Dr. Ambedkar Institute of Technology, Bengaluru-560056 Scheme of Teaching and Examination for I/II Semester B.E. CBCS, Academic Year-2022-23 2022 Scheme: Civil Engineering

Physi	cs Cycle										SE	MESTE	R: I	
				Tooching	Teac	hing	g Ho	urs/	Week		Exan	nination		
Sl. No.	Course Category	Course Code	Course Title	Departmen t	L	Т	Р	S S	Tota l	Durat ion(H rs)	CIE Mar ks	SEE Mark s	Total Marks	Credits
1	ASC(IC)	22MAU101A	Mathematics - 1	Maths	2	2	2	0	4+2	03	50	50	100	04
2	ASC(IC)	22PHU102A	Applied Physics	Physics	3	0	2	0	3+2	03	50	50	100	04
3	ESC	22CVT103	Engineering Mechanics	Civil	3	0	0	0	3	03	50	50	100	03
4	ESC-1	22ESX104x	Engineering Science Course	Respective Engg. dept	3	0	0	0	3	03	50	50	100	03
5	ETC-1	22ETT105x	Emerging Technology Course - I	Any Engg. Dept.	3	0	0	0	3	03	50	50	100	03
6	AEC	22ENT106	Communicative English	Humanities	1	0	0	0	1	02	50	50	100	01
7	HSS	22SKT107 / 22BKT107	Samskrutika Kannada / Balake Kannada	Humanities	1	0	0	0	1	02	50	50	100	01
8	HSS	22IDT108	Innovation and Design Thinking	Any dept.	1	0	0	0	1	02	50	50	100	01
9	МС	22CDN109	Career Development Skills - I	Placement Cell	2	0	0	0	2	-	50			NP/PP
			Total						26		450	400	800	20

TD/PSB- Teaching Department / Paper Setting Board, **SS-**Self Study, **ASC-**Applied Science Course, **ESC-** Engineering Science Courses, **ETC-** Emerging Technology Course, **AEC-** Ability Enhancement Course, **HSS-**Humanity and Social Science Course, **CIE** –Continuous Internal Evaluation, **SEE-** Semester End Examination,

IC – Integrated Course (Theory Course Integrated with Practical Course)

Credit Definition:	04- Credits courses are to be designed for 50 hours of Teaching-Learning Session
1-hour Lecture (L) per week=1Credit	04- Credits (IC) are to be designed for 40 hours' theory and 12-14 hours of practical sessions
2-hoursTutorial(T) per week=1Credit	03- Credits courses are to be designed for 40 hours of Teaching-Learning Session
2-hours Practical / Drawing (P) per week=1Credit	02- Credits courses are to be designed for 25 hours of Teaching-Learning Session
	01- Credit courses are to be designed for 12-15 hours of Teaching-Learning sessions

Student's Induction Program: Motivating (Inspiring) Activities under the Induction program – The main aim of the induction program is to provide newly admitted students a broad understanding of society, relationships, and values. Along with the knowledge and skill of his/her study, students' character needs to be nurtured as an essential quality by which he/she would understand and fulfill the responsibility as an engineer. The following activities are to be covered in 21 days. Physical Activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to Local areas, Familiarization with Department/Branch and Innovation, etc. For details, refer the ANNEXUREI of Induction Programs notification of the University published at the beginning of the 1st semester.

AICTE Activity Points to be earned by students admitted to B.E. day college program (For more details refer to Chapter 6, AICTE Activity Point Program, Model Internship Guidelines): Over and above the academic grades, every regular student admitted to the 4 years Degree program and every student entering 4 years Degree programs through lateral entry, shall earn 100 and 75 Activity Points respectively for the award of degree through AICTE Activity Point Program. Students transferred from other Universities to the fifth semester are required to earn 50 Activity Points from the year of entry to VTU. The Activity Points earned shall be reflected on the student's eighth semester Grade Card. The activities can be spread over the years, any time during the semester weekends, and holidays, as per the liking and convenience of the student from the year of entry to the program. However, the minimum hour's requirement should be fulfilled. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression. In case students fail to earn the prescribed activity Points, an Eighth Semester Grade Card shall be issued only after earning the required activity points. Students shall be admitted for the award of the degree only after the release of the Eighth semester Grade Card.

*22MAU101A Shall have the 03 hours of theory examination(SEE), however, practical sessions question shall be included in the theory question papers #- 22PHU102A SEE shall have the 03 hours of theory examination), however, practical sessions question shall be included in the theory question papers. ESC or ETC, of 03 credits Courses shall have only a theory component (L:T :P:S=3:0:0:0) or if the nature the of course required practical learning then the syllabus shall be designed as an Integrated course (L:T:P:S=2:0:2:0). All PLC courses are Integrated courses.

All 01 Credit- courses shall have the SEE of 02 hours duration and the pattern of the question paper shall be MCQ

	(ESC-I) Engineering Science Courses-I					(ETC-I) Emerging Technology Courses	·I				
Code 22ESX104X	Title	L	Т	Р	Code 22ETT105X	Title	L	Т	Р		
22EST104A	Introduction to Civil Engineering	3	0	0	22ETT1051	Introduction to Cyber Security	troduction to Cyber Security 3		0		
22EST104B	Introduction to Electrical Engineering	3	0	0	22ETT1052	Introduction to Internet of Things (IOT)	3	0	0		
22EST104C	Introduction to Electronics Engineering	3	0	0	22ETT1053	Renewable Energy Sources	3	0	0		
22EST104D	Introduction to Mechanical Engineering	3	0	0	22ETT1054	Basics of Waste Management	3	0	0		
22ESU104E	Introduction to C Programming	2	0	2	22ETT1055	Green Buildings	3	0	0		
					22ETT1056	Smart Materials and Systems	3	0	0		
					22ETT1057	Introduction to Nano Technology	3	0	0		
					22ETT1058	Introduction to Sustainable Engineering	3	0	0		
					22ETT1059	Introduction to Embedded System	3	0	0		
(PLC-I) Prog	ramming Language Courses-I					Applied Science Course (IC)					
Code 22PLU105X	Title	L	Т	Р	Code	Title	L	Т	Р		
22PLU105A	Introduction to Web Programming	2	0	2	22MAU101A	Mathematics – 1 for CV stream	3	0	2		
22PLU105B	Introduction to Python Programming	2	0	2	22PHU102A	Applied Physics for CV stream	3	0	2		
22PLU105C	Basics of JAVA programming	2	0	2							
22PLU105D	Introduction to C++ Programming	2	0	2							
The course 22 Introduction	The course 22ESU104E: Introduction to C Programming, and all courses under PLC and ETC groups can be taught by faculty of ANY DEPARTMENT										

- The student has to select one course from the ESC-I group.
- Civil Engineering Students shall opt for any one of the courses from the ESC-I group except, **22EST104A** -Introduction to Civil Engineering
- The students have to opt for the courses from ESC group without repeating the course in either 1st or 2nd semester
- The students must select one course from either ETC-I or PLC-I group.
- If students study the subject from ETC-I in 1st semester he/she has to select the course from PLC-II in the 2nd semester and vice-versa

Dr.Ambedkar Institute of Technology, Bengaluru-560056 Scheme of Teaching and Examination for I/II Semester B.E. CBCS, Academic Year-2022-23 2022 Scheme: CIVIL ENGINEERING

Chem	Chemistry Cycle SEMESTER: II													
SI	Course			Taashing		ן Ho	Feacl ours/	ning Wee	k		Exan	nination		
51. No.	Course Category	Course Code	Course Title	Department	L	Т	Р	S S	Tota l	Durat ion (Hrs)	CIE Mar ks	SEE Mark s	Total Marks	Credits
1	ASC(IC)	22MAU201A	Mathematics - II	Maths	2	2	2	0	4+2	3	50	50	100	4
2	ASC(IC)	22CHU202C	Applied Chemistry	Chemistry	3	0	2	0	3+2	3	50	50	100	4
3	ESC	22MED203	Computer Aided Engg. drawing	Civil/Mech.	2	0	2	0	2+2	3	50	50	100	3
4	ESC-II	22ESX204x	Engineering Science Course - II	Respective Engg. dept	3	0	0	0	3	3	50	50	100	3
5	ETC-II	22PLU205x	Programming Language Course	Any Engg. Dept	2	0	2	0	3	3	50	50	100	3
6	AEC	22ENT206	Professional writing skill	Humanities	1	0	0	0	1	2	50	50	100	1
7	HSS	22CIT207	Constitution of India	Humanities	1	0	0	0	1	2	50	50	100	1
8	HSS	22SFT208	Scientific Foundation of Health	Humanities	1	0	0	0	1	2	50	50	100	1
9	MC	22CDN209	Career Development Skills - II	Placement Cell	2	0	0	0	2	-	50			NP/PP
							To	otal	26		500	450	800	20

TD/PSB- Teaching Department / Paper Setting Board, **SS-**Self Study, **ASC-**Applied Science Course, **ESC-** Engineering Science Courses, **ETC-** Emerging Technology Course, **AEC-** Ability Enhancement Course, **HSS-**Humanity and Social Science Course, **CIE** –Continuous Internal Evaluation, **SEE-** Semester End Examination, **IC** – Integrated Course (Theory Course Integrated with Practical Course)

Credit Definition:	04-Credits courses are to be designed for 50 hours of Teaching-Learning Session
1-hour Lecture (L) per week=1Credit	04-Credits (IC) are to be designed for 40 hours' theory and 12-14 hours of practical sessions
2-hoursTutorial(T) per week=1Credit	03-Credits courses are to be designed for 40 hours of Teaching-Learning Session 02- Credits
2-hours Practical / Drawing (P) per week=1Credit	courses are to be designed for 25 hours of Teaching-Learning Session
	01-Credit courses are to be designed for 12-15 hours of Teaching-Learning sessions

Student's Induction Program: Motivating (Inspiring) Activities under the Induction program – The main aim of the induction program is to provide newly admitted students a broad understanding of society, relationships, and values. Along with the knowledge and skill of his/her study, students' character needs to be nurtured as an essential quality by which he/she would understand and fulfill the responsibility as an engineer. The following activities are to be covered in 21 days. Physical Activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to Local areas, Familiarization with Department/Branch and Innovation, etc. For details, refer the ANNEXUREI of Induction Programs notification of the University published at the beginning of the 1st semester.

AICTE Activity Points to be earned by students admitted to B.E. day college program (For more details refer to Chapter 6, AICTE Activity Point Program, Model Internship Guidelines): Over and above the academic grades, every regular student admitted to the 4 years Degree program and every student entering 4 years Degree programs through lateral entry, shall earn 100 and 75 Activity Points respectively for the award of degree through AICTE Activity Point Program. Students transferred from other Universities to the fifth semester are required to earn 50 Activity Points from the year of entry to VTU. The Activity Points earned shall be reflected on the student's eighth semester Grade Card. The activities can be spread over the years, any time during the semester weekends, and holidays, as per the liking and convenience of the student from the year of entry to the program. However, the minimum hour's requirement should be fulfilled. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression. In case students fail to earn the prescribed activity Points, an Eighth Semester Grade Card shall be issued only after earning the required activity points. Students shall be admitted for the award of the degree only after the release of the Eighth semester Grade Card.

*-22MAU201A Shall have the 03 hours of theory examination(SEE), however, practical sessions question shall be included in the theory question papers #- 22CHU202C SEE shall have the 03 hours of theory examination however, practical sessions question shall be included in the theory question papers ESC or ETC of 03 credits Courses shall have only a theory component (L:T :P:S=3:0:0:0) or if the nature the of course required practical learning then the syllabus shall be designed as an Integrated course (L:T:P:S= 2:0:2:0). All PLC courses are Integrated courses.

All 01 Credit- courses shall have the SEE of 02 hours duration and the pattern of the question paper shall be MCQ

(E	ESC-II) Engineering Science Courses II				(ETC-II) Emerging Technology Courses - II							
Code 22ESX204X	Title	L	Т	Р	Code 22ETT205X	Title	L	Т	Р			
22EST204A	Introduction to Civil Engineering	3	0	0	22ETT2051	Introduction to Cyber Security	3	0	0			
22EST204B	Introduction to Electrical Engineering	3	0	0	22ETT2052	Introduction to Internet of Things (IOT)	3	0	0			
22EST204C	Introduction to Electronics Engineering	3	0	0	22ETT2053	Renewable Energy Sources	3	0	0			
22EST204D	Introduction to Mechanical Engineering	3	0	0	22ETT2054	Basics of Waste Management	3	0	0			
22ESU204E	Introduction to C Programming	2	0	2	22ETT2055	Green Buildings	3	0	0			
					22ETT2056	Smart Materials and Systems	3	0	0			
					22ETT2057	Introduction to Nano Technology	3	0	0			
					22ETT2058	Introduction to Sustainable Engineering	3	0	0			
					22ETT2059	Introduction to Embedded System	3	0	0			
(PL	C-II) Programming Language Courses-I	Ι				Applied Science Course (ASC)						
Code 22PLU205X	Title	L	Т	Р	Code	Title	L	Т	Р			
22PLU205A	Introduction to Web Programming	2	0	2	22MAU201A	Mathematics – II for CV	3	0	2			
22PLU205B	Introduction to Python Programming	2	0	2	22CHU202C	Applied Chemistry for CV	3	0	2			
22PLU205C	Basics of JAVA programming	2	0	2								
22PLU205D	Introduction to C++ Programming	2	0	2								
The course 22E	SU204E:											

Introduction to C Programming, and all courses under PLC and ETC groups can be taught by faculty of ANY DEPARTMENT

• The student has to select one course from the ESC-II group.

• Civil Engineering Students shall opt for any one of the courses from the ESC-II group except, **22EST204A** -Introduction to Civil Engineering.

• The students have to opt for the courses from ESC group without repeating the course in either 1st or 2nd semester

• The students must select one course from either ETC-II or PLC-II group.

• If students study the subject from ETC-I in 1st semester he/she has to select the course from PLC-II in the 2nd semester and vice-versa

Syllabus for 2022-23 Batch UG

Semester: I / II								
Course Title: GREEN BUILDINGS								
(ETC-I) Emerging Technology Courses - I								
Course Code: 22ETT1055 / 22ETT2055	Evaluation Procedure:							
Credits: 03	CIE + Assignment + Group Activity + SEE Marks =							
	40 + 5 + 5 + 50 = 100							
Teaching Hours: 40 Hrs (L:T:P:S:3:0:0:0)	SEE Duration: 3 Hrs							

Co	urse Learning Objectives:
1	Understand the Definition, Concept and Objectives of the terms cost effective construction and green
	building.
2	Apply cost effective techniques in construction.
3	Understand the Problems due to Global Warming.
4	

4 State the Concept of Green Building.

Teaching-Learning Process:

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the infrastructures and the mechanism involved in the principle.
- 3. Encourage collaborative (Group) Learning in the class.
- 4. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 9. Individual teachers can device innovative pedagogy to improve teaching-learning.

UNIT – I						
Introduction to the concept of cost effective construction:						
Uses of different types of materials and their availability- Stone and Laterite blocks- Burned						
Bricks- Concrete Blocks- Stabilized Mud Blocks- Lime Pozzolana Cement- Gypsum Board- Light						
Weight Beams- Fiber Reinforced Cement Components- Fiber Reinforced Polymer Composite-						
Bamboo- Availability of different materials-Recycling of building materials-Brick- Concrete-						
Steel-Plastics – Environmental issues related to quarrying of building materials.						
UNIT – II						
Environment friendly and cost effective Building Technologies:	8 Hrs					
Different substitute for wall construction Flemish Bond - Rat Trap Bond - Arches - Panels -						
Cavity Wall - Ferro Cement and Ferro Concrete constructions - different pre cast members using						
these materials - Wall and Roof Panels - Beams - columns - Door and Window frames - Water						
tanks - Septic Tanks - Alternate roofing systems - Filler Slab - Composite Beam and Panel Roof -						
Pre-engineered and ready to use building elements - wood products - steel and plastic -						

Contributions of agencies - Costford - Nirmithi Kendra – Habitat.						
UNIT – III						
Global Warming and Green buildings:						
Definition - Causes and Effects - Contribution of Buildings towards Global Warming - Carbon						
Footprint - Global Efforts to reduce carbon Emissions Green Buildings - Definition - Features-						
Necessity - Environmental benefit - Economical benefits - Health and Social benefits - Major						
Energy efficient areas for buildings Embodied Energy in Materials Green Materials -						
Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.						
UNIT – IV						
Utility of Solar Energy in Buildings:	8 Hrs					
Utility of Solar energy in buildings concepts of Solar Passive Cooling and Heating of Buildings.						
Low Energy Cooling.						
Green Composites for Buildings:						
Concepts of Green Composites. Water Utilization in Buildings, Low Energy Approaches to Water,						
Management. Management of Solid Wastes, Sullage Water and Sewage.						
UNIT – V						
Green Building rating Systems:	8 Hrs					
BREEAM – LEED - GREEN STAR - GRIHA (Green Rating for Integrated Habitat Assessment)						
for new buildings – Purpose - Key highlights - Point System with Differential weight age. Green						
Design – Definition - Principles of sustainable development in Building Design - Characteristics of						
Sustainable Buildings – Sustainably managed Materials - Integrated Lifecycle design of Materials						
and Structures (Concepts only)						

Co	Course Outcomes: The students will be able to									
1	Select different building materials for construction.									
2	Apply effective environmental friendly building technology.									
3	Analyse global warming due to different materials in construction.									
4	Analyse buildings for green rating, to use alternate source of energy and the effective use water.									

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each unit.
- Each full question will have sub question covering all the topics under a unit.
- The students will have to answer five full questions, selecting one full question from each unit.

Text Books:

- 1 HarharaIyer G, Green Building Fundamentals, Notion Press.
- 2 Dr. Adv. HarshulSavla, Green Building: Principles & Practices.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	✓				✓							\checkmark	
CO2	✓				\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	
CO3	✓				\checkmark		√	√	\checkmark		\checkmark	√	
CO4	✓				\checkmark		√	\checkmark	\checkmark		\checkmark	\checkmark	

Syllabus for 2022-23 Batch UG

Semester: I / II				
Course Title: INTRODUCTION TO SUSTAINABLE ENGINEERING				
(ETC-I) Emerging Technology Courses - I				
Course Code: 22ETT1058 / 22ETT2058	Evaluation Procedure:			
Credits: 03	CIE + Assignment + Group Activity + SEE Marks =			
	40 + 5 + 5 + 50 = 100			
Teaching Hours: 40 Hrs (L:T:P:S:3:0:0:0)	SEE Duration: 3 Hrs			

Co	urse Learning Objectives:
1	To familiarize the students to the area of sustainability and concepts of sustainability engineering.
2	To enable students with an understanding of principles and frame work of sustainable engineering.
3	To provide students with an understanding of Life Cycle Assessment tool in sustainable engineering.
4	To provide students with understanding of integration of sustainability with design.

Teaching-Learning Process:

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the infrastructures and the mechanism involved in the principle.
- 3. Encourage collaborative (Group) Learning in the class.
- 4. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 9. Individual teachers can device innovative pedagogy to improve teaching-learning.

UNIT – I			
Sustainable Development and Role of Engineers:	8 Hrs		
Introduction, Why and What is Sustainable Development, The SDFs, Paris Agreement and Role of			
Engineering, Sustainable Development and the Engineering Profession, Key attributes of the			
Graduate Engineering			
Sustainable Engineering Concepts:			
Key concepts - Factor 4 and Factor 10: Goals of sustainability, System Thinking, Life Cycle			
Thinking and Circular Economy.			
UNIT – II			
Sustainable Engineering and Concepts, Principles and Frame Work:	8 Hrs		
Green Economy and Low Carbon Economy, Eco Efficiency, Triple bottom Line, Guiding			
principles of sustainable engineering, Frameworks for sustainable Engineering.			
Tools for sustainability Assessment:			
Environmental Management System, Environmental Auditing, Cleaner Production Assessment,			
Environmental Impact Assessment, Strategic Environmental.			

Fundamentals of Life Cycle Assessment: 8 Hrs
Why and What is LCA, LCA Goal and Scope, Life cycle inventory, Life Cycle Impact
Assessment, Interpretation and presentation of Results, Iterative Nature of LCA, Methodological
Choices, LCI Databases and LCA Softwares, Strength and Limitations of LCA.
UNIT – IV
Environmental Life Cycle Costing, Social Life Cycle Assessment, and Life Cycle 8 Hrs
Sustainability Assessment:
Introduction, Environmental Life Cycle Costing, Social Life Cycle Assessment, Life Cycle
Sustainability, LCA Applications in Engineering: Environmental Product Declarations and
Product Category Rules, Carbon and Water Foot Printing, Energy systems, Buildings and the Built
Environment, Chemical and Chemical Production Food and Agriculture.
Introduction to Environmental Economics:
Introduction – What Is Environmental Economics?, Valuing the Environment, Market-based
Incentives (or Economic Instruments) for Sustainability, Command-and-Control versus Economic
Instruments, A Simple Model of Pollution Control.
UNIT – V
Integrating Sustainability in Engineering Design: 7 Hrs
Problems Solving in Engineering, conventional to Sustainable Engineering Design Process,
Design for Life Guidelines and Strategies, Measuring Sustainability, Sustainable Design through
sustainable procurement criteria, Case studies on sustainable Engineering Design Process -
Sustainable Process, Production and product design in Engineering.

Course Outcomes:	The	students	will	be	able to
-------------------------	-----	----------	------	----	---------

1			•
	Elucidate the basics of sustainable development	sustainable engineering and its role in engineer	nno
-	Enderdade the busies of sustainable development	, sustainable engineering and its fole in engineer	

- 2 Application of Sustainable Engineering Concepts and Principles in Engineering
- 3 Apply the Principle, and methodology of Life Cycle Assessment Tool to engineering systems
- 4 Understand integration methods of sustainability to Engineering Design

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each unit.
- Each full question will have sub question covering all the topics under a unit.
- The students will have to answer five full questions, selecting one full question from each unit.

То	vt Rooks.
10	AL DUURS.
1	Introduction to Sustainability for Engineers, Toolseeram Ramjeawon, CRC Press, 1stEdn., 2020
2	Sustainability Engineering: Concepts, Design and Case studies, Prentice Hall, 1stEdn, 2015
3	System Analysis for sustainable Engineering: Theory and applications, Ni bin Chang, McGraw Hill
	Publications, 1stEdn., 2010
4	Engineering for Sustainable development: Delivery a sustainable development goals, UNESCO,
	International Centre for Engineering Education, France, 1stEdn., 2021
5	Introduction to Sustainable Engineering, Rag. R.L. and Ramesh Lakshmi Dinachandran, PHI
	Learning Pvt. Ltd., 2ndEdn, 2016

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Department of Civil Engineering												

Dr. Ambedkar Institute of Technology, Bengaluru - 560056

CO1			\checkmark	\checkmark	✓	\checkmark		
CO2				\checkmark	\checkmark			
CO3				\checkmark	\checkmark	\checkmark		
CO4				\checkmark				

Syllabus fo	r 2022-23	Batch UG
D J Man and IO		Duttin C C

Semester: I / II				
Course Title: BASICS OF WASTE MANAGEMENT				
(ETC - I Emerging Technology Courses – I)				
Course Code: 22ETT1054 / 22ETT2054	Evaluation Procedure:			
Credits: 03	CIE + Assignment + Group Activity + SEE Marks =			
	40 + 5 + 5 + 50 = 100			
Teaching Hours: 40 Hrs (L:T:P:S:3:0:0:0)	SEE Duration: 3 Hrs			

Course Learning Objectives:

1	To learn broader understandings on various aspects of solid waste management practiced in
	industries.
2	To learn methods of collection, transport and storage of solid waste to go for further treatments such
	as volume reduction, densification.
3	To learn recovery of products from solid waste through various process such as compost and biogas,
	incineration and also energy recovery.
4	To understand sanitary landfill operation and in overall integrated waste management.

Teaching-Learning Process:

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the infrastructures and the mechanism involved in the principle.
- 3. Encourage collaborative (Group) Learning in the class.
- 4. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 9. Individual teachers can device innovative pedagogy to improve teaching-learning.

UNIT – I

8 Hrs

INTRODUCTION TO SOLID WASTE MANAGEMENT: Classification of solid wastes (source and type based), solid waste management (SWM), elements of SWM, ESSWM (environmentally sound solid waste management) and EST (environmentally

sound technologies), factors affecting SWM, Indian scenario, progress in MSW (municipal solid waste) management in India.

UNIT – II

WASTE GENERATION ASPECTS:8 HrsWaste stream assessment (WSA), waste generation and composition, waste characteristics
(physical and chemical), health and environmental effects (public health and environmental),
comparative assessment of waste generation and composition of developing and developed
nations, a case study results from an Indian city, handouts on solid waste compositions.8 Hrs

UNIT – III								
COLLECTION, STORAGE AND TRANSPORT OF WASTES:								
Waste Collection, Storage and Transport: Collection components, storage-containers/collection	l							
vehicles, collection operation, transfer station, waste collection system design, record keeping,	l							
control, inventory and monitoring, implementing collection and transfer system.	1							
UNIT – IV								
WASTE PROCESSING TECHNIQUES & SOURCE REDUCTION, PRODUCT	8 Hrs							
RECOVERY & RECYCLING:	l							
Purpose of processing, mechanical volume and size reduction, component separation, drying and	1							
dewatering. Source Reduction, Product Recovery and Recycling: basics, purpose, implementation	l							
monitoring and evaluation of source reduction, significance of recycling, planning of a recycling	1							
programme, recycling programme elements, commonly recycled materials and processes, a case	1							
study.								
UNIT – V								
WASTE DISPOSAL:								
Key issues in waste disposal, disposal options and selection criteria, sanitary landfill, landfill								
gas emission, leachate formation, environmental effects of landfill, landfill operation issues.	l							
Leachate and landfill gas management -landfill closure and post closure care. Types and methods	1							
of composting.	l							

Course Outcomes	: The students	will be able to
-----------------	----------------	-----------------

1 Apply the basics of solid waste management towards sustainable development.

2 Apply technologies to process waste and dispose the same.

3 Design working models to convert waste to energy.

4 Identify and classify hazardous waste and manage the hazard.

Question paper pattern:

• The question paper will have ten full questions carrying equal marks.

• Each full question will be for 20 marks.

• There will be two full questions (with a maximum of four sub - questions) from each unit.

• Each full question will have sub - question covering all the topics under a unit.

• The students will have to answer five full questions, selecting one full question from each unit.

Te	xt Books:
1	Tchobaanoglous, G., Theisen, H., and Samuel A Vigil, Integrated Solid Waste Management, McGraw-Hill Publishers, 1993
2	Bilitewski B., Hard He G., Marek K., Weissbach A., and Boeddicker H., Waste Management,
	Springer, 1994.
3	White, F. R., Franke P. R., & Hindle M., Integrated solid waste management: a life cycle inventory.
	McDougall,P. John Wiley & Sons. 2001
4	Nicholas, P., & Cheremisinoff, P. D., Handbook of solid waste management and waste
	minimization technologies, Imprint of Elsevier Science. 2005

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						✓	✓					
CO2						\checkmark		\checkmark				

Dr. Ambedkar Institute of Technology, Bengaluru - 560056

CO3			~	>			
CO4			~	>	~		

Syllabus for 2022-23 Batch UG

Semester: I / II								
Course Title: INTRODUCTION TO CIVIL ENGINEERING								
(ESC-I) Engineering Science Courses-I								
Course Code: 22EST104A / 22EST204A	Evaluation Procedure:							
Credits: 03	CIE + Assignment + Group Activity + SEE Marks =							
	40 + 5 + 5 + 50 = 100							
Teaching Hours: 40 Hrs (L:T:P:S:3:0:0:0)	SEE Duration: 3 Hrs							

Co	urse Learning Objectives:
1	To make students learn the scope of various specializations of civil engineering.
2	To make students learn the concepts of sustainable infrastructure
3	To develop students ability to analyze the problems involving forces, moments with their applications.
4	To understand the concept of equilibrium and friction along with their applications.
5	To develop the student's ability to find out the center of gravity and moment of inertia and their
	applications.

Teaching-Learning Process:

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the infrastructures and the mechanism involved in the principle.
- 3. Encourage collaborative (Group) Learning in the class.
- 4. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 9. Individual teachers can device innovative pedagogy to improve teaching-learning.

UNIT – I					
Civil Engineering Disciplines and Building Science					
Introduction to Civil Engineering:					
Surveying, Structural Engineering, Geotechnical Engineering, Hydraulics & Water Resources,					
Transportation Engineering, Environmental Engineering, Construction planning & Project					
management.					
Basic Materials of Construction:					
Bricks, Cement & mortars, Plain, Reinforced & Pre-stressed Concrete, Structural steel,					
Construction Chemicals.					
Structural elements of a building:					
Foundation, plinth, lintel, chejja, Masonry wall, column, beam, slab and staircase.					
UNIT – II					
Societal and Global Impact of Infrastructure	8 Hrs				

Infrastructure: Introduction to sustainable development goals, Smart city concept, clean city concept, Safe city concept **Environment**: Water Supply and Sanitary systems, urban air pollution management, Solid waste management, identification of Landfill sites, urban flood control **Built-environment:** Energy efficient buildings, recycling, Temperature and Sound control in buildings, Security systems; Smart buildings. UNIT – III Analysis of force systems: 8 Hrs Concept of idealization, system of forces, principles of superposition and transmissibility, Resolution and composition of forces, Law of Parallelogram of forces, Resultant of concurrent and non-concurrent coplanar force systems, moment of forces, couple, Varignon's theorem, free body diagram, equations of Equilibrium, Equilibrium of Concurrent and Non Concurrent force systems. Numerical examples. UNIT – IV **Support Reactions:** 8 Hrs Types of Beams, Loads and Supports, Numerical Examples. **Friction:** laws of Coulomb friction, equilibrium of blocks on horizontal plane, Introduction, equilibrium of blocks on inclined plane, ladder friction, Numerical examples. UNIT – V **Centroid:** 8 Hrs Importance of centroid and centre of gravity, methods of determining the centroid, locating the centroid of plane laminae from first principles, centroid of built-up sections, Numerical examples. Moment of inertia: Importance of Moment of Inertia, method of determining the second moment of area (moment of inertia) of plane sections from first principles, parallel axis theorem and perpendicular axis theorem, section modulus, radius of gyration, moment of inertia of built-up Sections.

Co	Course Outcomes: The students will be able to								
1	Understand the various disciplines, infrastructure requirement for sustainable development of civil								
	engineering.								
2	Examine the types of force system and compute their resultant at various conditions.								
3	Analyze the problems to obtain support reactions, the behavior of bodies in contact with different								
	surfaces.								
4	Locate the centroid of plane and built-up sections and Compute the moment of inertia of plane and								
	built-up sections.								

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each unit.
- Each full question will have sub question covering all the topics under a unit.
- The students will have to answer five full questions, selecting one full question from each unit.

Te	xt Books:									
1	Bansal R. K., Rakesh Ranjan Beohar and Ahmad Ali Khan, Basic Civil Engineering and									
	Engineering Mechanics, 2015, Laxini Publications.									
2	Kolhapure B K, Elements of Civil Engineering and Engineering Mechanics, 2014, EBPB									
3	Beer F.P. and Johnston E. R., Mechanics for Engineers, Statics and Dynamics, 1987, McGraw Hill.									
4	Irving H. Shames, Engineering Mechanics, 2019, Prentice-Hall.									
5	Hibbler R. C., Engineering Mechanics: Principles of Statics and Dynamics, 2017, Pearson Press.									
6	Timoshenko S, Young D. H., Rao J. V., Engineering Mechanics, 5th Edition, 2017, Pearson Press.									
7	Bhavikatti S S, Engineering Mechanics, 2019, New Age International									
8	Reddy Vijaykumar K and Suresh Kumar K. Engineering Mechanics 2011, BS publication									

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓				\checkmark	✓					✓
CO2	✓	✓		\checkmark								✓
CO3	✓	✓		\checkmark								✓
CO4	✓	✓		\checkmark								✓

Syllabus for 2022-23 Batch UG

Semester: I / II						
Course Title: ENGINEERING MECHANICS						
(ESC - Engineering Science Courses)						
Course Code: 22CVT103	Evaluation Procedure:					
Credits: 03	CIE + Assignment + Group Activity + SEE Marks =					
	40 + 5 + 5 + 50 = 100					
Teaching Hours: 50 Hrs (L:T:P:S:4:0:0:0)	SEE Duration: 3 Hrs					

Course Learning Objectives:						
1	To make students learn the scope of various specializations of civil engineering.					
2	To make students learn the concepts of sustainable infrastructure.					
3	To develop students ability to analyze the problems involving forces, moments with their applications.					
4	To develop the student's ability to find out the center of gravity and moment of inertia and their applications.					
5	To make the students learn about kinematics and kinetics and their applications.					

Teaching-Learning Process:

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the infrastructures and the mechanism involved in the principle.
- 3. Encourage collaborative (Group) Learning in the class.
- 4. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 9. Individual teachers can device innovative pedagogy to improve teaching-learning.

UNIT – I						
Resultant of coplanar force system:	10					
Basic dimensions and units, Idealizations, Classification of force system, principle of	Hrs					
transmissibility of a force, composition of forces, resolution of a force, Free body diagrams,						
moment, Principle of moments, couple, Resultant of coplanar concurrent force system, Resultant						
of coplanar non-concurrent force system, Numerical examples.						
UNIT – II						
Equilibrium of coplanar force system:	10					
Equilibrium of coplanar concurrent force system, Lami's theorem, Equilibrium of coplanar parallel	Hrs					
force system, types of beams, types of loadings, types of supports, Equilibrium of coplanar non-						
concurrent force system, support reactions of statically determinate beams subjected to various						
types of loads, Numerical examples.						

UNIT – III	
Analysis of Trusses:	10
Introduction, Classification of trusses, analysis of plane perfect trusses by the method of joints	Hrs
and method of sections, Numerical examples.	
Friction:	
Introduction, laws of Coulomb friction, equilibrium of blocks on horizontal plane,	
equilibrium of blocks on inclined plane, ladder friction, wedge friction Numerical examples.	
$\mathbf{UNIT} - \mathbf{IV}$	
Centroid of Plane areas:	10
Introduction, Locating the centroid of rectangle, triangle, circle, semicircle, quadrant and sector of	Hrs
a circle using method of integration, centroid of composite areas and simple built up sections,	
Numerical examples.	
Moment of inertia of plane areas:	
Introduction, Rectangular moment of inertia, polar moment of inertia, product of inertia, radius of	
gyration, parallel axes theorem, perpendicular axis theorem, moment of inertia of rectangular,	
triangular and circular areas from the method of integration, moment of inertia of composite	
areas and simple built up sections,, Numerical examples.	
UNIT – V	
Kinematics:	10
Linear motion: Introduction, Displacement, speed, velocity, acceleration, acceleration due to	Hrs
gravity, Numerical examples on linear motion	
Projectiles: Introduction, numerical examples on projectiles.	
Kinetics:	
Introduction, D 'Alembert's principle of dynamic equilibrium and its application in-plane motion	
and connected bodies including pulleys, Numerical examples.	

Course Outcomes: The students will be able to								
1	Understand the concept of engineering mechanics, force system and Compute the resultant of various							
	force system, examine the types of loads on rigid bodies and compute the reactive forces in various							
	member of the structure and trusses.							
2	Analyze the problems to obtain reactive forces in various member of the structure and the behavior of							
	bodies in contact with different surfaces.							
3	Locate the centroid and Compute the moment of inertia of plane and built-up sections.							
4	Explain the basics of dynamics and analyze the bodies in motion							

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each unit.
- Each full question will have sub question covering all the topics under a unit.
- The students will have to answer five full questions, selecting one full question from each unit.

Text Books:

1	Bansal R. K., Rakesh Ranjan Beohar and Ahmad Ali Khan, Basic Civil Engineering and Engineering Mechanics, 2015, Laxmi Publications.									
2	Kolhapure B K, Elements of Civil Engineering and Engineering Mechanics, 2014, EBPB									
3	Beer F.P. and Johnston E. R., Mechanics for Engineers, Statics and Dynamics, 1987, McGraw Hill.									
4	Irving H. Shames, Engineering Mechanics, 2019, Prentice-Hall.									

- 5 Hibbler R. C., Engineering Mechanics: Principles of Statics and Dynamics, 2017, Pearson Press.
 6 Timoshenko S, Young D. H., Rao J. V., Engineering Mechanics, 5th Edition, 2017, Pearson Press.
 7 Bhavikatti S S, Engineering Mechanics, 2019, New Age International
- 8 Reddy Vijaykumar K and Suresh Kumar K, Engineering Mechanics, 2011, BS publication.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓		\checkmark								\checkmark
CO2	✓	✓		✓								✓
CO3	✓	✓		✓								✓
CO4	✓	✓		✓								✓