance condition, when the
circuit is excited by an AC source.
« In parallel circuit, the resonance is a phenomenon at which
1. Voltage and currents are inphase

2. Net susceptance is equal to zero (Imaginary part of admittance)
3. Power factor is unity

4. Maximum impedance and minimum current

NOTE:
» Current magnification circuit/ Anti-resonance circuit.

» There is no general circuit - parallel connection of circuit elements- Infinite
circuits.

» No general formula/expression for resonant frequency- differs from one circuit
to another circuit.
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Network Theory (19EC33)

Parallel Resonance - Introduction

Frequency response Impedance response

Currant

Inductive
K = A

I apacive
.:":L"; E .:':.|_
—_—-

Crynamic
impedance

Y

. . -
( Fr) Frequency. f u fe Frequancy. f

Parallel Resonance

Parallel Rasonance
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Network Theory (19EC33)

Parallel Resonance - Introduction
e Bandwidth:

» Relation between resonant frequency to the half power frequencies:

fo=\/f1fz

* Quality factor(Current Magnification factor):

R _ o 1C
Q= L= @ R=% 1
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Parallel Resonance - Introduction

« Example:
1. RLC parallel circuit:

Network Theory (19EC33)

I:8

i

Circulating
currents

/
v

L

=

J

v

__{:

-
Ir
Consider the electrical elements R, L. and C are connected in parallel,
where, I is the current supplied to the circuit, I;, I; and I, are the @ Vs :
current through R, L and C respectively. _
Zr = R|ljX.|liXc
W R -
"R X —jXc )
pol, 11 1 v, ==
= ST\ v R
"R X, Xc Zy = R
At resonance net susceptance is equal to zero ; Vs
1 1 min —
Zp
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Network Theory (19EC33)

Parallel Resonance - Introduction

« Example:

- 3 3t v
2. RL-RC parallel circuit: f = - R. R,
Consider the electrical elements R, L. and C are connected in parallel, where, I Vv

is the current supplied to the circuit, I; and I are the current through the
branches of Inductor and Capacitor respectively. R; and R are the resistors
connected in series with the Inductor and Capacitor respectively.

1 + 1 N 1 + 1 Parallel Resanance
Z; Z¢c Ry+jXp Rc—JjXc

Rationalize the denominator

YT —

. R;—jX1 Rc+jXc — Ry, + Rc
T ™ RZyx2 ' R2+X2 P RP+X] T RE+XE
R, | —jXL Rc | jXc P
b=

T = 52,927 52, vz 2 . v2 521 v2
R2+X? RZ+X2 = RZ+XZ RZ+X2

_ ¢ RL R¢ JXc  JXL
YT - {R2+X2+ R2+X2}+{R2+X2 R2+X2}
L L C C C CcC ‘L L
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Network Theory (19EC33)

Parallel Resonance - Introduction

At resonance net susceptance is equal to zero

Xc L _ v
RZ2+X2 R¥+X} 0 (1) "=F R. <K,
We know that, X, = wlc;XL = w,L v
Xc _ Xy C I

R%+Xx% RZ+x}

1
S T e Parallel R
R2 +( 1 )2 R + (w,L)? arallel Resonance
¢ " \w,C
1 1 2
woC[Rg + (wOL)Z]:wOL[Rg + (woC) ]
R  w,L?
+ = w,LR% +
w,C € T ,ce
LR L] L + LRE
o | T T 2| T @l HLRE]
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Network Theory (19EC33)

Parallel Resonance - Introduction
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Network Theory (19EC33)

Parallel Resonance - Introduction
Summary: ‘/—

v Vv Vv :
*‘.I'=_— R{- ﬁ':_ | =— R, I=— R('
£ Z /
Parallel Resonance
(ﬂu}v Vv v [
‘1 C 1 —I—C L =7
Vv
1 1 o L g,

Parallel Resanance Parallel Resonance Parallel Resonance .
Parallel Resonance
Rc=0 R, =0 ;oo 1
[_ - C? ° 2mJIC
W, = . R does not affect
\ [LR T the resonant

frequency
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Network Theory (19EC33)

Parallel Resonance - Problems

A cotl of inductance 10 H and 10 Q resistance is connected in parallel
wkhlw’}'m The combination is applied with a voltage of 100 V. Find
resonant frequency and current at resomance.

Solution : R,=100Q, L=10H, C =100 pF At resonant frequency, the impedance of parallel resonant circuit is given by,
Frequency of resonance is given by, Ly = L"[R'.L
3
£, = k3 _‘_-3.'-5_ _ 10
I K 100%10-72 x10
. 1 99 = 10x10°Q
2x x| (10x100x10-%7) (10)?
This shows that impedance is very high at resonance.
. The current at resonance is given by,
]ﬂ_ = 1
as=
_ 100
10x10%
= 10 nA

Thus the current is at its minimum value as the impedance is maximum.
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Network Theory (19EC33)

Parallel Resonance - Problems

Two impedances Z, = 20 + | 10 and Z; = 10 - j 30 are conmected
in parallel and this combination is connected in series with Zy = 30 + j X. Find the
value of X which will produce resonance.

Solution : From given information, given circuit is as shown in Fig
Total impedance is given by,

L= ZyHZll Z;) . é
i {20+ 10) (10 j 30)
0+ *+ 555510+ (10-7 30) '1]’" I'J|:'II
e
a (200 +j 100~ j 600+ 300)
B0+ P+ 5=
- 004 o + BR-1%0
The circuit shown in Fig. will resonate, if imaginary part is zero,
) (500) (15 1) (30+j 20) X-23 = 0
ORI+ TG0 + oy 13
5m p " 5 = iy x -4 E
= m+m+rﬁm-1m+12ﬂ+iﬂ]-3ﬂ+]:K+ﬁ[ﬂ.'l-_|1ﬂ] 13
X = 384602
2500 . 50
= [,'Il-l-ﬁ +][I-ﬁ]
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Transient Response Analysis - Introduction

Time Response Analysis

The study of behaviour(Output/Response) of a system with respect to time is called Time Response analysis

Time response is divided into two parts

1. Transient part

The response /Output before reaching the steady state or final value.

2. Steady State Part

The time response or part of the response after vanishing the transient part.

NOTE: Transients due to energy storage
elements present in the system and its

Initial values. Slep

Natural Response:
Stored energy released to the resistive part of
the network

Forced Response: 0

An external energy supplied to the electrical
network

T Pl &l
e [
s r!l Step

L'"

I Cyyll) ==

..L Tune nj_
 Transient ' statsof Transsent

time sysiem lirne
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Transient Response Analysis - Introduction

» Energy storage elements in the electrical system- Inductor and Capacitor.
« Initial conditions are evaluated at the time instants t=0-, t=0* and t>0 (before, just and after switching

action respectively)

Voltage across the capacitor cannot change instantaneously

Capacitor charging

Vs
0.98Vs

0.63Vs

Capacitor Woltage

Switch R
I
A A ——
= F P B
Icharging q
v | o H T@
= ) = f Ciode = f D iode+ 1 f Ciodt
v = — l — l — l
¢ cl_. C -, cl,
ve(t) =ve(o7) +—f i(t)dt
C 0

Equivalent Circuit

—-—— lo ——m=t
0o OF t=0

Steady State
Period

|4— ————————— -

4.5vs |-

Capacitor Charging :
Voltage

17 2T 3T 4T 5T 6T Time.t
T Time Constant, {T) !

Capacitor Fully
Charged

o S Yy

for uncharged Capacitor
ve(07) = 0Votls
vc(0%7) = 0Volts

O o O
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Transient Response Analysis - Introduction

Capacitor Discharging

Switch B
A AN —
i} .

Ldisch arging

Short
Circuit C

++

L

(') 0 (')
vc(t)=% f i(t)dt:% f i(t)dt+% fo i(O)dt

1 0 0)
ve(t) =ve(o7) + Ejo i(t)dt

Capacitar Volage

Capacitor Discharging

Voltage

Capacitor Fully
Dhschanged

'

V¢

P
-

aT 4T 5T 6T
Time Constant. (T} Tirne, t

for charged Capacitor
ve(o™) =V, Votls
vc(01) =V, Volts

Equivalent Circuit
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Transient Response Analysis - Introduction

Current through the inductors cannot change instantaneously
Inductor Charging and discharging

I Steady State Value

I - - — —

1= Y (1-ety
03% Imax R

37% W )
;"-I'FL — V{E-Rt' L}

I
T=L/R 21 3T 41 a1

-— Transient Time |..|

1 (@ 10 1 (®
i;(t) = Zf v(t)dt = Zj v(t)dt + EJ v(t)dt for uncharged Inductor for charged Inductor
—00 —00 0

1 o iL(O;) = 0 Amperes i;(07) = I Amperes
ip(t) =i (07) + Ej v(t)dt if(07) = 0 Amperes i,(0Y) = I Amperes
0
L 2
Equivalent Circuit o gmn—o o——oc— o oW —o  o— e o
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Transient Response Analysis - Introduction

Resistor- current and voltage across the resistor changes instantaneously

Summary

Elamant Bahaviour Immadiataly Bahaviourast —e o
sfter excation is given Le. steady state
t=0" Instant
R R R
AWV . AN - =AM o
L 0.C. s5.C.
g —n r— -
S.C.
ST - é e r : o
c S.C. oc.
I : L €3 i L. 3
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Transient Response Analysis - Introduction

Initial and final conditions of energy storage elements

Procedure:

1. Identify the energy storage elements and its state

NOTE: State-Uncharged/Charged state.

2. Draw the equivalent circuit at t=0- and find the current through the inductors and voltage across the capacitors. i.e., i;(0)

and v(0)

NOTE: i, (0) =i (0*) and v (07)=v-(0")

3. Draw the equivalent circuit at t=0+, by replacing inductor by i;(0*) Amperes, capacitor by v.(0") volts and resistors are kept

as it is.

NOTE: Charged current value and charged voltage value of inductor and capacitor respectively would be called as steady state

values.

NOTE: To find the steady state values

i) Current through the inductor is maximum at steady state and would be calculated by replacing the inductor by short
circuit. i.e., igo=1;(0-) =i (0")

i) Voltage across the capacitor is maximum at steady state and would be calculated by replacing the capacitor by open circuit.
1.e., Voe= Ve(07)=v(0").

4. Find the initial voltages and currents at t=0+.

4. Draw the equivalent circuit at t>0 and obtain system equations (KVL/KCL).

5. Find the derivatives of initial voltages and currents wusing the above initial conditions, i.e.,%i(o*),

L 00 Lot L ot
dtzl(O ),dtv(O )anddt2 v(0™).
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Transient Response Analysis — Examples

1.For the circuit shown in figure, the switch K is

— i 2 0H) Licor
closed at t=o0, then findi(0 ),dtl(O) andStep7: at t=0*

d—zi(0+), From equation (1)
a* . Ldi(t)
Solution: V = Ri(t) + .
Step-1: d % Rdt — — AAAA——
L is the energy storage element-Uncharged state —i(0") ==——=i(0")
Step-2: t=0" dt L L .

. d . n vV v L

i;(07) =04 al(o ) = ZA/sec |
i;(0")=1i,(07) =0A. Differentiate Equation (1) w.r.t t
Rdi(t) Ld?i(t) "
= — — K
Step-3: 0 dt + dt2 (2) O—O——‘WW_]
Equivalent circuit at t=0" From equation (2).
Step-4: Ld%i(t) _ Rdi(t) "? L ocC
(0T — at2 ~—  dt

— i(07) = 04 At t=0* |
Step-5: equivalent circuit at t>0 2i(0*)  Rdi(0%) . -
Step6: apply KVL 5 2 - T Lar

. Ldi(t d2i(0") VR ‘ O
=R — -1 _ v an L
V = Ri(t) + It (1) T —?A/sec2
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Transient Response Analysis — Examples

2.For the circuit shown in figure the switch K is closed at

t=0, then find i(0%), —1(0+) and

Solution:
C- Energy storage element-Uncharged state
vc(07) = v-(0%) = 0 Volts.

l(0+)

At t=0"
Equivalent circuit .

scC
Find i(0*)=V/R A.
Att>o0
Equivalent circuit » "
e ———AAN—

—

I-HH!
—ANAAN—

Apply KVL : D. (2) w.r.t
V = Ri(t) + Ej i(t)dt —— —(1) _ Rd?i(t) L1 1/di(t)) _3)
b1 -~ dt? C\ dt
(1) wr.t
Rdz(t) Att O:' )
=— —l( ) —— —(2) FL(O 2) = ——dl(O2 )/dt
At t=0; 1 —i(0*) = I; >A/Sec?
Ei(0+)=—ﬁi(0+) dt R>C
d . %
ﬁz(o ) = —WA/Sec
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Transient Response Analysis — Examples
3.For the circuit shown in figure the switch K is closed at
t=0, then find i(0%), —1(0+) and l(0+)

L, C storage elements Uncharged state

At t=0-
ip(07)=i,(0")=04 .
v:(07) = v:(0%) = 0 Volts KV(L)equatlon
di
At t=0+ V =Ri(t)+L g f i(t)dt —— —(1)
x t C

At t=0+

di(0*
"'. @ 150 V = Ri(0") + L ;t ) 4 (0%

di(ot)

” —A/sec
i(0H)=04 D (2) w.r.t )
At t>0 | \ ) di(t) d l(t) 1 L
K 0=R 7 + L 72 l(t) (2)
O At t=0+
Y - o d?i(0*) VR
(09 VR
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Transient Response Analysis - Introduction

Initial and final conditions of energy storage elements

Procedure:

1. Identify the energy storage elements and its state

NOTE: State-Uncharged/Charged state.

2. Draw the equivalent circuit at t=0- and find the current through the inductors and voltage across the capacitors. i.e., i;(0)

and v(0)

NOTE: i, (0) =i (0*) and v (07)=v-(0")

3. Draw the equivalent circuit at t=0+, by replacing inductor by i;(0*) Amperes, capacitor by v.(0") volts and resistors are kept

as it is.

NOTE: Charged current value and charged voltage value of inductor and capacitor respectively would be called as steady state

values.

NOTE: To find the steady state values

i) Current through the inductor is maximum at steady state and would be calculated by replacing the inductor by short
circuit. i.e., igo=1;(0-) =i (0")

i) Voltage across the capacitor is maximum at steady state and would be calculated by replacing the capacitor by open circuit.
1.e., Voe= Ve(07)=v(0").

4. Find the initial voltages and currents at t=0+.

4. Draw the equivalent circuit at t>0 and obtain system equations (KVL/KCL).

5. Find the derivatives of initial voltages and currents wusing the above initial conditions, i.e.,%i(o*),

L 00 Lot L ot
dtzl(O ),dtv(O )anddt2 v(0™).
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Transient Response Analysis — Examples

1.For the circuit shown in figure, the switch K is

— i 2 0H) Licor
closed at t=o0, then findi(0 ),dtl(O) andStep7: at t=0*

d—zi(0+), From equation (1)
a* . Ldi(t)
Solution: V = Ri(t) + .
Step-1: d % Rdt — — AAAA——
L is the energy storage element-Uncharged state —i(0") ==——=i(0")
Step-2: t=0" dt L L .

. d . n vV v L

i;(07) =04 al(o ) = ZA/sec |
i;(0")=1i,(07) =0A. Differentiate Equation (1) w.r.t t
Rdi(t) Ld?i(t) "
= — — K
Step-3: 0 dt + dt2 (2) O—O——‘WW_]
Equivalent circuit at t=0" From equation (2).
Step-4: Ld%i(t) _ Rdi(t) "? L ocC
(0T — at2 ~—  dt

— i(07) = 04 At t=0* |
Step-5: equivalent circuit at t>0 2i(0*)  Rdi(0%) . -
Step6: apply KVL 5 2 - T Lar

. Ldi(t d2i(0") VR ‘ O
=R — -1 _ v an L
V = Ri(t) + It (1) T —?A/sec2
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Transient Response Analysis — Examples

2.For the circuit shown in figure the switch K is closed at

t=0, then find i(0%), —1(0+) and

Solution:
C- Energy storage element-Uncharged state
vc(07) = v-(0%) = 0 Volts.

l(0+)

At t=0"
Equivalent circuit .

scC
Find i(0*)=V/R A.
Att>o0
Equivalent circuit » "
e ———AAN—

—

I-HH!
—ANAAN—

Apply KVL : D. (2) w.r.t
V = Ri(t) + Ej i(t)dt —— —(1) _ Rd?i(t) L1 1/di(t)) _3)
b1 -~ dt? C\ dt
(1) wr.t
Rdz(t) Att O:' )
=— —l( ) —— —(2) FL(O 2) = ——dl(O2 )/dt
At t=0; 1 —i(0*) = I; >A/Sec?
Ei(0+)=—ﬁi(0+) dt R>C
d . %
ﬁz(o ) = —WA/Sec
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Transient Response Analysis — Examples
3.For the circuit shown in figure the switch K is closed at
t=0, then find i(0%), —1(0+) and l(0+)

L, C storage elements Uncharged state

At t=0-
ip(07)=i,(0")=04 .
v:(07) = v:(0%) = 0 Volts KV(L)equatlon
di
At t=0+ V =Ri(t)+L g f i(t)dt —— —(1)
x t C

At t=0+

di(0*
"'. @ 150 V = Ri(0") + L ;t ) 4 (0%

di(ot)

” —A/sec
i(0H)=04 D (2) w.r.t )
At t>0 | \ ) di(t) d l(t) 1 L
K 0=R 7 + L 72 l(t) (2)
O At t=0+
Y - o d?i(0*) VR
(09 VR
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Transient Response Analysis — Examples

4.For the circuit shown in figure, the switch K is i
2 A IH
Opened at t=0, then find v(0™"), %V(OJr) and % v(01). —'i?< ilmﬂ
Solution:
L-uncharged state Apply KCL | vin
i;(07)=i,(0")=04 1=1i;+i, -
At t=0+ 1 v(t) L
S S A IH
1= jv(t)dt+ 00 (1) gnu
vi0")
l D (1) w.r.t.t
v(t) 1 dv(t)
1A LiEY] 0= L + 100 dt T _(2) At t=0+
T - At t=0+ d?v(0t) dv(0™)
| dv(0%) az - 00—
Att>0 = —100 v(0*) = —10%*V/sec 2.0+
dt d 'U(O ) -1 6 2
D. (2) w.r.t.t dtz 0%v/sec
vt}
| _dv(®) 1 d*u(t) 3)
1A iH o ~ o dt 100 dt?2
% d*v(t) 100 dv(t)
dt2 dt
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Transient Response Analysis — Examples

5.For the circuit shown in figure, the switch K is 10A %7( 1Mt TSR
2

Opened at t=0, then find v(0*),<-v(0") and == v(0*).
Solution:
C-Uncharged state Apply KCL Att=0+ ,

vc(07) = v-(07) = 0 Volts B v(t) 6 dv(t) L dv(t) _¢dev(t)
At t=0+ =105 T 10— W 07 210 L " 13 ae®

dv(t t d“v(0™) 10°dv(0™)
© _ 108 (1070 — ==
dt 103 2dt N dt
w (") . d“v(0
; At t=0+ —dt(fz ) = —107v/sec?
t
O e dw(0Y) [ v(0h)
| - 0 Volts =10 10 — 3
dt 10
Att>o0 dv(0+)
— = 107 v/sec
- D (1) w.r.t.t
[ dv(t) d?v(t)
= -3__ 7 -6 —_—
m.Qi) _— i - 0=10 7 + 10 e (2)
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Transient Response Analysis — Examples

Important points and expressions to be remembered

R

Voltage across the short circuit is zero
Voltage across the open circuit is maximum
Current through the open circuit is zero
Current through the short circuit is maximum

R
v(t) = Ri(t) and i(¢t) = ?
6.C
v(t) = %j i(t)dt and i(t) = Cdil(tt)
7. L

(t) = L d;(tt) and i(t) = % j (t)dt.
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10A =05 pF vin

6.For the circuit shown in figure, the switch K is closed

Transient Response Analysis — Examples A % % T

at t=0, then find v(0%), —V(O+) and v(0+)
Solution: Apply KCL

L, C — uncharged state. _g dv(t)
v-(07) = v-(0%) = 0 Volts. 2 7
At t=0+ (0 C( ) Att=0 dv(t) 107
dv(0™) volts dt? 0.5x10-°
= 20x10° . d2v(0")
| T dt sec ——— = —2x10"3V/sec?
DA wa v i{0*) D (1) wr.t. t dt
o | 1dv(t) d?v(t)
ST I -6__ __~7 __ _
0=——=+v(t) +05x107°— (2)
v(0%) = 0 Volts At t=0+ 5
Att>0 0.5x107° () _ _ldv(t) — v(t)
, . ' dtz 2 dt
_|_ T 5x107° —dzv(t) = 1 20x10°
HEYR é‘.*ﬂ 1H Tl‘.l.ﬁp.nl-' vir 0.5x10 dt? - _E 0x10° -0
‘: d?v(t
— 0.59610_6J = —107
dt?
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Transient Response Analysis — Examples

7. In the network shown in figure, the switch is changed from the ! lliec iﬂg
position 1 to the position 2 at t=0, steady state condition having reached i 2
before switching. Find the values of i, di/dt and d®i/dt? at t=0+ WV = 1,
Solution: 100 ” T '
Capacitor C- Reached steady state condition at t=0-
The equivalent circuit at t=0-
30i(0") = —30
200 i(0%) = —14.
At t>0
wt ) :
i () [ vc(07) = 30V = v (0*
A vc(07) vc(07) | wF
Ve L 10Q2
Equivalent circuit .
2042 i
) Apply KVL
100 = v . 6 . 3
HOM 30 i(t) + 10 j i(6) +30 = 0 —— —(1)
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Transient Response Analysis — Examples

Apply KVL D 2)w.r.t. t
30d%i(t) 10°di(t
30i(t) + 10° f i(t)+30=0——(1) dtZ( ) + dt( ) =0———(3)
d?i(t) 100 di(t)
di(t
30L + 10%i(t) = 0 — —(2) Att=0+
dt le(0+) 1012 1010
At t=0+ —_— = — = A/sec?
6; dt? 900 9
d (0" = 10%i(0%)
a7 T 30
d 10
i (0% = —
1t i(07) 30 A/sec
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Transient Response Analysis — Examples

]
8. In the network shown in figure, the switch is changed ,_{-a—m
from the position 1 to the position 2 at t=0, steady state 0V =
i

I

condition having reached before switching. Find the

values of 1, di/dt and d2i/dt? at t=0+

Solution:

Inductor L- Uncharged state

Capacitor C-Steady state condition at t=0- At t=0+
i, (07)=i,(0")=04

=~ | uF

Equivalent circuit
At t=0-

Equivalent circuit 2040

- [ = D
ot ) l [

— 40V

i T Voo + 40 = 20(—i) + 40
o =— vc(07) i(0")=04
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Transient Response Analysis — Examples

Att>o0
Equivalent circuit D (1) w.r.t.t
d%i(t
2N dt(z) 20# +10%i(t) = 0 —— —(2)
- ’) T IX Att=0+
d?i(0%) di(0%)
i — _ 6;:(Nt
T +20 it 10°i(0™)
di(0
c(lt ) = 800 A/sec?
Apply KVL
di(t) 6 [ -
I + 20i(t) + 10° | i(t)dt = 0 —— —(1)
At t=0+
di(0")
= —20i(0") — 4
T 0i(0™) 0
di(0%) 20 A
T /sec
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Transient Response Analysis — Examples

9. In the network shown in figure, the switch is changed ad 10
from the position a to the position b at t=0, steady state z,.’-féc VW
condition having reached before switching. Find the 100V ="
values of i, di/dt and d2i/dt2 at t=0+ = 0.1 pF Ho gl H
Solution:
Capacitor C= Uncharged state
vc(o_) = vc(0+) =0V
Inductor L=Steady state condition . At tf0+ o
At t=0- Equivalent circuit.
Equivalent circuit. | k2
AAAG
&
| k2 1A
j_ AAN 1 i (0%)
100V
-[ i(or) i(0Y) =0.14

iL(O_) == iL(O+} —v.1L A1
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Transient Response Analysis — Examples

Att>o0
Equivalent circuit 1 KO At t=0+
di(0t) d4i(o*
‘ 107i(0%) + 103 ( )+ (2 ) _ 0———(2)
0.1 pF 1H dt dt
_ d?i(0%) - ,di(0%)
i(n —o— =—107i(0%) - 10° —
d*i(0%) _ 7 3 5 5
Apply KVL 5 = —107x0.1 - 10°.(~100) = ~10x10° + 10
d%i(0")
di(t = —9x10°4/sec?
107 f i(t)dt + 103i(t) + % =0———(1) dt? /
At t=0+
di(0*
Elt ) = —103%i(0*) > —1004/ sec
D (1) w.r.t.t
di(t) d?i(t)
7 3 — 0 —— —
107i(8) + 10° — =+ ——= =0 2)
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Transient Response Analysis — Examples

10. In the network shown in figure, the switch is closed at

and@att =07
dt?

di, di, d?i,
dt ’ dt ' dt?

t=0. Find the values of i, i,,

Solution:
Capacitor C=Uncharged
Inductor L=Uncharged

iL(O_) = iL(O+) = 04

ve(07) =vc(07) =0V
At t=0+

Att>o0

R K-
—M\ AL
V= ’D - C D éf.
iin ialr)
Apply KVL

1
V = Ryi,(t) + c f(il(t) —i,(t))dt —— —(1)

0=2 [(i5(6) — ix())dt + Ryl (t) + L d";f) — ()
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Transient Response Analysis — Examples

Apply KVL
1
V =Ry (t) + c j(il(t) — i, (0))dt —— —(1)

0= % J(iz(t) — i1 (£))dt + Ryip () + L diéit) — —(2)

D(1)wr.tt

di;(t) 1

+

1
0=Ry i C i1(t) — Eiz(t) ———(3)

At t=0+

From (2)

di 1 R
lcziit) ~TIc f(iz(t) — i, ())dt — Tziz(t) — —(4)

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

att =0%
di,(07) A
=0—
dt sec
D.(3) w.r.t.t.
d?2i;(t) 1diy(t) 1diy(¢t)
- R, — =
0=k~ C dt C dt ®)
At t=0+
d*i;(0%) 1 di;(07) N 1 di,(0%)
dt2 ~  CR, dt CR, dt
d?i,(0%) v
— A 2
dt? Cszl, /SeC
D (2) w.r.t.t
1 1 di,(t)  d?%i,(t)
0= @] - Ga®+ R =g+ L =g
d=i,(t) 1 . 1 R, di,(t)
12 - CL [i2(t)] +al1(t) AT,
att =0%
d?i,(0%) v
a2 CLR, /se¢



Transient Response Analysis — Practice Problems

11. In the network shown in figure, the switch is closed at t=0. Find the 00
values of v,(07), v,(07), 1, (0")and v, (0). A Y 08 L

1082
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Transient Response Analysis — Practice Problems
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Transient Response Analysis — Practice Problems

12. In the network shown in figure, a steady state has reached with AAN
switch open. At t=0 switch is closed. Find the three loop currents at t=0*

—0.5F

— 1 F
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Transient Response Analysis — Practice Problems
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Transient Response Analysis — Examples

11. In the network shown in figure, the switch is closed at t=0.
Find the values of v,(07), v,(07), v,(0")and v, (07).

Solution:

L=2H is the energy storage element- attains steady state at
t=0"

at t=0-, equivalent circuit.

1052

AATA"
100 v,(0) 2001
oy » AL I?aiﬂrl
5V —
F ity

i,(07) =5/(30(|10) = 0.6674
V,(07) = 0 Volts.

Va(07) = Va0 = 20 +0.667 + (- —

) =3.33V

1002 ! 208}
AAA ""i ) $vil)
5V— -
1002
At t=0+
Equivalent circuit
100
STar
100 v, {07) 200
AP ¥ AAS $ V{07
2
§ oo G 2a

YW
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Transient Response Analysis — Examples

Nodal analysis
V, =5V
5—V,(0")  V,(0") (1(0") —V,(0")
0 10 20
—0.25V,(0%) + 0.05V,(0*") = —=0.5 —— —(1)
5—-V,(07)  (L(0") =1,(0%) 2

10 ' 20 3
—0.15V,(0%) + 0.05V,(0%) = 0.1667 —— —(2)

Solve equations (1) and (2)
V,(0")=1.9V
V,(0%) = —0.477V

2010
ATATAY

5V —
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Transient Response Analysis — Examples

12. In the network shown in figure, a steady state has reached with AAN
switch open. At t=0 switch is closed. Find the three loop currents at t=0*

Solution: L 05 F
L=1H ; attains steady state at t=0- 6V — -
Ci1=05F; attains steady state at t=0- /) 3
C2=1F; attains steady state at t=0- i (i} -1F
At t=0-
Equivalent circuit.
20 L(07) = 2+4 14
ANM v,(07) +v,(07) =v, 24V — —(1)
The charges on capacitors are equal if the capacitors are
-) ;!; t Connected in series.
4 (1 Li07) vy {0r) Q — Q
oy — o | 1= %
o) ) val0r) 0_-5771(0 )_= v,(07)
hio) 7 | 0.5v1(07) —v,(07) =0 ———(2)
Solve (1) and (2)
_ v1(07) =2.66V; and v,(07) = 1.33V
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Transient Response Analysis — Examples

At t=0+ 2 ()
Equivalent circuit. Ay
i1(07) —i3(0") =1———(1) By
Apply KVL to super mesh sy o) 3
4 =r=
2i,(0%) + 4(i;(0%) — i,(0")+=—-6=0
3 f4(0°) 1A —— Ay
6i,(0%) — 4i,(0") = 4.67 —— —(2) ‘ won s T 3
Apply KVL to mesh 2 I

8
4(i,(0%) — i, (01)) + 3=0
—4i,(0%) + 4i,(0%) = 2.667 — —(3)

Solve (1),(2) and (3)
i1(0+) — 1A
i,(0+) = 0.334
i3(07) = 04
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Transient Response Analysis - Introduction

Solution of homogeneous differential equation
Consider a differential homogeneous equation of first order.

dit)
7 +bi(t) =0———(1)

a

Rearrange the equation by separating the variables.

ad;(tt) — —bi(t)
di(t) b\
0 (o a

Multiply dt on both sides
b
di(t) = —ai(t)dt

di(t) b
o - U
Integrate on both sides

We get,

K, isdefined att = —oto 0" oratt =07
Ini(t) =In e_gt + InK
Ini(t) = 1n(1<e‘§t)
i(t) = Ke_% ———-4)

General solution- K is unknown
Particular solution — K is known
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Transient Response Analysis - Introduction

Step response of RL series circuit

At t=0, V is applied to the circuit and at t=0-, inductor is Multiply dt on both sides, we get
at rest(uncharged condition) ’

di(t R
Hence, i; (07)=0 Amperes, 1;(0*)=0 Amperes. T ©) =7 dt —— —(2)
At t>o0, B i(t)
KVL equation Apply integration on both sides
di(t ;
V =Ri(t) + LL —— —(1) f di(t) - Jgdt
dt V. L
di(t) _ B i(t)
L 7 =V —-Ri(t) Vv R
divide R on both sides —In (E - i(t)) — t+K
Ldi(t) V

R dt =g O
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Transient Response Analysis - Introduction

v R 4

-ln(E—i(t)) =-t+K—— —(3) i) vV r X Maximum value

att=0%i(t) =0 R Tt (0632 X

% VoV (&) ‘
= — —] —— — 1 = — —— L") —— —
K = —In ( R) (4) it) =7 — e (5) e

At t>0

Vo . R 4 i(t) = igs+ iy (0)

“In <§ - l(t)) =t—In(2) ),
NOTE: V, = VelL
v R v vy di(t) If inductor carries initial current
—In|=—i(t) IneL —ln(—) L= "¢
v, =12 [V v -(%)] “
L= 4t [RTRE |
v ry o vem(og)eth(-g)
R e L'.|——
_ — — —(—IneLt — L
1n<R l(t)) (—lnel” +1In (R)) o %t
v L=ve “ime
RO ="
eLt
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Transient Response Analysis - Introduction

Step response of RC series circuit

V-(07) = V,(0%) = 0Volts.

Att>o0
V=V +V,
V=iR+V,
=i =1
dV,
dt

V—RCdVC+V 1

Wkt,]c =C

Rearrange the equation by separating the

variables

dv,
V—V.=RC—=

V-V, =RC

V-V, RC
Integration on both sides

V-V,

— ln(V — Vc) =

dv,
dt

—— -

at + K
RC

1
t+K———(3)

Where K is the integral constant defined at t=0+

t
—In(V —V;) =lnerRC + K
= b
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Transient Response Analysis - Introduction

t
—In(V —V,) =IneRC + K
At t=0+
w.k.t. VC=0
K=—-InV
t
—In(V —V;) =IlneRC — [nV
t

—In(V = V) +InV =1InekRC

V=1iR+V,
iR=V -V,

t
wkt., Vo =V —Ve RrRc

t
iR=v—(y—vere)

t
iR=V —V +Ve ke

t
IR =Ve RC

t
i = e R~ —(5)

Ve
4 t |
= eRC
V-V, v
£ t
V =VeRC — VceRC (0.632)v
t t
V-.eRC = VeRC —V
t
Ve=V—-VeRe "W
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Transient Response Analysis - Introduction

Summary
Homogeneous differential equation
Form-1
di
—+bi(t)=0
a 7 + b i(t)
Solution:

_b,
i(t) =Ke a
Where, K is the initial condition

Or

dv(t) 3
7 +bv(t) =0

a
Solution:

(@)
v(t) = Ke \a
Where, K is the initial condition
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Transient Response Analysis - Introduction

Summary
Homogeneous differential equation Example: L ‘(t) n R i(t) =
Form-2 _R,
di l(t)=§(1—e L)
a—+bi(t) = v R
. dt i(t) = —— Ke‘(r)t
Solution: R

i(t) = %(1 _ emah

Zero 1nitial conditions

i(t) = ——Ke (%)t
Or
a dv(t) +bv(t) =c Example: RCde(t) + v()=V
Solution: @t ve(t) =V — Ve_(R_lC)t
v(t) = %(1 — e‘(%)t) ve(t) =V — Ke_(R_1C)t

Zero initial conditions
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Transient Response Analysis - Introduction \
1
P. In the network shown in figure, the switch is initially at the "&c Vv
position 1 and the steady state having reached, the switch is % ’)
changed to the position 2 at t=0. find current i(t). i)
Solution:
L- energy storage element-charged state at t=0-.
At t=0-
Equivalent circuit Apply KVL
Ldi(t
Ryi(t) + R,i(t) + di ) =0
di(t) .
AR, oy L— =+ (Ri+Rp)i(t) = 0 —— —(1)
i(07) = R—A. _(R1+R2)t
Vo 1 i(t) =Ke L —— —(2)
Hr) Where, K is the initial value of current through he inductor

At t>0, equivalent circuit.

l.e., at O-.
Therefore K = RL ————(3)
1
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Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is closed at t=0,

a steady state having previously been attained. Find current Ry

i(t).

Solution:

L- charged state at t=0-
At t=0-

Equivalent circuit

Ry
AN

T m;) i(07) = —

R{+R,

Att>o0
Equivalent circuit

Ry
[ I v
il R, + R;

A

Apply KVL
i)
V= Rll(t) + LW
di
L% + R i(t) =V ———-(1)
w.k.t.,
i(t) = RK — Ke_(%)t ———(2)

1
Where, K is the initial value of current through the inductor.

att = 0+,
v oV X
Ri+R, R,
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v oV X
R,+R, R,

4 174
" R,+R, Ry

K

Therefore,

10 —1—< A V>e-(%)t

_Rl

V
i0) =0~ - %




Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is
moved from the position 1 to 2 at t=0. Find V(1) at
t>o0.

Solution:

C-charged state at t=0-
At t=0-

Equivalent circuit

F kil
Wy

i

100V — o ) =100V

At t>0, equivalent circuit.

5k
s

+ |
50V l'ctr]:]: 1 uF

W
+ L
- a0y veli)=

— 1 uF

|
>
0N — P
—50 = VR + VC
-6 de
~50 = 1x1070 —*x 5000 + ¥,
50 = —_4Yc |
o 1000 dt ¢
V(T
;t + 200V, = —10% —— —(1)

v(t) = %(1 — e_(%)t)
4

10
ve(t) = ~ 200 Ke=(200t —— —(2)
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Transient Response Analysis

Summary
Differential equation-1
dy(t) 3
a— + by(t) =0
Solution:
dy(t) b
"o - a0
dy(t) b
y®)  a
dy(t b
J& — J ——dt
y(t) a
b
Iny(t) = —gt + K’
(@)
Iny(t) =Ine \@/ +InK—— —(1)

b

y(t) = ke @) —— —(2)

Where, K is integral constant at t=0".

If y(t)=0, att=0". from (1).
b
Iny(t) =In e_(a)t + InK
K=20

~y(®) =0

If y(t)=y(0*)=x, at t=0". from (1).
b
Iny(t) =In e_<5)t + InK
K=x

y(t) = xe_(g)t

NOTE:

 y(t) may be current i(t) or voltage v(t)

 i(t) may be branch currents/loop
currents/i; (1)

 v(t) may be branch voltages/Node
voltages/v(t).
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Transient Response Analysis

Example:

Consider a circuit.

T WO}

Att>0
KVL equation
Ldi(t
R,i(t) + R,i(t) + di ) =0
di(t
L% + (R{ +R,)i(t) =0
This is in the form of differential equation-1
di(t) .
a— + bi(t) =0
w.k.t., the solution for differential equation.

b

i(t) =K e_(a)t, Where, K is integral constantatt = 0.

If i(t)=0, att=0%. from (1).
b

Ini(t) =1n e_<5)t + InK

K=20
~i(t) =0

If i(t)=-", at t=0*. from (1).
1

b
Ini(t) =1n e_<5)t + InK
B \%
"R
V _(R1+R2
i(t) = R—le
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Transient Response Analysis - Introduction

Differential equation-2 b
dy(t) bKe_(E)t =c—by(t)
a— +by(t)=c —(Q)t
Solution: by(t) =c — I;K e \a
| o ) LU
Cld):l—it) =C— by(t) Y(t) b Ke (3)
O __la f y(t) from (2)
= If y(t)=0, att=0". from (2).
c—by(t) a - b
dy(t) 1 K= %e(g)t — y(b). e(a)t
jc—by(w:fadt K="
1 b
_(E) In(c — by(t)) + K' = - t ~y(t) = %(1 — e‘(g)t)
b If y(t)=x, at t=0%.f 1).
- ln(c - b}’(t)l)) +bInK =1In e(a)t y(O=xa ) :O;neé))t o e(g)t
bInK —Inel@" = In(c - by(t) b- T
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Transient Response Analysis - Introduction

Example:

Consider a circuit.

Att>0
KVL equation
di(t)
Ryi L——= =
1dl(t) + 7 |4
[(t
L % +R(D) =V
This is in the form of differential equation-2
di(t) .
a— + bi(t) =c
w.k.t., the solution for the differential equation.

b

C _
i(t) = 5 Ke (a)t,Where, K is integral constant att = 07,

If i(t)=0, at t=0"+,

b b

K=- e<5) —i(b). e<a)
%

K == R_1

Vv R
i(t) = ™ (1-— e( Ll)t)

If i(t)=——, at t=0+

b b
K= %e(a) —i(b). e<a)

% %

(D) = — — (— ~(
=8 " & "R TR,
YV (e,

0 =¢,"R;® TR R,
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Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is moved
from the position 1 to 2 at t=0. Find V(t) at t>0.
Solution:

C-charged state at t=0-
At t=0-

Equivalent circuit

100V =——

V¢ (0
At t>0, equivalent circuit.

g,

=

-

[y

tll
! :1;5.+
g

=1 F

| 5 kil
o AP ——
2 + |
oY — L sgvy velfy== 1 pF

dv,(t
—50 = 5000 = 106 ;t( ) 4 ve(t)
dv,(t
5« 1073 jt( ) + () = =50 —— —(1)

Equation (1) is in the form of differential
equation-2
dv(t)

dt
Solution for the above equation is

v(t) = % — Ke_(g)t

+bv(t) =c

Now,a=5%10"3,b=1and c = =50
Also

lso K = -
also —b X

Where, x = v-(0%) = 100

()
= ve(t) = =50 — (=50 — 100)e ‘5x1073

v.(t) = =50 + 150e200¢
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Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is moved
from the position 1 to 2 at t=0. Find i(t) at t>o0.

Solution:

L-charged state at t=0-
At t=0-

Equivalent circuit

S
.0 T ey ()

YL \>Y J

At t>o0, equlvalent circuit.

0 -
g j %uj H
Q{0

40V —

H

B di(t)
40 = 2i(t) + 0. 57
0. 5# +2i(t) = 40 — —(1)

Equation (1) is in the form of differential
equation-2
dl(t)
It +bi(t) =c
Solution for the above equation is

() =1 - ke~ (@)

Hlé :LX

2

20 Y — 10 r)gllil{
1(7)
0% T

Now,a = 0.5,b = 2 and c = 40
Also

lso K = <
aLso _b X

Where, x =i;(07) = 4
40 (40 _2,
] =——|——4 0.5
i(t) 7 ( 7 >e
i(t) =20— (20 — 4)e™*
i(t) =20—-16e™#
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Transient Response Analysis - Introduction

P. For the network shown in figure, steady state is reached with

the switch closed. The switch is opened at t=0. Obtain —'wﬂ-?ﬁ’ o ) —
esf,p]ftsis(;:::l for i, (t)and v,(£). 13V = §mn g'}ﬂmﬂ v (1)
L-charged state at t=0- 1
SAPCSRN | L di(D)

quivalent circuit 3000i,(t) +90 =10 e 0 Now, a = 0.09, b = 3000

di; (t Also
ey 0.09 CLlE ) 30006, (£) = 0 —— —(1) o K — x
v '—> 2 Equation (1) is in the form of differential Where, x =i;(07) = 0.15
T 3 equation-1 i;(t) = 0.15¢-333+10%
wo diy(®) |
+bi(t)=0

. e dt
i, (07) = 0'1,5‘4 L Solution for the above equation is
At t>0, equivalent circuit. b

i, (t) = ke~ (@)

Eﬂ]ﬂﬂg ;:> %E}ﬂmHl

il
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Transient Response Analysis - Introduction

100 £2 ?ﬁ/c g (0 .
mng w:) %9""‘”' 15V §mn gwmr vy ()

diy (t)
dt

d
vL(t) - Ooga (O 153_33'3*103t)

vy, = 0.09 * 0.15 = (—33.33 * 103)3—33-33*103t
v (t) = —450e(—3333+10%)t

v (t) =L
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Transient Response Analysis - Introduction

P. For the network shown in figure, the switch is open for a long 1200 'Y =

time and closes at t=0. Determine v (t).

Solution:

C-charged state at t=0- Apply KCL

At tfo—1 o 1200 — v (t) v (t) 50 % 10-6 dv.(t)

= *
Equivalent circuit 102 o 300 dt
_ V¢ t
100 02 l 50 % 10~6 T+ 0.0133v.(t) = 12 —— —(1)
— Equation (1) is in the form of differential equation-2
¥ dy(t
T a }C,l(t)+by(t)=c

vc(07) =1200V

At t>0, equivalent circuit.

100 £2
—AN

1200V — 3mn§

+

¥e =

= S0 pF

Solution for the above equation is
C _(Q)t
y(t) = 5 Ke ‘\a
Now,a =50%10"%b = 0.0133 and c = 12.
Also, K = % — x,where x = v:(07) = 1200

ve(t) = 900 — (900 — 1200)e 266t
ve(t) = 900 + 300266t

S0 pF
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Transient Response Analysis - Introduction

P. Find i(t) for t>o0. 15*(:{) %liﬂﬂ -;-l'( 200 -‘IIID gu.al-[

Solution:
L-charged state at t=0-

At t=0-
Equivalent circuit At t>0, equivalent circuit

&0 £}
6002 .
AAA : | s
EAG:] §1-mn zun§ ’) 5A §I-Hm Hlﬂ§ 03 H
i) in
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Transient Response Analysis - Introduction

Apply KVL
1502 03H di(t)
0.37 + 15i(t) = 0 —— —(1)
Equation (1) is in the form of differential equation-1
dit) +bi(t) =0
a 7 i(t) =

Solution for the above equation is
b
i(0) = ke (@)
Now,a = 0.3 and b = 15.
Also, K = x,wherex = i;(07) = 17.5
i(t) = 17.5e~ (0t
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Transient Response Analysis - Introduction

. . . b
P. For the network shown in figure, the switch is changed the SV .q g y
position from a to b at t=0. Find v(t)for t > 0. 2 v
Solution:
C-charged state at t=0-
At t=0- v(0*) = —=2.5Vand i(0%) = —1.254
Equivalent circuit At t>0, equivalent circuit. ¥
| |
|
o D -
203 ) 220
+
5N — 2ﬂ§1-"{“-} ifr
Apply KVL
. 1r.
ve(07) = 5V 4i(t) +1j i(t)dt =0
v(07)=0V. )
At t=0+, equivalent circuit. Differentiate the equation w.r.t.t
di(t
"'["' 4%+4i(t} =0———(1)
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Transient Response Analysis - Introduction

di(t
4% +4i(t) = 0 —— —(1)
Equation (1) is in the form of differential equation-1
di(t) +bi(t) =0
a— i(t) =

Solution for the above equation is

i) = ke~(@)
Now,a =4,b =4
Also, K = x,where x = i(0%) = —1.25
i(t) = —1.25e¢

From the circuit
v(t) = 2i(t)
v(t) = —2.5e7t
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Transient Response Analysis - Introduction

P. In the network shown in figure, the switch is
in position ‘a’ for a long time. At t=0, the switch
is moved from a to b. Find v,(t). Assume that the
initial current in the 2H inductor is zero.
Solution:

Li1=1H-charged state at t=0-

L2=2H-Uncharged state at t=0-

At t=0-
iLZ(O‘) = 0A.
iLl(O‘) = 1A
At t=0+

v,(0") = —0.5V

Att>o0

Uz(t) 1 _
L 1 +L2jv2(t)dt =0

| [

jvz(t)dt + 2v,(t) + 0.5 J vyo(t)dt = 0

d.w.r.t.t
1, (8) + 2 d";ft) +05u,(t) =0
2 dv;t(t) + 1.5v,(t) = 0 —— —(1)
Equation (1) is in the form of
ad};—(tt) +by() =0
Hence, the solution is

Q)
v,(t) = Ke \@/' = —0.5e~ (0750
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Laplace Transforms-Introduction

Laplace Transforms:
Laplace transform is a mathematical technique, which converts time domain equations into
frequency domain.

problem solution
in time in time
domain | ] inverse | domain

Laplace

« Integro-differential equations modelling
is the well known/conventional
mathematical model used to describe the
electrical systems.

« Analysis of systems using IDE and
finding the solution is difficult for higher
order systems.

« Difficult to incorporate initial conditions.

« Laplace Transforms converts Integro-
differential equations into simple
algebraic equations.

« Analysis of systems in frequency domain
is easy even for higher systems.

« Initial conditions are automatically
incorporated.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms-Introduction

Laplace Transforms:
Definition:
Any continuous time function f(t) defined for t>0 and its Laplace transform is given by

LUF (D)} = Fls] = f F(D). 66D dt —— —(1)
0

Where, s is the complex variable, i.e.,s =0 + jw
Where o is the real part, which controls the amplitude and
w is the imaginary part, which controls the frequency.

Inverse Laplace transform:

Definition:
1 o+joo
-1 — St o
L~ {F|s]} = f(t) = T e Fls]estds (2)
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Laplace Transforms-Important Functions

Laplace Transforms of standard test input signals:

Unit Step Signal Unit Parabolic Signal
o 11t =0 2t > 0
! r(t) = {0 t < 0} 5 r(t) = {% ‘ [z 0}
1
1
0 e | R®) =7 ; )
¥ ° t R(s) = 55
Unit Ramp Signal Unit Impulse Signal
r(t) _(tt=0
4 r® = {, t < 0} L r(6) = {1 t = 0}
~ lolelse
1
R(s) == > R(s) =1
0 ' S 0 t
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LUF (D)} = Fls] = j (). e=6D d —— —(1)
0

1. Step signal
_ _(A|t=0
fO =) = iy
F(s) =J A.e Stdt
F(s) = A. — |t =0to oo
e”® e
F(s) = A.[ — ]
—s —S
A
F(S) = g
for unit step signal A =1
1
F(s) =-
S

LF@) = Flsl = | f(0.e769 de - ~(1)
0
2. Ramp signal
Fo=r® =2}

F(s) =j At.e Stdt
0
A
F(s) ==
S

‘[:u-dvzu-v|:—‘[:v-du

du = dt
1

v=—Zg= dy=g*
S

¥(s) = [—g e‘i}m - [[; —é et . dt}

u==t

=[0-0]- {—é_[;e-ﬁt : dt} = %[; et .dt==.

L
S

=

| =



Lif(®)} = Fls] = Jmf(t)- e~ dt —— —(1)
3. Unit Impulse signal0
t=20 }

1
f<t)=5(t)={0|t<00rt>0

0
F(s) =] 1.e Stdt
0

F(s) =1.e 5t|t = 0.
F(s)=1

Coswt
Sinhwt
Coshwt
eat
edtsinwt
edcoswt
e'at
etsinwt
e2atcoswt

1.
2.
3.
4.
5.
6.
7.
8.
9.

Lif(®)} = Fls] = joof(t)-e‘(“) dt —— —(1)
4. f(t)=sinwt ’

1 1 1 1
2js-jo 2js+jo
_1 1 (stde) 11 (s-o)
&= e 5 ie) 259 (5 )
1 (5+jm)_{5—jm} 1 2jo

A[F- 56+ 556 - (j))) BT

Y(s) =




Laplace Transforms-Introduction

Laplace Transforms:
Laplace transform is a mathematical technique, which converts time domain equations into
frequency domain.

problem solution
in time in time
domain | ] inverse | domain

Laplace

« Integro-differential equations modelling
is the well known/conventional
mathematical model used to describe the
electrical systems.

« Analysis of systems using IDE and
finding the solution is difficult for higher
order systems.

« Difficult to incorporate initial conditions.

« Laplace Transforms converts Integro-
differential equations into simple
algebraic equations.

« Analysis of systems in frequency domain
is easy even for higher systems.

« Initial conditions are automatically
incorporated.
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Laplace Transforms-Introduction

Laplace Transforms:
Definition:
Any continuous time function f(t) defined for t>0 and its Laplace transform is given by

LUF (D)} = Fls] = f F(D). 66D dt —— —(1)
0

Where, s is the complex variable, i.e.,s =0 + jw
Where o is the real part, which controls the amplitude and
w is the imaginary part, which controls the frequency.

Inverse Laplace transform:

Definition:
1 o+joo
-1 — St o
L~ {F|s]} = f(t) = T e Fls]estds (2)
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1.f(t) =1

co

L{1} => F[s] = j 1.e Stdt
0

co
—st

L{1} = <

0

L{1} = —% [e™® — Y]

1
L{1} = " (~e"®=0ande’ =1)

Laplace Transforms-Examples

2.f(t) =A
L{A} => F[s] = f OOA. e Stdt
0

0o
—st

L{A} = A=
—S

0

L(A} =~ [e™ — o]

A
L{A} = S (ve ®=0ande’ =1)
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Laplace Transforms-Examples

3.f(t) =t Similarly
L{t"} => F[s] = J t". e~Stdt L{t"1} = M L{t"2}
0 S.S
We know that, Integral by parts
Jo u.dv = u.v|0 — jo v.du So, Generally
Let, u = t" and dv = e~Stdt
du = nt"~1dt ny _ N
st L{t } o gh+1
V=
S
—st| ™ 0 o-st
- L{t"} = —t", — f — .t 1dt
S |, 0 S

(0]

n
t"le stdt => S L{t"1}

L{tn}=0+§j

0
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Laplace Transforms-Examples

4.f(t) = et
L{e?} => F[s] = j et e7Stdt

0
0o

L{eat} =j e—(s—a)tdt
0

e—(s—a)t @
L, aty —
{e**} G- a)
0
L{e?'1} =
{e™1} = —
Similarly
1
L —aty —
{e } s+a

5.f(t) = sinwt
L{sinwt} = J sinwt. e~ Stdt
0

We know that
ejwt _ e—jwt
sinwt =
2]
o0 ejwt _ e—ja)t
L{sinwt} = j : e Stdt
0 2]

| 1 [* |
L{sinwt} = 2—}] (e/Ple™St — g7 Wte=St) (¢
0

2] 2j Jo
e—(s—jw)t oo e—(s+jw)t oo
L{sinwt} = —[-———F| ———
2j S—jw S+jw
0 0
w
Lisinot} = ——
{sinwt} 1 ol

1 ® . 1 ® .
L{ sinwt} = —_j e~(s—joltgy | p-(stjwltgy
0
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Laplace Transforms-Examples

6.f(t) = coswt

L{coswt} = ]
0
We know that

elwt 4

coswt. e Stdt

e—jwt

coswt =
2

(0]

L{coswt} = j

0

L{ coswt} = %f

0

ejwt + e—jwt

2

(0]

1 e—G—jw)t|”
L{coswt} = = [-——
2 S—jw .
S
Licoswt} = 5—

eI dp 4+

e Stdt

2j Jo
e—(s+jw)t
_I_

S+jw

1* . :
L{coswt} = Ef (e/Pte™St 4 e /WteSt)(t
0

e—(S+j(1))tdt

co

0

7.f(t) = sinhwt

L{sinwt} = ] sinwt. e Stdt
0

We know that

ewt —wt

—e
2

co  wt

sinhwt =

—wt

e Stdt

—e
L{sinhwt} = f
0 2

1 co
L{sinhwt} = 5] (e@le St — e~ @St
0

1 1r”
L{ sinhwt} = —j e~ (s—wtge —f e~ (stwtqgy
0 0

2 2
L{ - } e—(s—a))t *© e—(s+a))t oo
ty==[- ——
ST 2 [ S—w S+ w
0 0
L{sinhwt} = R
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Laplace Transforms-Examples

L{Vt} =?

8.f(t) = coshwt L{l/\/f} _9
L{coshwt} = f coshwt. e Stdt

0 Exercise:
We know that

pWt 4 o0t Find the Laplace transform of the following
coshwt = > functions.
0 e(l)t + e—(x)t
— —st

L{coshwt} = jo 5 e Stdt 1 cos 3t

1 [0 0]
L{coshwt} = Ef (e@te™5t + e~ Ple™Sh)(dt

) 0 | oo 2.sinh 4t
L{ coshwt} = —f e~(s—wtgy 4 — | e~(stwltgy

2 ), 2j Jo

1 e~G—w)t]”  g=(stw)t|” 3,710t
L{coshwt} = = [- ———

tcoshart] 2[ S—w * S+ w
0 0
3

L{coshwt} = R 4.t
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Laplace Transforms-Properties

1. cos 3t
L{cos3t} = st+ 5 (since, L{coswt = ﬁ})
2.sinh 4t
Lisinh4t} =
tsinhdt) = 7 16
3.e710¢
1
L -10t) _
e =710
4.t3
6
3] —
L’} = 3
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Laplace Transforms-Properties

1. Linearity
L{if(t) £ g(8)} = Fls] £ G[s]

Proof:

LUF(®) + g () = jo (F(©) +g(®)et dt.

LUF@®) + g(0) = jo (F(D) e~stdt + jo (g(0) e~stdt .
LUF(®) + g(©) = Fls] + Gls]

Example:

L{cos4t + t?} = L{cos4t} + L{t?} =>

s24+16 s3
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Laplace Transforms-Properties

2. Function Scaling

L{af(®)} = aL{f ()} => aF|[s]
Proof:

co

L{af(t)}=f af (t)e stdt

0
L{af(t)} = aj f()e stdt
0
L{af(t)} = aF|[s]

Example:
5

s+3

L{5e73t} = 5L{e73t} =>

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms-Properties

3. Time shifting
L{f(t —T)} = e™*"F[s]

Proof:
WP —T) = foof(t _ Iyestar Example:
Let,t —T=1 ’ Ao
t=1t+T N
dt = drt
L{f(t -7} = joof(T)e—s(r+T)dT 051
0 .
LfGE-T) = [ f@eT.emdr N
0
L{f(e=D) = | Fear Lu(t - 3)} = e L{u(®))
~ Lif(t—T)} =Oe_STF[S] L{u(t —3)} = e—BS_l

S
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Laplace Transforms-Properties

4. Frequency shifting

L{e®f(t)} = F(s — a) Example:
Proof: o L{e_atsinbt} = (S n a)z n Y
Lef @) = | e f@ede
0 L{sinbt} = T
L{e™ = —(s— a)td e
{e*'f(D)} = f fte t L{e~%*tsinbt} = TV

L{e®f(t)} = F(s — a)
Similarly L{e%cosbt} =

L{cosbt} =

L{e ™ f(D} =F(s +a)

s2 + b2
s—a

L{e®cosbt} = G a1 b2

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms-Properties

5. Time scaling

1 s
L{f (at)} = = F[]

Proof:
L{f (at)} = j f(at)e stdt.
0

Let,at =1

T

t=—
a
1
dt = —dt
a

e pe)
~1{f () = | f(e o dv
0

a

S

~ L{f(at)} = éJoof(T)e_(a)TdT
0

. L{f@®)} =~ F[]

a a
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Laplace Transforms-Properties

1. f(t) = e*coshwt

L{coshwt} = o —

S—a

L{e%coshwt} = G a)? —w?

2. f(t) = 5cos5t + =+ ut — 5) +r(t — 2)

5s 1 e™>5 7%
F(S)_52+25+S_3+ S * 52
CIE-Il Portions
3.f(t) = e®u(t —T) Unit-lll: Transient behaviour and initial conditions
~Ts  Unit-IV-Laplace transforms basic definition and properties
Liu(t -1} = With examples.
e—T(s—a)

L{ie*u(t—-T)} = —

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Theorems

1. Differentiation theorem (Laplace of derivative of a function).

Statement: Let f(t) is a continuous time function defined for t>o0,

if L{f(t)}=F(s), then L { f(t)} = sF(s) — f(0).
In general, L {Ff(t)} = s"F(s) — s 1f(0) —s™2f'(0) — s™3f""(0) .....

Proof:

{df (t)} _ j “df(t) e Therefore,

. ) & LR = et r @) )~ ) F(@©). ~se™"dt
Integration by parts, 4F ()
ju.dv=u.v—jv.du { }_SJ f(0).e7*dt = £(0)
f (@)

Let,u = e™t and dv = % f@® L {7} = sF(s) — f(0)
du = —se~Stdt and v = f(t) In general,

LEE F(D} = s7F(s) = s*71(0) — s"72f7(0) — s™73f7(0) ...

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Theorems

2, Integration theorem (Laplace of Integral of a function).

Statement: Let f(t) is a continuous time function defined for t>o0,

F (s)

if L{f(t)}=F(s), then L{J, f(t)dt} = ==

In general, L{f0 fo ...fot"f(t)dtl.dtz dt,} =
Proof:
t o ~t
LU f(r)dr} = j ] f(®)dt.e stdt.
0 0o Jo
Integration by parts,

ju.dv=u.v—Jv.du

Let, u = [; f(t)dt and dv = e~Sdt

—st

du = f(t)dt andv =2

)

F (s)

Therefore,
L{J; f(dz} = [ f(dz, —| N I 1 e
{f f(r)dr}=—f ).
L< f(r)d } f(t).e'Stdt
L] f f(r)dr} FES)
In general,
L{ f ! f ? nf(t)dtl dt, ....dt,) = Fs(,f)
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Laplace Transforms- Theorems

3. Differentiation by s (Multiplication by t)

Statement: If F(s) is the Laplace transform of f(t) then the differentiation by s in the frequency domain
corresponds to the multiplication by t in time domain.

ie., L{tf (D)} = —d—() In general, L{t"f(£)} = (—1)" L)

dsn

Proof:
we know that,

F(s) = j f@).e Stdt —— —(1)
0
Differentiating both sides with respect to s,

dF(S) j f(t).—t.e stdt
dF(S) j f(t).t.e Stdt
F(s)
—d——L{ S}

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Theorems

4. Integration by s (divided by t)

Statement: If F(s) is the Laplace transform of f(t) then the Integration by s in the frequency domain corresponds
to the division of t in time domain.

ie. L{f(t)} f F(s)ds. In general, L{f( )} f;l f;z ....fOS”F(s)dsl.dsz e dsy

Proof:
—st

e OOd
—t] 0 S

we know that, joop(s)dg =
F(s) = joof(t).e‘“dt —— —(1) "
0

Integrating on both sides with respect to s,

fooF(s)ds = foojoof(t).e‘“dt ds
0 0o Jo

JOOOF(S)dS = JOOO Jooof(t).e—stdtdg fooop( )ds = L{f(t )}

jooF(s)ds = joof(t)dtfooe‘“ ds
0 0 0

—sSt

fooF(s)ds =
0

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Theorems

5. Initial Value Theorem

6. Final Value Theorem

Statement: If F(s) is the Laplace transform of f(t) thenStatement: If F(s) is the Laplace transform of f(t) then

fQ0) =lim £(t) = lim sF(s).

Proof:
we know that,

af @) _
L{T} = SF(S) —f(O)
J *df(t)
o dt
Take limit as s — o0 on both sides

[(4©
0

e Stdt = sF(s) — f(0) —— —(1)

lim

S—00

7 e Stdt = ;i_)rglo[sF(s) — f(0)]

0 = lim sF(s) — f(0)

f (f);o; lim sF (s)
f(0) = Lim f(t) = lim sF(s).

f(eo)= lim £(£) = lim sF(s).

Proof:
we know that,
df ()]
L{T} = SF(S) —f(())
“d
j %.e‘“dt = sF(s) = £(0) —— —(1)
0
Take limit as s — 0 on both sides
(tdf
£1_r>% 0 T.e dt = ll_I)I(l)[SF(S) f(0)]

Oy = limsF(s) ~ £(0)
f(e0) = £(0) = lim sF (s) ~ £ (0)
f(0) = li)gf(t) = li_1)n sF(s).

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Theorems

1. Find the initial and final value for 2. Verify the final value theorem for the function

. 1 f(t) =2+ e 3cos2t
the system equation X(s) = o1 Z) Solution:
Solution: LHS is in time domain
w.k.t. IVT f(o0) = limt_,oo[Z + e‘3tc052t]
lim £(t) = lim sF(s) f(0) =2
y RHS is in frequency domain
f(o)_sl—>r¥>l<>s's(s+2)=>0 F(s)=E+ s+3
w.k.t. FVT s (s+3)%+4
lim £(¢) = lim sF(s) Fis) = 2 s+3
teo S_)Ol 1 (s) s SZ+6s+13
f () = lims. = = _ 2 s+3
0 +2) 2 = A=
’ s(s+2) floo) = limsos s sZ+6s+13
] s(s+ 3)
floo) = lims o (2 TS f6s+ 13)
f(o0) =2

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Theorems

&4

3. Find the Laplace transform of C{f®)}=1 [ In(u? + 16) — In(u? + 25}]
cos4t — cos5t i

w1617
_ t C{fe)} =3 [m e EEL
(o) = ¢ [ === [ 2.2 oy
- E{f(fi}}:% ]_nu? u? E{f{ﬁ}}:%{lﬂl—m32+25]
cos 4t cos bt u? _'_E
@O} =L|— ] —ﬁl ; ] | 2 2. .{'.{f{t]}:%{D—[1n{52+16}—ln{32+25}]}
S' ) [ 1 L | 2 1 9F 2
ince i S +— E{f{t]}zi{ln(s +25) — In(s +lﬁj}
_ T2 25 s? + 25
‘E'[':'DE bt} g2 4 p2 i 1+ =, L{f(t)}= %ln 2 ifﬁ answer
Then, I
*  udu *  udu L{ft)} =1
LI{f()} = — 2
o) /; u? + 42 f; u? + 52

E{ﬂ”}:f; (u?j-lﬁ_u?j-za) du
1 [ 2u 2u
E{ﬂ“}zﬁl (u.2+1ﬁ_u2+25) du

&
e
&

L{f0)} =1
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Laplace Transforms- Applications

4. In the circuit shown in figure, the switch is closed at P K o
t=0. find the current i(t) at t>0 using Laplace transforms. e WA
Solution: y = } )
At t=0-, Inductor is uncharged and hence, -T i
i; (0-)=0A=i;(0+)=i(0+) ~
Att>o0
Apply KVL Apply Inverse LT.

di(t |4 1

V = Ri(t) + L% — —(1) L HI(s)} = ZL‘l [ R}
Apply Laplace transform on both sides v RS tI
V = RI(s) + L[sI(s) — i(0)] —— —(2) i) =7 e (1)t

V =RI(s) + LsI(s)
V =1I(s)(R+ Ls)

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Applications

5. In the circuit shown in figure, the switch changed the position from 1
to 2 at t=0. find the current i(t) at t>0 using Laplace transforms.
Solution:

L is the energy storage element-charged state(reached steady
state at t=0-)

102
ANA———
i
10V
(D) o
i (07) =HOH—iH0—i0") = 104.
Att>o0
Apply KVL to the circuit
. . di(t)
1i(t) + 1i(t) + 17 =0—-(1)

Apply L.T.
I(s)+I(s)+sI(s)—i(0)=0

0% —=—
103 ') gl“
i

I(s)+1I(s)+sI(s)—i(0)=0
2I(s) + sI(s) =10 —— —(2)

10
I(s)=————-(3
(8) =575 ———(3)
ILT.
i(t) =10.e™%
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Laplace Transforms- Applications

6. In the circuit shown in figure, the switch is closed at t=0. find the
Voltage vt) at t>0 using Laplace transforms.

Solution:
C —energy storage element-uncharged state at t=0-.
vc(07) = vc(07) = 0V

Att>o0
KCL at node v(t)
10
Pt T
1‘}? — %I'L'l EF —_— V_.is)

10 — v (8) _ ve () 49 dvc(t)

10 10 a0
1 ve(t) vt _ 5 dvc(t)
10 10 ° dt
dvc(t)  ve(t)
2— =+ ——=1-—-(2)

ému IFTT k)

|

10% =

5 dv(t) 4 vc(t)

dt 5~ 17—~

LT.
1 1
Z[SUC(S) - vc(O)] + gvc(s) = E
25vc(s) + 0.2vc(s) = %

ve(s)[2s +0.2] = %

— -

vels) = s(2s +0.2)
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1

ve®) = Tasvon T ®
A
ve(S) =St ooz W

A(2s+02)+Bs=1
If s=0, A=5, and if s=-0.1, B=-10

()_5 10
Vel = ST 25 02
2 5
ve® =5 o

ILT

ve(t) =5—5e 01t




Laplace Transforms- Applications

7. In the circuit shown in figure, the switch changed the
position from a to b at t=0. find the Voltage v(t) at t>0 R glﬂ IH vip
using Laplace transforms. ] éi .
Solution: -
2H and 1H are energy storage elements 24
2H inductor reached steady state at t=0- and 1H WV
inductor is in uncharged state. - 5
i11(07) =i;1(0%) = 1A £V T )
i12(07) =i;2(0%) = 0A. ) [
Att>o0
KCL
v(s)—2 wv(s) wv(s) G o
et =0-———(1) 5 S |
v(s) 2 v(s) 1 %; Vis)

P —Zs+v(s)+—s 0

b

—|—a
i
|

|5+ 1+] =1
VS |2 sl s
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Laplace Transforms- Applications

)|t 1+1]=1
vis 128 sl s
) 1+ 2s+2 _1
vis I 2S 1 s
v(s)(2s+3) 1

2S s
(5) = —
vis - 25+3
= —— —(2
v(s) s+ 1.5 (2)
ILT

‘D(t) — e 15t
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Laplace Transforms- Analysis of electrical circuits

Procedure to Analyse electrical circuits using Laplace Transforms:

Step-1: Identify the energy storage elements.
Step-2: Find the state of energy storage elements at t=0-, by either general prediction or calculating by drawing
equivalent circuit.

Example: i;(07),i;(0),v:(07) and v (0")
Step-3: Draw the equivalent circuit at t=0+. And find the initial values of branch currents/loop currents/branch
voltages/node voltages depending on the load quantity.

Example: i(0"),v(o*) etc.

Step-4: Draw the equivalent circuit at t>o0.
Step-5: Describe the behaviour of the given electrical circuit using differential equations (Apply KVL or KCL).
Step-6: Covert Differential equations to algebraic equations by applying Laplace Transform.
Step-7: Simplify the equation for required variable in frequency domain.
Step-8: Apply partial fractions.
Step-9: Take inverse Laplace transform to get the solution in time domain.

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Analysis of electrical circuits

Laplace transform.

i(t) - I(s)

v(t) - V(s)

Ri(t) - RI(s)

v(t) V(s)

R R

di(t) . .
LW — L[sI(s) — i(0)] = LsI(s) — Li(0)
C dZS:t) — C[sV(s) —v(0)] = CsV(s) — Cv(0)

1 t 1 (° 1 (¢ 1 ¢ 1 i, (0
Zjv(t)dt - j_oov(t) = Zj_oov(t)dt +Zj0 v(t)dt = i;(0) +Z jov(t)dt = EV(S) + L(0)

vc(0)

%j i(t)dt - él(s) +

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Laplace Transforms- Analysis of electrical circuits

Examples
1. Find the voltage v(t) at t>0 for the electrical circuit shown in 4
figure. 2a(t) A 050 Z05H —=05F v
Solution: o
0.5H and 0.5F are energy storage elements, and they are
in uncharged state at t=0-. Hence i;(07) = i;(0") = 0A. Apply KCL at node v(t)
v:(07) = v(0%) = OV. IO J dv(t)
Att=0+ 05 T vwdtr = )
| o+ Apply L.T
< - = ( ) + 2 V) 0 04+ 0.5([sV 0
2a (1) 205 v(t) S 05 T4 5 +i(0)+0+ [sV(s) — v(0)]
Y = 2 2
I o- v(07) = 0 volts. 5= 2V (s) + ;V(s) + 0.5s5V (s)
2 2
Att>o0 —=T(s) [2 +—+ 0.58]
O+ S S

2
J. V(s) = s = 4 = *
0sH -|-"~5F "o 2 T 25 +2+0552 sZ+4s+4 (s +2)?
O-

-
>
(=)
vy
A A
o
G
e
000 -

S
Apply ILT,v(t) = 4.t.e” %t
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Laplace Transforms- Analysis of electrical circuits

Examples

2. Find the current through the inductor at t>0 for the electrical circuit
shown in figure.

Solution:

200uF and 0.5H are energy storage elements, and attained
steady state at t=0-

At t=0-, the equivalent circuit.

!

5V v (07) j vc(07) = 0V.i (07) = 2A.
T TI'L{D'}

vC(O+) = 0V. iL(O+) = 2A.

250
Att>o0 — A~

Equivalent circuit

SV ——=200 05H

I

VT — =200 pF %MH
Apply KVL
1jz(t)dt+L£ 0
C dt
LT
v(0)

—I(s) +— + LsI(s) —Li(0) =0

é](s) + LsI(s) — 2L = 0.
1(s)[1+ LCs?]

“ 2LC_
S
I(s) =

1+ LCs?

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



1s) 2LCs 2x200x10~6x0.5s 800x10°s 2s S
S) =

= = = = 2. —
1+ LCs? 1+ 0.5x200x107°s2 1+ 400x1076s2 2500 + s2 502 + s2
ILT

i(t) = 2.cos50t.




Laplace Transforms- Analysis of electrical circuits

|
Examples .5"% MWV _I_

3. Find v(t) at t>0 for the electrical circuit shown in figure. 6V ) {:}’§ .
Solution: 24 ¥ -
1F capacitor is energy storage element and attained
steady state at t=0-. AMA
vc(07) = v(0*) = 2V = v(07) = v(0*) l ,
Att>o0 6V— vi(n<2n
p v(t) dv(t) 2 B -
AN T Tt + 3 v(t)=0 (1) T
1F LT
> g §2 >
sV(s) —v(0)+=v(s) =0 V(s) = >
2> St3
sV(s)—2+=V(s)=0
Apply KCL () 32 (s) it ()
v(t) dv(t) v(t) V(s)[s +=] = 2 v(t) =2.e \3
6 dt 2 9
dv(t) 2 V(s) =—=———-(2)
a t3ro=0—-m M7
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Laplace Transforms- Analysis of electrical circuits . v
Examples %
1. Find the voltage v(t) at t>0 for the electrical circuit shown in v —— ) L
figure. iin —
Solution:

Both Inductor and Capacitor are in uncharged condition, hence
ip(07) =i,(0") =0Aand vc(07) = vc(0F) = 0V

Att>o0 Divide LC on both sides
KVL equation V 1 RCs LCs?2 1 )
; —LSs.— = + + I(s
| di(t) 1. s 'LC < LC ' Le LC)
V =Ri(t) + LW + Ej i(t)ydt —— —(1) K
Apply L.T I(s) = 5 RL T —(4)
174 1 v-(0 S“++S++=
Vo RIGs) +L[sIGs) — i) +—1¢s) + 29 __ _ L= Le
S Cs S %
4 1 —
;=<R+L5+E>I(s) (s) (st+ta—-pF)(s+a+p)
v __R _ (R _ L
;CS = (RCs + LCs? + 1I(s) —— —(3) Where, a = 2L and f = \/(ZL) LC
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Laplace Transforms- Analysis of electrical circuits

7
1(s) = (S+a ,B)(s+a+ﬁ)
Where, a = —— and,b’ \/ 2L
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Laplace Transforms- Analysis of electrical circuits

Examples

2. Find the current through the inductor at t>0 for the electrical circuit
shown in figure.

Solution:

200uF and 0.5H are energy storage elements, and attained
steady state at t=0-

At t=0-, the equivalent circuit.

!

5V v (07) j vc(07) = 0V.i (07) = 2A.
T TI'L{D'}

vC(O+) = 0V. iL(O+) = 2A.

250
Att>o0 — A~

Equivalent circuit

SV ——=200 05H

I

VT — =200 pF %MH
Apply KVL
1jz(t)dt+L£ 0
C dt
LT
v(0)

—I(s) +— + LsI(s) —Li(0) =0

é](s) + LsI(s) — 2L = 0.
1(s)[1+ LCs?]

“ 2LC_
S
I(s) =

1+ LCs?
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1s) 2LCs 2x200x10~6x0.5s 800x10°s 2s S
S) =

= = = = 2. —
1+ LCs? 1+ 0.5x200x107°s2 1+ 400x1076s2 2500 + s2 502 + s2
ILT

i(t) = 2.cos50t.




Laplace Transforms- Analysis of electrical circuits

|
Examples .5"% MWV _I_

3. Find v(t) at t>0 for the electrical circuit shown in figure. 6V ) {:}’§ .
Solution: 24 ¥ -
1F capacitor is energy storage element and attained
steady state at t=0-. AMA
vc(07) = v(0*) = 2V = v(07) = v(0*) l ,
Att>o0 6V— vi(n<2n
p v(t) dv(t) 2 B -
AN T Tt + 3 v(t)=0 (1) T
1F LT
> g §2 >
sV(s) —v(0)+=v(s) =0 V(s) = >
2> St3
sV(s)—2+=V(s)=0
Apply KCL () 32 (s) it ()
v(t) dv(t) v(t) V(s)[s +=] = 2 v(t) =2.e \3
6 dt 2 9
dv(t) 2 V(s) =—=———-(2)
a t3ro=0—-m M7
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Laplace Transforms- Waveform synthesis

Introduction:
« Waveforms- signals
» Signals-Quantities which convey information (Current/Voltage)
 Two types

1. Periodic and 2. Aperiodic Signals

Periodic signal one which repeats the pattern exactly after a fixed time interval for all t.
ie., f(t+T) = f(t), Where,T = is the fixed time interval called Period.

A periodic signal is one for which no value of T satisfies the above equation

e f(E+T) % f(£)

AWAWA'

Examples:

Amplitude

A

=

.
.

VARV,

Tume

#(t
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Laplace Transforms- Waveform synthesis

Basic Signals- step, ramp, exponential and sinusoidal signals

AN
u(t)

B
B o

* No discontinuities — combination of only ramp signals
« Discontinuities and constant —only step signals
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Laplace Transforms- Waveform synthesis - Examples

AJ‘\ ﬁ‘h
. u(t-1) u(t+1)
2101234? 2101234?
AP
u(t-2) Time shifting property
L{f(t-T)}=eB.F(s)
At 2 1 lo 1 2 f() =2u(t—2)—2u(t—3)———(1)
LT
1 e—3S
_ 9,25 _
T t} u(t-3) F(S)z—zse 2. .
F(s) =+ (e™* —e %) ———(2)
3
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Laplace Transforms- Waveform synthesis - Examples

u(t-1)

A u(t)
2

uft-2)

u(t-3)

f@)=ult) —u(t—1) + 2u(t —2) — 2u(t —3) —— —(1) |
LT
F(s) =1—e—_s+ 216_25 — 28_35
1 S S S S
F(s) = ;(1 —e ™5 +2e7 %5 —2e735) —— —(2)
Method-II
fO=A-0u@®+O—-Dut—-1D))+2-0ut—2)+0—-2)u(t—3) —-(1)

f=ult) —u(t—1)+2ult—2) — 2u(t—3)
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Laplace Transforms- Waveform synthesis - Examples

y=mx-+c
m=X=>y2_y1
X Xo — X1
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Laplace Transforms- Waveform synthesis - Examples

i r(t) / f@W=r@® —rt—-1) ———(1)
1 LT
1 —S
=T o 1 2 3 5 2 F(S)zs_z_eg_z
-1(t-1) Method-II
f)=1rt)-1.rt—-1)
\ fO=r@®-rt-1
A""
Method-Il

fO=r®+C1-Drt—1+(0-(—1))r(t—2)
fW)=r@)—2rt—-1)+rt—2)———(1)

LT

1 2e™5 g7
F(S)=S—2— Sz + 52
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Laplace Transforms- Waveform synthesis - Examples

A fO=r@®—-rt-1 —-u(t—-1) A

A fO)=ult+2)—ult+1D)+2.r@t)—-2r(t—1)—u(t—1) +u(t —2)
—2r(t—3) + 2r(t — 4)

B

fW)y=1r@) —rt—1)+ L.u(t —3) — 2u(t — 4)
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Laplace Transforms- Waveform synthesis - Examples

Find the Laplace Transform of the following signal.

i(t)

A i(t
1 [:: ==0 ¢=1 .'::E:Il A
s=1 s5=1
0 1 2 3 /4 5t .0 =0
/ 0 1 2 74 5 t
. c=0
=0 s=1
c=-1 .
==0
it)=rt)—-rt—-1)—-ut—-2)4+rt—2)—rt—3)—2u(t—=3)+r(t—3) —r(t—4) + As(t — 5)
it)=r@t)—rt—-1)—ult—-2)+r(t—-2)—2u(t—-3)—r(t—4)+A8(t—-5) —— —(1)
L.T.
1 e S e—Zs e—Zs Ze—3s e—4s A
I(s)=S—2— 2 s 52 s 52 e
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Laplace Transforms- Waveform synthesis - Examples

Find the Laplace Transform of the following signal.

fit)

Va

/\

/\ f(t) = sinwt + sin(wt — pi) —— —(1)
w w

Pi

; F(s) = + e TS,
- (s) s2 + w?2 s2 + w?2

D "i\/
|2

2pi
A Ein[“tpi’/\
i 2pi

NV
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Find the Laplace Transform for following periodic signal.

1
L{f(t)} = 1—e-Ts Fl(S)

Where, f(t) is a periodic signal/waveform and F; (s)is the laplace transform of single/first cycle signal
Example: T=1.

F(s) = 7= Fa(s)

Fi(s) = L{f1(t)}
f1(t) =Ar(t) —Ar(t — 1) — Au(t — 1)
A Ae”S B Ae™5

F - _ fit)
l(S) Sz Sz S
F(s) = 1 A Ae 5 Ae” S

YT T sz T g2 S A
F(s) = 21— [1—e™3 —se™®)




Two port Networks - Introduction
Port - A Pair of terminals, where electrical signal enters or leaves.

One port Network — Single pair of terminals, Current enters through one terminal and leaves through

another terminal. Example: R, L, C

I

>

1
+
v

—

. *

Two terminal

Linear Network

1 1

Two port Network — Two pairs of terminals, Current enters through one terminal and leaves through

another terminal.

Two terminal

Linear Network

I 2
-« *
+
V2
> ey
Iy 2
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Two port Networks - Introduction

Three Port Network — Three pairs of terminal, Example: Co-axial circulars
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Two port Networks - Introduction

Two port Network — Two pairs of terminals, Current enters through one terminal and leaves through

another terminal.
1 Iy I> 2
. - > .
'+' Two terminal '+'
Vi Linear Network V2
—.- -+ - vy
1' Iy I> 2'

Two port Network — Two pairs of terminals, Current enters through one terminal and leaves through

another terminal of each port.

Here, 1-1" and 2-2’ are two ports, Port-1 and Port-2.

Four variables are associated with the network, they are I1, I2, V1 and V2.

Two variables are dependent variables and the remaining two variables are independent variables.

Six possible pairs of equations, these equations represents the dependent variables in terms of independent
variables.

The co-efficients of independent variables are called Parameters.

Z,Y, h and T parameters are most important for the analysis of electrical and electronic circuits.
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Two port Networks - Introduction
+ +
Z — Parameters Twe terminal
Vi Linear Network V2
_ ) . —
1 1 I 2
* Viand V2 are dependent variables and I1 and I2 are independent variables
Vi=fUy, L) ———1)
Vo, =fU, L) —— —(2)
e Definition
Vi=2Z1114 +Z51, — —(3)
Vo = Zy11h + Zyply; —— —(4)
e In Matrix form
[V].] — le ZlZ] Il] _ _(5)
V5 Zyy Zylll . ly in | Iz 2,
» Equivalent circuit
Vi 42l Inly Vz
- & =
1 4
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Two port Networks - Introduction

Z — Parameters

e Definition
Vi =211 +Z1,1, — —(3)
Vo =Zy1 1 + Zyl, — —(4)
* Where,

Zi1 = 1—1 = Open circuit input impedance
1

v
Zip, = I—l = Open Circuit reverse transfer impedance
2

Zy1 = 1—2 = Open circuit forward tranfer impedance
1

Loy = I—z = Open circuit output impedance.
2
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Two port Networks - Introduction

'I.- Two terminal +
Y — Parameters Vi Linear Network V2
r= < > >y
1 Iy I 2
« I1 and I2 are dependent variables, V1 and V2 are independent variables.
I = f(V1»V2) - —(1)
I = f(V,V3) —— —(2)
Definition
I, =Y,V + Y1,V — —(3)
I = Y1 V) + YooV, — —(4)
Matrix form
11] [Yn Y1z] [V1]
= —— —(5
Ll = v Yl lva) =7 =)
1 N 2 3
» O —a i &
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Two port Networks - Introduction

I, =Y11V; + Y1,V — —(3)
I = Y5, Vi + YoV — —(4)
For V2=0, Short circuit the output port

Yi1 = 71 = Short cicuit Input admittance
1

Y, = V_z = short circuit forward tranfer admittance
1

For V1=0, sort circuit the input port

Iy
Yi, = 7 = short circuit revrese transfer admittance
2

I
Yy, = V—Z = short circuit output admittance
2

Y parameters are also called as Admittance parameters/short circuit admittance parameters.

Note: Reciprocal of Y parameters are not equal to the Z parameters.
1
Example: le *F —
Y11
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Two port Networks - Introduction
h — Parameters + Two terminal -+
Vi Linear Network V2
- . L
1 1 I 2
V1 and I2 are dependent variables and I1 and V2 are independent variables
Vi =fUy, V) — —(1)
I =f(,Vz) — —(2)
Definition
Vi = hi1ly + hypVp — —(3)
I, = hp1ly + hpVy —— —(4)
In Matrix form
il _ P11 h12] [11]
[IZI - [h21 hool V2] ~®) A - 2.2,
Equivalent circuit " .- ™ ® Vs
-0 —a -
1 z
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Two port Networks - Introduction

Vi =hy1ly + hypVo — —(3)
I = hp1ly + hppVy —— —(4)
V2=0, short circuit the output port

V.
h{{ = 1—1 = Short circuit input impedance
1

I
h,, = 1—2 = Short circuit forward current gain
1
11=0, open circuit the input port
V.
hi, = 71 = open circuit reverse voltage gain
2
I
h,, = V_Z = open circuit output admittance.
2

Also called as hybrid parameters.
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Two port Networks - Introduction
+ T
T — Parameters Two terminal
Vi Linear Network V2
- < , -
1 1 I 2

« Viand I2 are dependent variables and I1 and V2 are independent variables
Vy = f(Vz» —12) ———(1)
L = f(Vz» —Iz) ———(2)
e Definition
V, = AV, — Bl, —— —(3)
I, = CV, — DI, —— —(4)
e In Matrix form
Vi A B1["
AR P A R

» Equivalent circuit
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Two port Networks - Introduction

e Definition

Vl - AVZ - BIZ —_— —(3)
11 - CVZ - DIZ - —(4)
12 =0, output port is open circuit
V.
A= 71 = Open circuit reverse voltage gain
2
Iy o .
C = 7 = Open circuit reverse admittance
2
V2=0, output port is short circuit
B =— 1—1 = Short circuit reverse impedance
2
I L :
D =— 1—1 = short circuit reverse current gain

2
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Two port Networks — Relation Between Z and Y

Relation Between Z and Y, Z in terms of Y
Definition of Z- parameters

Vi=2Z1111 +Z31; — —(1)

Vo =123111 + Z51; — —(2)
Definition of Y — parameters

I, =Y11V1+ YV, — —(3)

I =Y1V1+ Y3V, ——(4)

Fromm equation (3)
Y12V2 = 11 - Y11V1
1 Y11

Vo=——I1,——V; ——(5)
Y12 Y12
Substitute equation (5) in (4)
I—YV+Y[11 YllV]
2 21Va+ Yoz |y~ 0 =3~ Vs
Y22 Y11Y22
I, =Y.V +—14 —
2 21Vatyh v, 1
Y11Y22] Y,
I = |Vyy — Vi+221
2 [21 Y., 1ty

Put Y11Y22 — Y12Y21 =AY

Y Y
Vi= A—;Zh —A—;le ————(6)
Compare equation (1) and (6)
le = @ andZ12 = —£
AY AY
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Two port Networks — Relation Between Z and Y

I, =Y,V + Y5V, — —(3)
I, =YV, +YV, — —(4)
From (3)

Y.
V1 = —11 __VZ - _(7)
Substitute (7) in (4)

I, =Y, [_11 -V

[Y11Y22 - Y21Y12] v

11 +_V2

12 __11 -

Vialy = Yol _ AY

Yy, Yi; °
Y1112 - Y2111

AY

Y21 Yll
Vo=-7yhta,L———®

= V3

Compare equation (2) and (8)

YZl Yll
221 = —E and ZZZ = E
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Two port Networks - Relation Between Z and Y

« Learner Activity:
Obtain the relation between,
1) Zandh

1) ZandT

i11) Yand h

iv) Yand T

v) handT

vi) Y in terms of Z
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Two port Networks - Examples

* Find Z parameters for the two port

network shown in figure. Compare (4) and (7) 18 4401
SOLUTION: le =4 0hms O—AMN, AAAN L
Apply KVL to input circuit Zi, =1 0hm. |
V1=1.11+611—613 . ) |1 gb g :I._.I:
Vi=7I, — 6I3 — —(1) Subsitute (6)in (2) ! !
Apply KVL to Output circuit V, =21, +2 111 B 112 o o
Apply KVL to loop 2 V, = I, + %12 —— —(8)
w. k. T. Compare (5) and (8)
Vi=Zy111 +Zy30; — —(4)
Z,1 =10hm
V,; = 221111 +lzzzlz ———(5) 21 5

Substitute (6) in (1)

V=171 611 1I
1= /11 217 g2

Vl = 4'11 +12 - —(7)
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Two port Networks — Examples

1. Find Z — Parameters for the two port network shown in figure.

SOLUTION

1) I, =0(open circuit port 2). Redraw the circuit.

—_— .k V,=1201,....... O |7, =2401,....... (3
+

+ 280 120
1 = — ] ,,,,,, I - —I .......
y | 2400Q »= 200" Of o= 200" ¢
1 I, § 120Q V,lsub(1)— (2) sub(4)— (3) Ny o o
v v 11) I, = 0 (open circuit port 1). Redraw the circuit.
- S Z,=-L=840 . Z, =2 =720 , L
40Q l
v, § 240Q § v,
120Q

In matrix form:

V,=2401....0 ||V =1201,.......8)
160 _240
I = 40012 ....... O, = 2002 @)
sub(1)—(2) sub(4)— (3)
AL L
..222—12 962 ..212—12 =72Q
84 72
[z]=
72 96
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Two port Networks — Examples

2. Find Y — Parameters for the two port network shown in figure. * Wy *
SOLUTION V. =207, . ... O = =" v
5 - -
) V=0 I, = 2—511 ....... @) iV, =
50 1, sub(1)— (2) 1 50 V. =151 6)
] AN — . , . =157.......
+ I — i lS VVYV ] + 2 5
S 2 I =—1,...... é)
Vi l, =0 v o—_s] 15Q g I, v, 257
_ : ]2 | sub(3)— (4)
Y, =2=-_§ - I, 4
1 S 22 — ?2 - E
=1 N V, =-51,
In matrix form; a = Y —i——lS
: Y= 4 5 oz N 5
Yl=| % 2|5 :
5 15_
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Two port Networks — Examples

3. Find T — Parameters for the two port network shown in figure.

SOLUTION

1), =0,

v, =101,

Vi=21,+V,

=

6
]-I_VZ ZgVZ

i)V, =0,

, 20 0 |,

e W—

V, 10Q g L+,

o1 1)

V, =21, +10(/,+1,)
V,=121,+101,

14
4 =12(—E12]+1012

V

L B=—-"1=6.8Q
/

2
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Two port Networks — Examples

. g o WA o
4. Find h — Parameters for the two port network shown in figure. + +
We get h,, and h,, by considering the circuit in Fig. (a). v, 20 § <*> 41, v,
10 10 10 | — -
Vi Vi 2 e i
—\\ W M-
_+_
O = P
. . _
(a) Adding (1) and (2),
181, =5V, —> V, =36,
At node 1, V, =3V, -81 =281,
VvV, V.-V
I, = 1’+ 31 : » 21, =2V, -V, (1) V.=V, +1, =381
S
At node 2, h,, = I, =380
ViV gy, = Ys
! -V, I,
81, =-V,+3V, —— 161, =-2V,+6V, 2) I, = =361, —> h,=-—=-36
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Two port Networks — Examples

To get h,, and h,, refer to the circuit in Fig. (b). The dependent current source can be

replaced by an open circuit since 41, =0.

——A\A\N, AN AN —t—e-
+
ik
v = O O
[ —
(b) Thus,
) 380 04

2 2 V. | -36 028
Visoan "5 T ha=5=04

o—we Yy Ll o

1T 24241 5 S U

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru



Two port Networks — Examples
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Two port Networks — Examples
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Two port Networks — Examples
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