DEPARTMENT OF CHEMISTRY

<u>2023-24</u>

Subject title : APPLIED CHEMISTRY FOR ME, AE, IEM BRANCHES					
Subject Code : 22CHU102A	No. of credits: 3:0:1 (L-T-P)	No. of lecture hour per week : 3			
Exam duration : 3 hours.	CIE + SEE = 50 + 50 = 100	Total No. of lecture hours : 40			

Course Objectives:

To interconnect the acquaintance of Chemistry involved in Basics of Electrochemical cells, Corrosion and its control; renewable sources of energy; Polymers for Electronic materials; memory and display systems; sensors in instrumental analytical methods and water treatment; e-waste management; Nanomaterials and its application.

Syllabus:					
Unit No.	Syllabus content	No. of hours			
	Unit I : Electrode Systems and Corrosion Science				
	Electrodes and Cells – Introduction- Classification of electrochemical cells and concentration cells, numerical on concentration cells. ; Reference electrodes - Calomel				
1	electrode; Ion-selective electrodes - Glass electrode. Determination of pH using glass electrode.	8			
	Corrosion - Definition, Electrochemical theory of corrosion, Types of corrosion - differential metal, differential aeration and stress corrosion; Factors affecting the rate of corrosion; Corrosion Penetration Rate (CPR) , numerical. Corrosion control: Inorganic coatings – anodizing and phosphating. Cathodic protection – Sacrificial anode, Impressed				
	current method. Metal finishing - Introduction, technological importance; Electroplating – Chromium Plating; Electroless plating - Electroless plating of copper on PCB. Self-study: Galvanic series and its importance, Electroplating of Gold.				
	Unit – II : Energy conversion and Storage				
2	Chemical fuels - Introduction, Calorific value - definition, gross and net calorific values; Determination of calorific value of a solid / liquid fuel using Bomb calorimeter and numerical on calorific value; Petroleum cracking - fluidized bed catalytic cracking; Knocking- Mechanism of Knocking in IC engine; Octane number and Cetane number; Reformation of petrol.	8			
	Sustainable energy sources: Hydrogen as a fuel - advantages, production and storage. Biofuels- Production of Biodiesel. Solar cells - Construction and working of Si based PV cell, advantages and disadvantages.				
	Electrochemical Energy Systems : Introduction to batteries, Classification of batteries - primary and secondary batteries; Battery characteristics; construction, working and applications of Sodium ion batteries. Self-study: Fuel cells and Zinc-Air, Li-Ion batteries				

	Unit –III : Macromolecules for Engineering application	
3	Polymers - Polymerization – Classification- addition and condensation polymerization with examples: Free radical mechanism for the formation of polyvinyl chloride as an example, Introduction to Molecular weight - number average and weight average molecular weight, Polydispersion index and its significance, numerical problems; Glass transition temperature (Tg) –significance and factors affecting Tg, compounding of resins into plastics. Synthesis and applications- PMMA, Phenol-formaldehyde resin. Elastomers: Introduction, vulcanization of rubber. Synthesis and applications of neoprene and butyl rubber; adhesives: synthesis of epoxy resins. Conducting polymers: mechanism of conduction in polyacetylene and its applications. Biodegradable polymers - Introduction, Polyglycolic acid - synthesis, degradation and uses. Self-study: Polycarbonates, Recycling of PET.	8
	Unit – IV : Materials for Engineering Applications	
4	Alloys: Introduction, classification, composition, properties and applications of stainless steel, solders, brass, alnico and shape memory alloys.Glasses & Ceramics: Introduction, Properties & Types of glasses, Manufacture and application of glasses. Ceramics - classification based on chemical composition.Lubricants: Introduction, classification, properties and applications of lubricants.Nanomaterials - Introduction, size dependent properties (Surface area, Electrical, Optical, Catalytic and Thermal properties). Synthesis of nanomaterials: top-down and bottom-up approaches; Synthesis by sol-gel (ZrO2), chemical vapor deposition methods (CNTs). Graphene by Hummer's method – properties and applications.Self-Study: Abrasives	8
5	Unit – V : Phase Rule, Water Treatment and Analytical TechniquesPhase Rule – Gibbs phase rule; Concept of Phase component, degrees of freedom with examples; Numericals. Application of Phase rule to i) one component system - water system; ii) two component system - Pb-Ag system, Water treatment - Introduction, hardness of water, types, determination of hardness by EDTA method, disadvantages of hard water, removal of hardness by ion exchange method, Desalination of water – Electrodialysis. BOD and COD - introduction and their significance in waste water treatment, experimental determination of COD of waste water - numerical on hardness & COD.Analytical Techniques - Principle, Instrumentation and applications of Colorimetry (Copper), Potentiometry(FAS estimation), Conductometry (Acid Mixtures).\Self-Study: Solid waste management.	8

TEACHING AND LEARNING PROCESS

Chalk and talk method, power point presentation, Videos, Animations. Practical topic: Demonstration and Virtual Lab along with Performing experiments

Course of the abilit	butcomes: On completion of the course, the student will have y to:	POs Mapped	Strength of mapping
CO1	Understand and explain the principles of chemistry involved in water treatment, corrosion, energy sources, polymers, Green chemistry and instrumental methods of analysis.	PO1	3
CO2	Apply the acquired knowledge to solve the Engineering Chemistry problems .	PO1 &PO2	3, 3
CO3	Examine the Engineering Chemistry problems and draw meaningful interpretations .	PO1, PO3 & PO4	3, 3, 2
CO4	Instrument solutions through concepts of Engineering Chemistry in the field of Energy and Environment.	PO1, PO3 &PO7	3, 2, 3
CO5	Engage in self-study and make an effective oral presentation on contribution of Engineering Chemistry to society.	PO1, PO6, PO9 & PO12	3, 1, 3, 3

MAPPING of COs with POs for Applied Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	3										
CO3	3		3	2								
CO4	3		2				3					
CO5	3					1			3			3
Strength of correlation: Low-1, Medium-2, High-3												

REFERENCE:

- 1. Principles of Physical Chemistry B.R.Puri, L.R.Sharma & M.S.Pathania,
- 2. S.Nagin Chand &Co.
- 3. Text Book of Polymer Science by F.W.Billmeyer, John Wiley & Sons
- 4. Corrosion Engineering by M.G.Fontana, Mc Graw Hill Publications.
- 5. Environmental Chemistry by Stanley E. Manahan, 7th Edition, lewis Publishers, 2000
- 6. Engineering Chemistry by Dr Renu bapna, Macmilan publisher India limited
- 7. Engineering Chemistry by Jayaprakash and Venugopal Subhash Publications.
- 8. Nano Metal Oxides For Environmental Remediation. United Publications Dr. Jahagirdar A.A and Dr. Nagaswarupa H P.
- 9. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd.
- 10. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, Bengaluru, ISBN 978-93-85155-70-3, 2022.

Refrence Books

- 11. Wiley's Engineering Chemistry (Wiley India), 2nd Edition, 2013, 1026 pages.
- 12. Engineering Chemistry, Satyaprakash & Manisha Agrawal, Khanna Book Publishing, Delhi
- 13. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12th Edition, 2011.

NPTEL/SWAYAM/MOOCs

- 1. http://nptel.ac.in/
- 2. https://swayam.gov.in/

Practical Module

SI.	Syllabus content						
No.	ت ب						
	<u>A – Compulsory Experiments:</u>						
1	Potentiometric estimation of Iron using std. K ₂ Cr ₂ O ₇ (Electrochemical sensor).						
2	Determination of pKa of a weak acid using glass electrode (pH sensor)						
3	Conductometric estimation of mixture of strong and weak acid (conductometric sensors)						
4	Estimation of copper in CuSO ₄ by colorimetry (optical sensor).						
5	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.						
6	Estimation of total hardness of water by EDTA method.						
7	Determination of COD of an industrial wastewater.						
8	Estimation of percentage of copper in brass (analysis of alloy).						
	B – Demonstration (offline/virtual)						
	Determination of Iron in the given sample of Haematite ore solution using K ₂ Cr ₂ O ₇ crystals by						
1	external indicator method.						
2	Synthesis of oxide nanoparticles.						
	<u>C-Open Ended Experiments:</u>						
1	Design an experiment to Identify the presence of proteins in given sample.						
2	Determination of glucose by electrochemical sensors.						

References Books:

1. Laboratory manual in Engineering Chemistry Sudharani, Dhanpatrai Publishing Company.

- 2. Vogel's Text Book of Quantitative Chemical Analysis revised by G.H.Jeffery, J.Bassett,
 - ,J.Mendham and R.C Denney.

VIRTUAL LAB LINK DETAILS:

- https://www.labster.com/chemistry-virtual-labs/
- <u>https://youtu.be/OwZbw6Mhrqc</u>
- <u>https://youtu.be/UOLOsKZxi6Y</u>

HOD

Department of Chemistry