Dr AMBEDKAR INSTITUTE OF TECHNOLOGY Autonomous Institute, Affiliated to VTU

DEPARTMENT OF CHEMISTRY

AY 2023-24

Subject title: APPLIED CHEMISTRY FOR CV BRANCHES					
Subject Code: 22CHU202C	No. of credits: 3:0:1 (L-T-P)	No. of lecture hour per week: 3			
Exam duration: 3 hours.	CIE + SEE = 50 + 50 = 100	Total No. of lecture hours : 52			

Course Objectives:

To interconnect the acquaintance of Chemistry involved in Basics of Electrochemical cells, Corrosion and its control; renewable sources of energy; Polymers for Electronic materials; memory and display systems; sensors in instrumental analytical methods and water treatment; e-waste management; Nanomaterials and its application.

Syllabus:

Unit	Syllabus content	No. of					
No.		hours					
	<u>Unit I :</u> Electrode Systems and Corrosion Science						
	Electrodes and Cells - Introduction- Classification of electrochemical cells and						
	concentration cells, numerical on concentration cells.; Reference electrodes - Calomel						
	electrode; Ion-selective electrodes - Glass electrode. Determination of pH using glass						
1	electrode.	8					
	Corrosion - Definition, Electrochemical theory of corrosion, Types of corrosion -						
	differential metal, differential aeration and stress corrosion; Factors affecting the rate of						
	corrosion; Corrosion Penetration Rate (CPR), numerical. Corrosion control: Inorganic						
	coatings – anodizing and phosphating. Cathodic protection – Sacrificial anode, Impressed						
	current method. Metal finishing - Introduction, technological importance; Electroplating						
	- Chromium Plating; Electroless plating - Electroless plating of copper on PCB.						
	Self-study: Galvanic series and its importance, Electroplating of Gold.						
	<u>Unit – II :</u> Energy conversion and Storage						
	Chemical fuels - Introduction, Calorific value - definition, gross and net calorific values;						
	Determination of calorific value of a solid / liquid fuel using Bomb calorimeter and						
2	numerical on calorific value; Petroleum cracking - fluidized bed catalytic cracking;						
_	Knocking- Mechanism of Knocking in IC engine; Octane number and Cetane number;						
	Reformation of petrol.						
	Sustainable energy sources: Hydrogen as a fuel - advantages, production and storage.						
	Biofuels- Production of Biodiesel. Solar cells - Construction and working of Si based						
	PV cell, advantages and disadvantages.						
	Electrochemical Energy Systems: Introduction to batteries, Classification of batteries -						
	primary and secondary batteries; Battery characteristics; construction, working and						
	applications of Sodium ion batteries. Self-study: Fuel cells and Zinc-Air, Li-Ion batteries.						
	Sen-study. Puci cens and Zinc-An, Li-10n Datteries.						

Dr AMBEDKAR INSTITUTE OF TECHNOLOGY Autonomous Institute, Affiliated to VTU

	Unit –III: Macromolecules for Engineering application	
3	Polymers - Polymerization – Classification- addition and condensation polymerization with examples: Free radical mechanism for the formation of polyvinyl chloride as an example, Introduction to Molecular weight - number average and weight average molecular weight, Polydispersion index and its significance, numerical problems; Glass transition temperature (Tg) –significance and factors affecting Tg, compounding of resins into plastics. Synthesis and applications- PMMA, phenol-formaldehyde resin. Elastomers: Introduction, vulcanization of rubber. Synthesis and applications of neoprene and butyl rubber; adhesives: synthesis of epoxy resins. Conducting polymers: mechanism of conduction in polyacetylene and its applications. Biodegradable polymers - Introduction, Polyglycolic acid - synthesis, degradation and uses. Self-study: Polycarbonates, Recycling of PET.	8
	Unit – IV : Structural Materials	
4	Metals and Alloys: Composition, Properties and application of Iron and its alloys (any two), Aluminium (Duralumina & Magnalumina) and its alloys. Cement: Introduction, composition, properties, classification, manufacturing process of Portland cement, process of setting and hardening of cement, additives for cement. Geo polymer concrete: Introduction, synthesis, constituents, properties and applications. Refractories: Introduction, classification based on chemical composition, properties and application of refractory materials. Glass: Introduction, Composition, Types, Preparation of Soda-lime glass, properties and applications of glass. Self-study: Chemistry of reinforced concrete	8
	<u>Unit – V : Water Technology, Phase rule and Analytical Techniques</u>	
5	Water Technology - Introduction, hardness of water, types, determination of hardness by EDTA method, disadvantages of hard water, removal of hardness by ion exchange method, Desalination of water – Electrodialysis. BOD and COD - introduction and their significance in waste water treatment, experimental determination of COD of waste water - numerical on hardness & COD, treatment of waste water - aerobic and anaerobic oxidation, primary, secondary (trickling filter method) and tertiary treatment methods. Phase Rule – Gibbs phase rule; Concept of Phase component, degrees of freedom with examples; Numericals. Application of Phase rule to one component system - water system. Analytical techniques: - Principle, Instrumentation and applications of Colorimetry (Conner) Potentiometry (FAS estimation using KaCraOs). Conductometry (Acid	8
	(Copper), Potentiometry (FAS estimation using K ₂ Cr ₂ O ₇), Conductometry (Acid Mixtures). Self-Study: Solid waste management.	

TEACHING AND LEARNING PROCESS

Chalk and talk method, power point presentation, Videos, Animations. Practical topic: Demonstration and Virtual Lab along with Performing experiments

Dr AMBEDKAR INSTITUTE OF TECHNOLOGY Autonomous Institute, Affiliated to VTU

Course of	outcomes: On completion of the course, the student will have	POs	Strength of
the ability	y to:	Mapped	mapping
CO1	Understand and explain the principles of chemistry involved in water treatment, corrosion, energy sources, polymers, Green chemistry and instrumental methods of analysis.	PO1	3
CO2	Apply the acquired knowledge to solve the Engineering Chemistry problems .	PO1 &PO2	3, 3
CO3	Examine the Engineering Chemistry problems and draw meaningful interpretations .	PO1, PO3 & PO4	3, 3, 2
CO4	Instrument solutions through concepts of Engineering Chemistry in the field of Energy and Environment.	PO1, PO3 &PO7	3, 2, 3
CO5	Engage in self-study and make an effective oral presentation on contribution of Engineering Chemistry to society.	PO1, PO6, PO9 & PO12	3, 1, 3, 3

MAPPING of COs with POs for Applied Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	3										
CO3	3		3	2								
CO4	3		2				3					
CO5	3					1			3			3
Stren	Strength of correlation: Low-1, Medium- 2, High-3											

REFERENCE:

- 1. Principles of Physical Chemistry B.R.Puri, L.R.Sharma & M.S.Pathania,
- 2. S.Nagin Chand &Co.
- 3. Text Book of Polymer Science by F.W.Billmeyer, John Wiley & Sons
- 4. Corrosion Engineering by M.G.Fontana, Mc Graw Hill Publications.
- 5. Environmental Chemistry by Stanley E. Manahan, 7th Edition, lewis Publishers, 2000
- 6. Engineering Chemistry by Dr Renu bapna, Macmilan publisher India limited
- 7. Engineering Chemistry by Jayaprakash and Venugopal Subhash Publications.
- 8. Nano Metal Oxides For Environmental Remediation. United Publications Dr. Jahagirdar A.A and Dr. Nagaswarupa H P.
- 9. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd.
- 10. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, Bengaluru, ISBN 978-93-85155-70-3, 2022.
- 11. Wiley's Engineering Chemistry (Wiley India), 2nd Edition, 2013, 1026 pages.
- 12. Engineering Chemistry, Satyaprakash & Manisha Agrawal, Khanna Book Publishing, Delhi
- 13. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12th Edition, 2011.

NPTEL/SWAYAM/MOOCs

- 1. http://nptel.ac.in/
- 2. https://swayam.gov.in/

Dr AMBEDKAR INSTITUTE OF TECHNOLOGY Autonomous Institute, Affiliated to VTU

Practical Module

Sl. No.	Syllabus content				
	<u>A – Compulsory Experiments:</u>				
1	Potentiometric estimation of Iron using std. K ₂ Cr ₂ O ₇ (Electrochemical sensor).				
2	Determination of pKa of a weak acid using glass electrode (pH sensor)				
3	Conductometric estimation of mixture of strong and weak acid (conductometric sensors)				
4	Estimation of copper in CuSO ₄ by colorimetry (optical sensor).				
5	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.				
6	Estimation of total hardness of water by EDTA method.				
7	Determination of COD of an industrial wastewater.				
8	Estimation of percentage of copper in brass (analysis of alloy).				
	<u>B – Demonstration (offline/virtual)</u>				
1	Determination of Iron in the given sample of Haematite ore solution using $K_2Cr_2O_7$ crystals by external indicator method.				
2	Synthesis of oxide nanoparticles.				
	<u>C – Open Ended Experiments:</u>				
1	Design an experiment to Identify the presence of proteins in given sample.				
2	Determination of glucose by electrochemical sensors.				

References Books:

- 1. Laboratory manual in Engineering Chemistry Sudharani, Dhanpatrai Publishing Company.
- 2. Vogel's Text Book of Quantitative Chemical Analysis revised by G.H.Jeffery, J.Bassett, ,J.Mendham and R.C Denney.

VIRTUAL LAB LINK DETAILS:

- https://www.labster.com/chemistry-virtual-labs/
- https://youtu.be/OwZbw6Mhrqc
- https://youtu.be/UOLOsKZxi6Y

HOD